
  

  

Selection of Test Case Features Using Fuzzy Entropy Measure and Random Forest 
 

Sankaranarayanan Murugan1*, Govindarajan Kulanthaivel2, Venugopal Ulagamuthalvi1  

 
1 Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India 
2 Electrical & Electronics and Communication Engineering, NITTTR, Chennai 600041, India 

 

Corresponding Author Email: snmurugan@gmail.com 

 

https://doi.org/10.18280/isi.240306 

  

ABSTRACT 

   

Received: 25 March 2019 

Accepted: 10 May 2019 

 Faults are extracted from the source code, from the pre - processed metrics and the related fault 

data. The generated faults are represented as a data set and are categorised into code, design 

and other features. Selection of features and identifying the importance of the attributes from 

the given set of test cases is one of the important tasks in the software testing phase. A Fuzzy 

based evaluation of features using the Entropy measure and Hurwicz criterion has been carried 

on the code and design metrics for different test cases. The datasets have been further analysed 

using the Random Forest Approach for identifying the feature that has the higher priority. The 

results obtained using the Fuzzy Entropy measure and the Random Forest approach exhibits a 

similarity of 95 % in identifying the feature importance. The results show that the feature 

NUM_OPERANDS is having the highest impact from the given list of features by applying 

Fuzzy Entropy measure and the model built using Random Forest approach. 
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1. INTRODUCTION 

 

The core objective of the software fault prediction models 

is to identify the modules that are having faults with minimal 

resource allocation on software testing and maintenance 

activity [1]. The prediction of fault that lies in the modules has 

not improved by large, because of which there is an uncertain 

about the quality of the software product [2]. Identification and 

prediction of errors or bugs in the modules has a significant 

impact in the development of a software as it directly affects 

the quality of a software product. In the software testing 

process, it is important to identify the module behaves in an 

abnormal manner because of improper code or design. A series 

of test cases with various features that directly maps to code or 

design metrics will be generated which provides an insight 

about the quality of the module. Practically it is evident that 

only a small number of modules contains a majority of the 

faults in the given software [3, 4]. Therefore, focus should be 

there in the initial design phase for predicting the fault and it 

may result in the efficient allocation of resources for the 

software testing process. To predict the fault, a set of historical 

data should be made available either it can be collected, or 

obtained through repositories. In most of the cases the data 

repositories are not collected and managed in a proper manner 

[5, 6] at the organization level. At the outset, there are huge 

number of data repositories are available as open source or 

commercially for test case prediction. The article uses the data 

set as available at PROMISE [7]. The dataset is randomly 

classified into training and testing data sets.  

The principle objective of this work is to identify the 

importance of feature(s) that has a significant impact in the test 

case data set. The experiment is a carried out using Fuzzy 

Entropy measure and Random Forest approach. The metrics 

considered for the evaluation process are code and design 

metrics. The remainder section of the article is organized as 

follows: section 2 summarizes the related work, section 3 

explains the fuzzy entropy measure, section 4 presents the 

random forest approach, section 5 provides an insight into the 

experimental analysis and section 6 is concluded with a 

summary and the future scope of research.  

 

 

2. RELATED WORK 
 

The machine learning methods which includes inductive 

programming, the framework generates value-based test data 

using Genetic algorithms. Two critical components given 

importance as high priority. The pareto modules and defect-

prone modules are identified as high priority for test data 

generation. The pareto principle in testing is 80 % of the 

defects is coming from the 20 % of the module and 90 % of 

the downtime comes from the 10 % of the defects [8]. Feature 

Selection helps in building the model in a machine learning 

approach. To evaluate and pre-process the data sets the 

identification of the feature with the highest impact is to be 

identified. Therefore, Feature selection is the process of 

identifying the attributes from the available data that are 

having higher impact during the prediction or forecasting the 

given problem statement. The reduction in dimensionality of 

the data set leads to a better solution, as least important 

attributes are ignored while making a decision. In the proposed 

work, two methodologies are considered for identifying the 

feature importance. Fuzzy entropy measure and random forest 

approach are the two methodologies applied in this work for 

identifying the features with high importance. The fuzzy 

entropy measure ranks the features and based on the selection 

of model; the random forest algorithm orders the feature which 

is having major impact in the software testing process. 

Test suite minimization, test case selection and test case 

prioritization are the three major steps in the software testing 

process and are closely associated [9, 10]. To predict the 

defective and non-defective modules a survey was presented 
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on the usage of testing metrics by using machine learning 

algorithms [11]. A mechanism was introduced to predict 

infeasible test cases by using Support Vector Machine (SVM) 

and induction grammars [12]. Mechanisms have been 

identified to detect fault prone classes using Random Forest 

(RF) algorithm [13]. Random Forest uses randomly selected 

subset of features in order to split at each node while growing 

a tree. The main characteristics of RF includes robust to outlier 

and noise, perform faster compare bagging and boosting, 

accurate, efficient for estimating missing data. The approach 

considers the metrics such as Coupling Between Objects 

(CBO), Lack of Cohesion (LC), number of children, depth of 

inheritance, Weighted Method per Class, Response for a Class, 

Number of Public Methods and Line of code. The Random 

Forest algorithm provides better accuracy by 74 % of correctly 

classifying the defects which reduces the test time. The test 

suite mechanism employs scope aided prioritization and scope 

aided selection process [14]. The aim of scope aided 

prioritization of test cases is to anticipate defects and terminate 

the testing process further. The prioritization used to change 

the order of the test cases for regression testing. The scope 

aided selection used to select the subset of the test case which 

is to be tested for the test objective. 

Fuzzy entropy-based approach was proposed for classifying 

multi-facet test cases for regression testing [15]. The unified 

framework removes high ambiguity test cases and selects low 

ambiguity test cases for exercise on the System Under Test 

(SUT). The similarity-based test case selection is performed 

using fuzzy entropy method. The Fuzzy Fitness Evaluating 

Index (FFEI) is used to fit the test cases from the large pool of 

data. A regression test case selection based on multicriteria 

optimization method to prioritize the test case [16]. The greedy 

algorithm is not sensitive to the input size so that it cannot 

provide the optimized solution. A test case selection based on 

test case dependencies is proposed for test case selection 

largely depends on the static analysis of code is used for 

framing the candidate test cases [17]. 

A bi-criteria approach that takes into account two testing 

criteria [18]: (i) code coverage and (ii) past fault detection 

history. Two objectives were combined by applying a 

weighted-sum approach, and used integer linear programming 

(ILP) optimization to find subsets, then reducing the multi-

objective problem to a single-objective one. A black box meta-

data base approach introduced for prioritizing the test cases 

using supervised learning for manual regression testing [18] 

and the test case descriptions are processed in natural language 

for prioritization. The SVM algorithm is used to prioritize the 

test cases and ranked. White box testing examines each code 

block and internal of the software. 

A new prioritization equation has been proposed for test 

cases based on the performance of the historical test cases data 

[19]. It is a feedback-based coefficient of historical data of 

previous version of the software is supplied to the proposed 

method. The priority equation employs the values of execution 

history, history of test cases in the previous session, historical 

fault detection. The effectiveness of this approach is to identify 

early fault and thereby improving the performance of the 

regression testing.  

A fuzzy expert system for prioritize the test cases has been 

proposed based on risk-based test prioritization technique 

which incorporates the risk factors such as requirement 

complexity, security, and test cases [20]. This approach 

consists of the computation steps which include requirement 

risk, risk items, requirement risk item correlation. Finally, the 

fuzzy expert system delivers prioritize the requirements and 

test cases. The prioritization can also be determined using 

rank-based feature selection [21]. A test case which has the 

highest coverage of not-yet-covered entities is called as a tie. 

A test case prioritization technique has been introduced which 

employs input based and randomized local beam search 

algorithm [22]. It is an iterative based algorithm to find the 

next successor test case from the pool of test cases. For each 

iteration, it takes the input test case which is not prioritized. It 

randomly selects the candidate test case and compare the 

distance with already prioritize test cases and indexed. The 

vulnerability of software components using the machine 

learning algorithms can be predicted by considering some of 

the features to act as predictors [23]. The algorithms used to 

identify the vulnerability is Naïve Bayes and Random Forest 

Prediction approaches. A “SuiteBuilder” has been developed 

for collecting raw test suites and assign the priority for 

effective selection of features in the process of test case 

selection [24]. An aggregate-strength prioritization technique 

based on uncover test cases for higher interaction with various 

parameters of the module has been proposed for finding the 

dissimilarity of combinatorial test cases and heuristic 

algorithms are applied to prioritized the test cases [25]. 

Regular or ensembled approaches are applied in classifying 

the data set. The regular algorithms process the dataset based 

on a specific methodology and the output is generated. 

Whereas the ensembled approach engenders the result based 

on the outcome of one or more similar kind of algorithms. 

Random Forest algorithm follows the supervised learning and 

ensembled approach [26]. Collection of decision trees are 

generated from the subset of a data set (in a random manner – 

also known as training data set) and the algorithm aggregates 

the votes of the generated decision trees and based on which 

the final class of the test data sets is published as output. The 

random forest is also capable of predicting the feature 

importance in a process. The principle, every feature in the 

model is allotted with a score in the training process and the 

impurity of the tree nodes is reduced. The feature values are 

generated in the range of [0, 1] and the feature with the score 

= 1 is having the highest priority and with a score of 0 is the 

least impact one in the data set and it can be ignored.  

The identification and selection of features in building the 

model using the machine learning approach is one of the 

critical factors. In the prediction or analysis of a model of a 

given data set with a set of features (or attributes) the selection 

of features with the highest significance is the process of 

feature selection. With the elimination of noise in the data set, 

the feature selection methods help the prediction process in a 

more precise and appropriate manner. The following check list 

are to be considered during the selection of features as given 

in [27] are: a) domain knowledge, b) inadequate features, c) 

feature dependence, d) modified input variables, e) individual 

assessment of features, f) requirement of a predictor, g) data 

cleaning, h) requirement of stable solution, i) computational 

resources and j) identify the starting point.  

Experiments with similar data sets have been carried out [6-

8] using Naiive Bayes, FURIA, KSTAR, NB and Decision 

Trees for the data sets PC1, PC2, PC3 and PC4. The accuracy 

rate is on an average of 90 %. In the proposed work, the dataset 

labelled as PC5 is also considered and tested with Random 

Forest and Fuzzy Entropy measure.
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3. FEATURE SELECTION 
 

In the proposed work, the features are classified in to class 

level features, code metrics, design metrics and other metrics 

[7] and the features are listed in Table 1.  

 

Table 1. Test case feature classification 

 
Code Metrics Design Metrics Other Metrics 

PARAMETER_

COUNT 

NUM_OPERA

NDS 

NUM_OPERA

TORS 

NUM_UNIQU

E_OPERANDS 

NUM_UNIQU

E_OPERATOR

S 

HALSTEAD_C

ONTENT 

HALSTEAD_D

IFFICULTY 

HALSTEAD_E

FFORT 

HALSTEAD_E

RROR_EST 

HALSTEAD_L

ENGTH 

HALSTEAD_L

EVEL 

HALSTEAD_P

ROG_TIME 

HALSTEAD_V

OLUME 

NUMBER_OF_

LINES 

LOC_BLANK 

LOC_CODE_A

ND_COMMEN

T 

LOC_COMME

NTS 

LOC_EXECUT

ABLE 

PERCENT_CO

MMENTS 

LOC_TOTAL 

EDGE_COUNT 

NODE_COUNT 

BRANCH_COU

NT 

CALL_PAIRS 

CONDITION_C

OUNT 

CYCLOMATIC_

COMPLEXITY 

DECISION_COU

NT 

DESIGN_COMP

LEXITY 

DESIGN_DENSI

TY 

ESSENTIAL_CO

MPLEXITY 

ESSENTIAL_DE

NSITY 

MAINTENANCE

_SEVERITY 

MODIFIED_CO

NDITION_COU

NT 

MULTIPLE_CO

NDITION_COU

NT 

CYCLOMATIC_DENS

ITY 

NORMALIZED_CYLO

MATIC_COMPLEXIT

Y 

GLOBAL_DATA_CO

MPLEXITY 

GLOBAL_DATA_DE

NSITY 

 

From the above features, the resulting feature “DEFECT” is 

evaluated to be fault or success. The features that are 

responsible for predicting the event of success or failure of the 

feature DEFECT the fuzzy based and random forest 

algorithms are applied. The data set applied here is PC5, which 

represents the safety enhancement of the cockpit upgrade 

system [7], written in C++ with the number of test cases 17189, 

defect cases 516 of which the design metrics count is 15, code 

metrics is 20 and the remaining is the considered as other 

metrics. The selection of features using the fuzzy entropy 

measure and the random forest algorithm are discussed. 

 

 

4. FUZZY ENTROPY MEASURE FOR SELECTION OF 

FEATURES  

 

The ranking of services based on the quantification of 

quality of service parameters the concept of fuzzy entropy 

measure is applied [28]. The features that are categorized into 

code and design metrics are ranked using the fuzzy entropy 

measure, thereby finding the impact of the feature in the test 

case evaluation process. The procedure for evaluating the test 

case features is shown in Algorithm FSFEM. 

 

Algorithm for feature priority using fuzzy entropy 

measure 

 

Algorithm: FSFEM(input: dataset [PC1, PC2, PC3, PC4, PC5], 

output: featureRankList): 

1. Input: Data = [PC1, PC2, PC3, PC4, PC5] 

2. Let si represents the data sets (n) where i ɛ [1,n], cj where j 

ɛ [1,m] represents the features (m) and d1 represents the code 

and d2 represents the design metrics. 

3. Compute Weight: For all the attributes compute the weight 

from the respective data set by summing up the values 

4. TFN: Compute the Triangular Fuzzy Number based on the 

weights by applying (x-2, x, x+2), where the value of x 

depends on the weight of the respective feature. 

5. Normalize the values into a numerically comparable value 

6. Normalized Opinion Matrix is computed. 

7. Compute the Entropy Measure  

8. Weights of each element in the matrix is calculated from 

values obtained using the entropy measure 

9. Rank the features based on the obtained weights 

10. Output: Return the array of Rank List of Features 

(featureRankList) 

 

The input data is taken from five different test case data sets 

which are categorized in to code and design metrics. For every 

data set the algorithm is executed and analysed. The data set 

are labelled as s1, s2, s3, s4 and s5 which maps to PC1, PC2, 

PC3, PC4 and PC5. The variable ci represents the ‘m’ features 

(includes code and design metrics) and the metrics are labelled 

as d1 and d2. Based on the values of the attributes, which is 

different for every attribute, the triangular fuzzy numbers are 

assigned in the form of (x-2, x, x+2), where x represents the 

value of the feature and the possible values of every feature 

lies in the range [7, 28-33]. After computing the fuzzy 

triangular matrix, a consolidated feature summation matrix is 

generated (FSAM) for purpose of comparison. The obtained 

value can be either in the form of crisp or fuzzy and it depends 

on the feature values. Then, the maximum entropy theory is 

applied and the entropy measure of the ith feature is computed. 

The relative strength of the normalized matrix is the 

probability of information and is crisp in nature which is 

transformed to achieve the fuzziness. Finally, the weight of the 

test case feature is obtained from the fuzzy entropy measure. 

To identify the priority of the features the fuzzy simple 

additive weighting method is applied on the obtained weights. 

By using the Hurwicz criterion and the interval arithmetic by 

varying the alpha-cuts, the precise performance rating matrix 

is computed. 

 

4.1 Evaluation of data sets using fuzzy entropy measure for 

feature selection 

 

Table 2 shows the initial input data as available in the 

PROMISE repository. Si’s represents the five data sets as 

available in the PROMISE repository, Ci’s represents the 

features against the metrics di’s, M represents the metrics and 

F represents the Features. 
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Table 2. Initial data set 

 

M F S1 S2 S3 S4 S5 

D1 

C1 614 1596 1511 1249 215030.54 

C2 48557 23645 78892 56435 62905.57 

C3 63326 34292 97424 91538 1391 

C4 19054 9273 29883 19115 662101 

C5 11599 8764 16396 17160 5448.72 

… … … … … … 

D2 

C1 9741 13818 30805 27416 105876 

C2 2235 12093 25188 23196 105104 

C3 15472 5565 14054 12319 51595 

C4 5440 2661 3103 3383 11193 

C5 203.76 8790 23024 10550 53640 

… … … … … … 

 

Based on the step 4 in the algorithm (as in FSFEM) the 

following Table 3 shows the triangular fuzzy representation 

based on the scores obtained by the features against different 

data sets and metrics. The purpose is here to remove the 

ambiguity in the data set.  The range of values assigned is 

depends the values as available in the initial data set (as in 

Table 2) 

 

Table 3. Triangular fuzzy matrix representation for the 

features 

 
M F S1 S2 S3 S4 S5 

D1 C1 5 7 9 3 5 7 5 7 9 7 9 9 7 9 9 

 C2 7 9 9 1 3 5 7 9 9 7 9 9 7 9 9 

 C3 1 3 5 7 9 9 1 3 5 1 3 5 5 7 9 

 C4 1 1 3 3 5 7 1 3 5 1 3 5 5 7 9 

 C5 1 3 5 7 9 9 3 5 7 5 7 9 7 9 9 

 … … … … … … … … … … … … … … … … 

D2 C1 1 1 3 1 1 3 1 1 3 1 1 3 7 9 9 

 C2 5 7 9 5 7 9 5 7 9 3 5 7 3 5 7 

 C3 7 9 9 7 9 9 7 9 9 7 9 9 1 1 3 

 C4 1 3 5 1 3 5 1 3 5 1 1 3 7 9 9 

 C5 1 3 5 1 3 5 1 1 3 1 1 3 1 1 3 

 … … … … … … … … … … … … … … … … 

 

The consolidated values of the features on each data set with 

respect to the metrics (code and design) are obtained from the 

fuzzy triangular matrix by computing the average of the 

corresponding values. Table 4 shows the computed values. 

 

Table 4. Consolidated feature matrix 

 
 S1 S2 S3 S4 S5 

C1 2.2 3 4.2 2.2 3 3.8 2.6 3.4 4.2 3 3.8 4.2 4.2 5.4 5.4 

C2 2.6 3.8 4.6 2.6 3.8 4.6 3.8 5 5.4 3 4.2 5 3.4 4.6 5 

C3 3 4.2 4.6 3.8 5 5.4 2.2 3.4 4.2 1.8 3 3.8 1.8 2.6 3.8 

C4 1.4 2.2 3.4 1.4 2.6 3.8 0.6 1.4 2.6 0.6 1 2.2 2.6 3.4 4.2 

C5 0.6 1.4 2.6 2.6 3.8 4.6 1.8 2.6 3.8 1.4 2.2 3.4 2.2 3 3.8 

… … … … … … … … … … … … … … … … 

 

Table 5. Normalized feature matrix 

 
 S1 S2 S3 S4 S5 

C1 0.41 0.56 0.78 0.41 0.56 0.70 0.48 0.63 0.78 0.56 0.70 0.78 0.78 1.00 1.00 

C2 0.48 0.70 0.85 0.48 0.70 0.85 0.70 0.93 1.00 0.56 0.78 0.93 0.63 0.85 0.93 

C3 0.56 0.78 0.85 0.70 0.93 1.00 0.41 0.63 0.78 0.33 0.56 0.70 0.33 0.48 0.70 

C4 0.26 0.41 0.63 0.26 0.48 0.70 0.11 0.26 0.48 0.11 0.19 0.41 0.48 0.63 0.78 

C5 0.11 0.26 0.48 0.48 0.70 0.85 0.33 0.48 0.70 0.26 0.41 0.63 0.41 0.56 0.70 

… … … … … … … … … … … … … … … … 

 

From the fuzzy triangular number, Normalized feature 

matrix is constructed by dividing each value by the maximum 

fuzzy value associated with the feature and is shown in Table 

5. 

Fuzzy entropy theory is applied to the normalized feature 

values for estimating the weight of the feature is shown in 

Table 6. 

 

Table 6. Fuzzy entropy measure 

 

S1 S2 S3 S4 S5 

1.81 2.70 3.59 2.33 3.37 4.11 2.04 2.93 3.74 1.81 2.63 3.44 2.63 3.52 4.11 

 

The normalized weight of each feature based on the 

computed fuzzy entropy measure is shown in Table 7. 

 

Table 7. Normalized weight of feature 

 
S1 S2 S3 S4 S5 

0.16 0.20 0.23 0.19 0.21 0.24 0.16 0.19 0.23 0.16 0.19 0.23 0.19 0.21 0.24 

 

By applying the normalized weight of the feature, the fuzzy 

performance tuning matrix is computed based on which the 

features are graded and is shown in Table 8. 

 

Table 8. Fuzzy form of feature rating matrix 

 
 aij bij cij 

C1 1.584916 2.444444 3.548544 

C2 1.901899 3.111111 4.240942 

C3 1.711709 2.888889 3.894743 

C4 0.507173 1.333333 2.596495 

C5 0.919251 1.851852 3.115794 

… … … … 

 

The fuzzy form of the matrix and by using the alpha cuts 

with interval arithmetic the matrix in Table 8 is converted into 

the crisp set which makes the ranking a concrete one during 

the ranking of the features. The task is carried out by using the 

Hurwicz criterion and the interval by varying the alpha cuts 

and is shown in Table 9. 

 

Table 9. Performance rating matrix 

 
Feature / 

 alpha-cuts 
0.25 0.5 0.75 1.00 

C1 2.121856 2.61582 3.10978 3.60374 

C2 2.546128 3.12989 3.71366 4.29743 

C3 2.314185 2.85780 3.40141 3.94503 

C4 1.076274 1.60406 2.13186 2.65965 

C5 1.519159 2.07243 2.62571 3.17899 

… … … … … 

 

From Table 9, it is observed that the features are ranked in 

the following sequence: 

 

Ranking of features 

{  

PARAMETER_COUNT : 4.240942,  

NUM_OPERANDS : 4.23156,  

NUM_OPERATORS : 4.200942,  

NUM_UNIQUE_OPERANDS : 4.190942,  

NUM_UNIQUE_OPERATORS : 4.180942,  

HALSTEAD_CONTENT : 4.180665,  

HALSTEAD_DIFFICULTY : 4.170942,  

HALSTEAD_EFFORT : 4.05236,  

HALSTEAD_ERROR_EST : 4.0123,  
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HALSTEAD_LENGTH : 3.98252,  

HALSTEAD_PROG_TIME : 3.9152,  

HALSTEAD_LEVEL : 3.894743,  

LOC_CODE_AND_COMMENT : 3.89154,  

HALSTEAD_VOLUME : 3.89121,  

NUMBER_OF_LINES : 3.7862,  

LOC_BLANK : 3.68205,  

PERCENT_COMMENTS : 3.548544,  

LOC_COMMENTS : 3.54582,  

LOC_TOTAL : 3.49235,  

LOC_EXECUTABLE : 3.48525,  

CYCLOMATIC_COMPLEXITY : 3.46256,  

DECISION_COUNT : 3.30255,  

DESIGN_COMPLEXITY : 3.25625,  

ESSENTIAL_COMPLEXITY : 3.1252,  

DESIGN_DENSITY : 3.115794,  

ESSENTIAL_DENSITY : 3.10225,  

MAINTENANCE_SEVERITY : 2.596495,  

MODIFIED_CONDITION_COUNT : 2.4693,  

MULTIPLE_CONDITION_COUNT : 2.2145  

} 

 

In Ranking of features, it is observed that the feature 

“PARAMETER_COUNT” holds the major impact in the 

design of the software testing process, it is followed by 

NUM_OPERANDS, NUM_OPERATORS and so on. The 

feature with the least priority is 

MULTIPLE_CONDITION_COUNT.  

To conclude, in the design of the software process, the 

feature “PARAMETER_COUNT” should be given higher 

priority for delivering a good quality software product. 

 

 

5. RANDOM FOREST APPROACH FOR FEATURE 

SELECTION 

 

Random forest is an ensembled algorithm and applies 

supervised learning. The algorithm generates a series of 

decision trees from a randomly chosen subset of data from the 

given data set. The algorithm aggregates the votes from the 

generated decision trees and based on which the decision class 

is chosen. Random Forest also evaluates the feature 

importance apart from the classification. For every feature in 

the data set a score is computed during the training phase. The 

process is repeated and the sum of the votes are aggregated at 

each round. Finally, if the sum equals to one, then the feature 

is having highest priority. The value ranges from zero to one. 

Based on the rank obtained for the feature the level of 

importance is identified.  

To evaluate the feature importance for the test case data set 

PC5 [7] the random forest algorithm is applied. The 

pseudocode for FSRF is given as follows: 

 

Feature selection using random forest 

 

Algorithm FSRF (input: dataset, output: featureRankList): 

1. Input: Data = [PC5] 

2. Model: 

a. Design Metrics 

i. DEFECT~EDGE_COUNT+NODE_COUNT+BRANCH_C

OUNT+CALL_PAIRS+CONDITION_COUNT+CYCLOM
ATIC_COMPLEXITY+DECISION_COUNT+DESIGN_CO

MPLEXITY+DESIGN_DENSITY+ESSENTIAL_COMPLE

XITY+ESSENTIAL_DENSITY+MAINTENANCE_SEVER

ITY+MODIFIED_CONDITION_COUNT+MULTIPLE_CO

NDITION_COUNT 

b. Code Metrics 

i. DEFECT~PARAMETER_COUNT+NUM_OPERANDS+N

UM_OPERATORS+NUM_UNIQUE_OPERANDS+NUM_

UNIQUE_OPERATORS+HALSTEAD_CONTENT+HALS
TEAD_DIFFICULTY+HALSTEAD_EFFORT+HALSTEA

D_ERROR_EST+HALSTEAD_LENGTH+HALSTEAD_L

EVEL+HALSTEAD_PROG_TIME+HALSTEAD_VOLUM
E+NUMBER_OF_LINES+LOC_BLANK+LOC_CODE_A

ND_COMMENT+LOC_COMMENTS+LOC_EXECUTAB

LE+PERCENT_COMMENTS+LOC_TOTAL 

3. Train & Test 

4. Process: The experiment is repeated to calculate the 

efficiency of the model for the metrics (code and 

design). 

5. Output: Return the array of Rank List of Features 

(featureRankList)  

 
The input is the data set PC5. The data set is categorized in 

to code metrics and design metrics. The decision class depends 

on the DEFECT attribute. Therefore, the model is generated 

against the DEFECT attribute with the attributes. Once the 

model is finalized, the process enters into the training and 

testing phase. As per the standard procedure, for training 

eighty percentage of the data set is considered in a random 

manner and the remaining twenty percent of the data is 

available for the testing purpose. To get the correctness of the 

model, the execution is repeated until the accuracy level gets 

saturated. Figure 1a and 1b shows the result of feature 

selection on code and design metrics. 

 

 
(a) Code complexity 

 
(b) Design complexity 

 

Figure 1. Feature ranking using random forest on 
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In the code metrics, it is observed that the feature 

NUM_OPERANDS is having the highest priority than the 

other features. Extensive care should be taken while designing 

the software in selecting the operands. The least impact feature 

is HALSTEAD_VOLUME, which may be given lesser 

priority while designing the test case. Similarly, in the design 

metrics CYCLOMATIC_COMPLEXITY is to be given 

highest priority and the least one is ESSENTIAL_DENSITY. 

Figure 2a and 2b represents the ROC of Code and Design 

Metrics. 

 

 
(a) Code metrics 

 
(b) Design metrics 

 
Figure 2. Receiver operating characteristic curve for PC5 

 

From the Figure 2, it is observed that the rate of accuracy 

attained is more than 95 % for the data set PC5. It specifies 

that the model applied for the code and the design metrics is 

achieving a good percentage in successfully classifying the 

defective percentage. In a similar manner, the ROC curve for 

the data sets PC1, PC2, PC3, PC4 and PC5 are compared for 

the metrics code and design and is shown in Figure 3a and 3b. 

As for PC5, the other data sets are also exhibiting a similar 

behaviour that the accuracy level is 95 % for the code and 

design metrics. The ranking generated by the Fuzzy Entropy 

Measure and the Random Forest exhibits similar results. 

However, there were minor variations in some of the features 

in their order of ranking. The similarity between the fuzzy 

entropy measure and the random forest is almost 95 %. 

Therefore, test case priority for the respective feature is to be 

given while designing the test case in the development of the 

software. 

 
(a) Code metrics 

 

(b) Design metrics 

 

Figure 3. Receiver operating characteristic curve for the data 

sets PC1, PC2, PC3, PC4 and PC5 

 

 

6. CONCLUSIONS 

 

The proposed methodology provides the methodology to 

identify right feature which has a major impact in the 

evaluation of the test case. The machine learning approach 

using Random Forest and the Fuzzy based Entropy measure 

produces a similar type of result, i.e. the feature 

NUM_OPERANDS is one the vital feature when not coded 

properly it results in the failure of the test case, thereby 

degrading the quality of the developed software. The feature 

that has the highest impact is to be given priority while coding 

and designing. High focus on the specific attribute 

subsequently increases the quality of the product developed. 

The methods adopted using fuzzy and random forest provides 

the similar results for the given set of data sets. However, there 

were minor change in position of some of the attributes but 

still the similarity between the results generated by the 

Random Forest and Fuzzy is approximately 95%. The 

methodology can be extended to other approaches and higher 

accuracy is to be achieved. 
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