

Selection of Test Case Features Using Fuzzy Entropy Measure and Random Forest

Sankaranarayanan Murugan1*, Govindarajan Kulanthaivel2, Venugopal Ulagamuthalvi1

1 Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
2 Electrical & Electronics and Communication Engineering, NITTTR, Chennai 600041, India

Corresponding Author Email: snmurugan@gmail.com

https://doi.org/10.18280/isi.240306

ABSTRACT

Received: 25 March 2019

Accepted: 10 May 2019

 Faults are extracted from the source code, from the pre - processed metrics and the related fault

data. The generated faults are represented as a data set and are categorised into code, design

and other features. Selection of features and identifying the importance of the attributes from

the given set of test cases is one of the important tasks in the software testing phase. A Fuzzy

based evaluation of features using the Entropy measure and Hurwicz criterion has been carried

on the code and design metrics for different test cases. The datasets have been further analysed

using the Random Forest Approach for identifying the feature that has the higher priority. The

results obtained using the Fuzzy Entropy measure and the Random Forest approach exhibits a

similarity of 95 % in identifying the feature importance. The results show that the feature

NUM_OPERANDS is having the highest impact from the given list of features by applying

Fuzzy Entropy measure and the model built using Random Forest approach.

Keywords:

code metrics, design metrics, entropy,

faults, feature selection, fuzzy, Hurwicz

criterion, random forest

1. INTRODUCTION

The core objective of the software fault prediction models

is to identify the modules that are having faults with minimal

resource allocation on software testing and maintenance

activity [1]. The prediction of fault that lies in the modules has

not improved by large, because of which there is an uncertain

about the quality of the software product [2]. Identification and

prediction of errors or bugs in the modules has a significant

impact in the development of a software as it directly affects

the quality of a software product. In the software testing

process, it is important to identify the module behaves in an

abnormal manner because of improper code or design. A series

of test cases with various features that directly maps to code or

design metrics will be generated which provides an insight

about the quality of the module. Practically it is evident that

only a small number of modules contains a majority of the

faults in the given software [3, 4]. Therefore, focus should be

there in the initial design phase for predicting the fault and it

may result in the efficient allocation of resources for the

software testing process. To predict the fault, a set of historical

data should be made available either it can be collected, or

obtained through repositories. In most of the cases the data

repositories are not collected and managed in a proper manner

[5, 6] at the organization level. At the outset, there are huge

number of data repositories are available as open source or

commercially for test case prediction. The article uses the data

set as available at PROMISE [7]. The dataset is randomly

classified into training and testing data sets.

The principle objective of this work is to identify the

importance of feature(s) that has a significant impact in the test

case data set. The experiment is a carried out using Fuzzy

Entropy measure and Random Forest approach. The metrics

considered for the evaluation process are code and design

metrics. The remainder section of the article is organized as

follows: section 2 summarizes the related work, section 3

explains the fuzzy entropy measure, section 4 presents the

random forest approach, section 5 provides an insight into the

experimental analysis and section 6 is concluded with a

summary and the future scope of research.

2. RELATED WORK

The machine learning methods which includes inductive

programming, the framework generates value-based test data

using Genetic algorithms. Two critical components given

importance as high priority. The pareto modules and defect-

prone modules are identified as high priority for test data

generation. The pareto principle in testing is 80 % of the

defects is coming from the 20 % of the module and 90 % of

the downtime comes from the 10 % of the defects [8]. Feature

Selection helps in building the model in a machine learning

approach. To evaluate and pre-process the data sets the

identification of the feature with the highest impact is to be

identified. Therefore, Feature selection is the process of

identifying the attributes from the available data that are

having higher impact during the prediction or forecasting the

given problem statement. The reduction in dimensionality of

the data set leads to a better solution, as least important

attributes are ignored while making a decision. In the proposed

work, two methodologies are considered for identifying the

feature importance. Fuzzy entropy measure and random forest

approach are the two methodologies applied in this work for

identifying the features with high importance. The fuzzy

entropy measure ranks the features and based on the selection

of model; the random forest algorithm orders the feature which

is having major impact in the software testing process.

Test suite minimization, test case selection and test case

prioritization are the three major steps in the software testing

process and are closely associated [9, 10]. To predict the

defective and non-defective modules a survey was presented

Ingénierie des Systèmes d’Information
Vol. 24, No. 3, June, 2019, pp. 261-268

Journal homepage: http://iieta.org/journals/isi

261

on the usage of testing metrics by using machine learning

algorithms [11]. A mechanism was introduced to predict

infeasible test cases by using Support Vector Machine (SVM)

and induction grammars [12]. Mechanisms have been

identified to detect fault prone classes using Random Forest

(RF) algorithm [13]. Random Forest uses randomly selected

subset of features in order to split at each node while growing

a tree. The main characteristics of RF includes robust to outlier

and noise, perform faster compare bagging and boosting,

accurate, efficient for estimating missing data. The approach

considers the metrics such as Coupling Between Objects

(CBO), Lack of Cohesion (LC), number of children, depth of

inheritance, Weighted Method per Class, Response for a Class,

Number of Public Methods and Line of code. The Random

Forest algorithm provides better accuracy by 74 % of correctly

classifying the defects which reduces the test time. The test

suite mechanism employs scope aided prioritization and scope

aided selection process [14]. The aim of scope aided

prioritization of test cases is to anticipate defects and terminate

the testing process further. The prioritization used to change

the order of the test cases for regression testing. The scope

aided selection used to select the subset of the test case which

is to be tested for the test objective.

Fuzzy entropy-based approach was proposed for classifying

multi-facet test cases for regression testing [15]. The unified

framework removes high ambiguity test cases and selects low

ambiguity test cases for exercise on the System Under Test

(SUT). The similarity-based test case selection is performed

using fuzzy entropy method. The Fuzzy Fitness Evaluating

Index (FFEI) is used to fit the test cases from the large pool of

data. A regression test case selection based on multicriteria

optimization method to prioritize the test case [16]. The greedy

algorithm is not sensitive to the input size so that it cannot

provide the optimized solution. A test case selection based on

test case dependencies is proposed for test case selection

largely depends on the static analysis of code is used for

framing the candidate test cases [17].

A bi-criteria approach that takes into account two testing

criteria [18]: (i) code coverage and (ii) past fault detection

history. Two objectives were combined by applying a

weighted-sum approach, and used integer linear programming

(ILP) optimization to find subsets, then reducing the multi-

objective problem to a single-objective one. A black box meta-

data base approach introduced for prioritizing the test cases

using supervised learning for manual regression testing [18]

and the test case descriptions are processed in natural language

for prioritization. The SVM algorithm is used to prioritize the

test cases and ranked. White box testing examines each code

block and internal of the software.

A new prioritization equation has been proposed for test

cases based on the performance of the historical test cases data

[19]. It is a feedback-based coefficient of historical data of

previous version of the software is supplied to the proposed

method. The priority equation employs the values of execution

history, history of test cases in the previous session, historical

fault detection. The effectiveness of this approach is to identify

early fault and thereby improving the performance of the

regression testing.

A fuzzy expert system for prioritize the test cases has been

proposed based on risk-based test prioritization technique

which incorporates the risk factors such as requirement

complexity, security, and test cases [20]. This approach

consists of the computation steps which include requirement

risk, risk items, requirement risk item correlation. Finally, the

fuzzy expert system delivers prioritize the requirements and

test cases. The prioritization can also be determined using

rank-based feature selection [21]. A test case which has the

highest coverage of not-yet-covered entities is called as a tie.

A test case prioritization technique has been introduced which

employs input based and randomized local beam search

algorithm [22]. It is an iterative based algorithm to find the

next successor test case from the pool of test cases. For each

iteration, it takes the input test case which is not prioritized. It

randomly selects the candidate test case and compare the

distance with already prioritize test cases and indexed. The

vulnerability of software components using the machine

learning algorithms can be predicted by considering some of

the features to act as predictors [23]. The algorithms used to

identify the vulnerability is Naïve Bayes and Random Forest

Prediction approaches. A “SuiteBuilder” has been developed

for collecting raw test suites and assign the priority for

effective selection of features in the process of test case

selection [24]. An aggregate-strength prioritization technique

based on uncover test cases for higher interaction with various

parameters of the module has been proposed for finding the

dissimilarity of combinatorial test cases and heuristic

algorithms are applied to prioritized the test cases [25].

Regular or ensembled approaches are applied in classifying

the data set. The regular algorithms process the dataset based

on a specific methodology and the output is generated.

Whereas the ensembled approach engenders the result based

on the outcome of one or more similar kind of algorithms.

Random Forest algorithm follows the supervised learning and

ensembled approach [26]. Collection of decision trees are

generated from the subset of a data set (in a random manner –

also known as training data set) and the algorithm aggregates

the votes of the generated decision trees and based on which

the final class of the test data sets is published as output. The

random forest is also capable of predicting the feature

importance in a process. The principle, every feature in the

model is allotted with a score in the training process and the

impurity of the tree nodes is reduced. The feature values are

generated in the range of [0, 1] and the feature with the score

= 1 is having the highest priority and with a score of 0 is the

least impact one in the data set and it can be ignored.

The identification and selection of features in building the

model using the machine learning approach is one of the

critical factors. In the prediction or analysis of a model of a

given data set with a set of features (or attributes) the selection

of features with the highest significance is the process of

feature selection. With the elimination of noise in the data set,

the feature selection methods help the prediction process in a

more precise and appropriate manner. The following check list

are to be considered during the selection of features as given

in [27] are: a) domain knowledge, b) inadequate features, c)

feature dependence, d) modified input variables, e) individual

assessment of features, f) requirement of a predictor, g) data

cleaning, h) requirement of stable solution, i) computational

resources and j) identify the starting point.

Experiments with similar data sets have been carried out [6-

8] using Naiive Bayes, FURIA, KSTAR, NB and Decision

Trees for the data sets PC1, PC2, PC3 and PC4. The accuracy

rate is on an average of 90 %. In the proposed work, the dataset

labelled as PC5 is also considered and tested with Random

Forest and Fuzzy Entropy measure.

262

3. FEATURE SELECTION

In the proposed work, the features are classified in to class

level features, code metrics, design metrics and other metrics

[7] and the features are listed in Table 1.

Table 1. Test case feature classification

Code Metrics Design Metrics Other Metrics

PARAMETER_

COUNT

NUM_OPERA

NDS

NUM_OPERA

TORS

NUM_UNIQU

E_OPERANDS

NUM_UNIQU

E_OPERATOR

S

HALSTEAD_C

ONTENT

HALSTEAD_D

IFFICULTY

HALSTEAD_E

FFORT

HALSTEAD_E

RROR_EST

HALSTEAD_L

ENGTH

HALSTEAD_L

EVEL

HALSTEAD_P

ROG_TIME

HALSTEAD_V

OLUME

NUMBER_OF_

LINES

LOC_BLANK

LOC_CODE_A

ND_COMMEN

T

LOC_COMME

NTS

LOC_EXECUT

ABLE

PERCENT_CO

MMENTS

LOC_TOTAL

EDGE_COUNT

NODE_COUNT

BRANCH_COU

NT

CALL_PAIRS

CONDITION_C

OUNT

CYCLOMATIC_

COMPLEXITY

DECISION_COU

NT

DESIGN_COMP

LEXITY

DESIGN_DENSI

TY

ESSENTIAL_CO

MPLEXITY

ESSENTIAL_DE

NSITY

MAINTENANCE

_SEVERITY

MODIFIED_CO

NDITION_COU

NT

MULTIPLE_CO

NDITION_COU

NT

CYCLOMATIC_DENS

ITY

NORMALIZED_CYLO

MATIC_COMPLEXIT

Y

GLOBAL_DATA_CO

MPLEXITY

GLOBAL_DATA_DE

NSITY

From the above features, the resulting feature “DEFECT” is

evaluated to be fault or success. The features that are

responsible for predicting the event of success or failure of the

feature DEFECT the fuzzy based and random forest

algorithms are applied. The data set applied here is PC5, which

represents the safety enhancement of the cockpit upgrade

system [7], written in C++ with the number of test cases 17189,

defect cases 516 of which the design metrics count is 15, code

metrics is 20 and the remaining is the considered as other

metrics. The selection of features using the fuzzy entropy

measure and the random forest algorithm are discussed.

4. FUZZY ENTROPY MEASURE FOR SELECTION OF

FEATURES

The ranking of services based on the quantification of

quality of service parameters the concept of fuzzy entropy

measure is applied [28]. The features that are categorized into

code and design metrics are ranked using the fuzzy entropy

measure, thereby finding the impact of the feature in the test

case evaluation process. The procedure for evaluating the test

case features is shown in Algorithm FSFEM.

Algorithm for feature priority using fuzzy entropy

measure

Algorithm: FSFEM(input: dataset [PC1, PC2, PC3, PC4, PC5],

output: featureRankList):

1. Input: Data = [PC1, PC2, PC3, PC4, PC5]

2. Let si represents the data sets (n) where i ɛ [1,n], cj where j

ɛ [1,m] represents the features (m) and d1 represents the code

and d2 represents the design metrics.

3. Compute Weight: For all the attributes compute the weight

from the respective data set by summing up the values

4. TFN: Compute the Triangular Fuzzy Number based on the

weights by applying (x-2, x, x+2), where the value of x

depends on the weight of the respective feature.

5. Normalize the values into a numerically comparable value

6. Normalized Opinion Matrix is computed.

7. Compute the Entropy Measure

8. Weights of each element in the matrix is calculated from

values obtained using the entropy measure

9. Rank the features based on the obtained weights

10. Output: Return the array of Rank List of Features

(featureRankList)

The input data is taken from five different test case data sets

which are categorized in to code and design metrics. For every

data set the algorithm is executed and analysed. The data set

are labelled as s1, s2, s3, s4 and s5 which maps to PC1, PC2,

PC3, PC4 and PC5. The variable ci represents the ‘m’ features

(includes code and design metrics) and the metrics are labelled

as d1 and d2. Based on the values of the attributes, which is

different for every attribute, the triangular fuzzy numbers are

assigned in the form of (x-2, x, x+2), where x represents the

value of the feature and the possible values of every feature

lies in the range [7, 28-33]. After computing the fuzzy

triangular matrix, a consolidated feature summation matrix is

generated (FSAM) for purpose of comparison. The obtained

value can be either in the form of crisp or fuzzy and it depends

on the feature values. Then, the maximum entropy theory is

applied and the entropy measure of the ith feature is computed.

The relative strength of the normalized matrix is the

probability of information and is crisp in nature which is

transformed to achieve the fuzziness. Finally, the weight of the

test case feature is obtained from the fuzzy entropy measure.

To identify the priority of the features the fuzzy simple

additive weighting method is applied on the obtained weights.

By using the Hurwicz criterion and the interval arithmetic by

varying the alpha-cuts, the precise performance rating matrix

is computed.

4.1 Evaluation of data sets using fuzzy entropy measure for

feature selection

Table 2 shows the initial input data as available in the

PROMISE repository. Si’s represents the five data sets as

available in the PROMISE repository, Ci’s represents the

features against the metrics di’s, M represents the metrics and

F represents the Features.

263

Table 2. Initial data set

M F S1 S2 S3 S4 S5

D1

C1 614 1596 1511 1249 215030.54

C2 48557 23645 78892 56435 62905.57

C3 63326 34292 97424 91538 1391

C4 19054 9273 29883 19115 662101

C5 11599 8764 16396 17160 5448.72

… … … … … …

D2

C1 9741 13818 30805 27416 105876

C2 2235 12093 25188 23196 105104

C3 15472 5565 14054 12319 51595

C4 5440 2661 3103 3383 11193

C5 203.76 8790 23024 10550 53640

… … … … … …

Based on the step 4 in the algorithm (as in FSFEM) the

following Table 3 shows the triangular fuzzy representation

based on the scores obtained by the features against different

data sets and metrics. The purpose is here to remove the

ambiguity in the data set. The range of values assigned is

depends the values as available in the initial data set (as in

Table 2)

Table 3. Triangular fuzzy matrix representation for the

features

M F S1 S2 S3 S4 S5

D1 C1 5 7 9 3 5 7 5 7 9 7 9 9 7 9 9

 C2 7 9 9 1 3 5 7 9 9 7 9 9 7 9 9

 C3 1 3 5 7 9 9 1 3 5 1 3 5 5 7 9

 C4 1 1 3 3 5 7 1 3 5 1 3 5 5 7 9

 C5 1 3 5 7 9 9 3 5 7 5 7 9 7 9 9

 … … … … … … … … … … … … … … … …

D2 C1 1 1 3 1 1 3 1 1 3 1 1 3 7 9 9

 C2 5 7 9 5 7 9 5 7 9 3 5 7 3 5 7

 C3 7 9 9 7 9 9 7 9 9 7 9 9 1 1 3

 C4 1 3 5 1 3 5 1 3 5 1 1 3 7 9 9

 C5 1 3 5 1 3 5 1 1 3 1 1 3 1 1 3

 … … … … … … … … … … … … … … … …

The consolidated values of the features on each data set with

respect to the metrics (code and design) are obtained from the

fuzzy triangular matrix by computing the average of the

corresponding values. Table 4 shows the computed values.

Table 4. Consolidated feature matrix

 S1 S2 S3 S4 S5

C1 2.2 3 4.2 2.2 3 3.8 2.6 3.4 4.2 3 3.8 4.2 4.2 5.4 5.4

C2 2.6 3.8 4.6 2.6 3.8 4.6 3.8 5 5.4 3 4.2 5 3.4 4.6 5

C3 3 4.2 4.6 3.8 5 5.4 2.2 3.4 4.2 1.8 3 3.8 1.8 2.6 3.8

C4 1.4 2.2 3.4 1.4 2.6 3.8 0.6 1.4 2.6 0.6 1 2.2 2.6 3.4 4.2

C5 0.6 1.4 2.6 2.6 3.8 4.6 1.8 2.6 3.8 1.4 2.2 3.4 2.2 3 3.8

… … … … … … … … … … … … … … … …

Table 5. Normalized feature matrix

 S1 S2 S3 S4 S5

C1 0.41 0.56 0.78 0.41 0.56 0.70 0.48 0.63 0.78 0.56 0.70 0.78 0.78 1.00 1.00

C2 0.48 0.70 0.85 0.48 0.70 0.85 0.70 0.93 1.00 0.56 0.78 0.93 0.63 0.85 0.93

C3 0.56 0.78 0.85 0.70 0.93 1.00 0.41 0.63 0.78 0.33 0.56 0.70 0.33 0.48 0.70

C4 0.26 0.41 0.63 0.26 0.48 0.70 0.11 0.26 0.48 0.11 0.19 0.41 0.48 0.63 0.78

C5 0.11 0.26 0.48 0.48 0.70 0.85 0.33 0.48 0.70 0.26 0.41 0.63 0.41 0.56 0.70

… … … … … … … … … … … … … … … …

From the fuzzy triangular number, Normalized feature

matrix is constructed by dividing each value by the maximum

fuzzy value associated with the feature and is shown in Table

5.

Fuzzy entropy theory is applied to the normalized feature

values for estimating the weight of the feature is shown in

Table 6.

Table 6. Fuzzy entropy measure

S1 S2 S3 S4 S5

1.81 2.70 3.59 2.33 3.37 4.11 2.04 2.93 3.74 1.81 2.63 3.44 2.63 3.52 4.11

The normalized weight of each feature based on the

computed fuzzy entropy measure is shown in Table 7.

Table 7. Normalized weight of feature

S1 S2 S3 S4 S5

0.16 0.20 0.23 0.19 0.21 0.24 0.16 0.19 0.23 0.16 0.19 0.23 0.19 0.21 0.24

By applying the normalized weight of the feature, the fuzzy

performance tuning matrix is computed based on which the

features are graded and is shown in Table 8.

Table 8. Fuzzy form of feature rating matrix

 aij bij cij

C1 1.584916 2.444444 3.548544

C2 1.901899 3.111111 4.240942

C3 1.711709 2.888889 3.894743

C4 0.507173 1.333333 2.596495

C5 0.919251 1.851852 3.115794

… … … …

The fuzzy form of the matrix and by using the alpha cuts

with interval arithmetic the matrix in Table 8 is converted into

the crisp set which makes the ranking a concrete one during

the ranking of the features. The task is carried out by using the

Hurwicz criterion and the interval by varying the alpha cuts

and is shown in Table 9.

Table 9. Performance rating matrix

Feature /

 alpha-cuts
0.25 0.5 0.75 1.00

C1 2.121856 2.61582 3.10978 3.60374

C2 2.546128 3.12989 3.71366 4.29743

C3 2.314185 2.85780 3.40141 3.94503

C4 1.076274 1.60406 2.13186 2.65965

C5 1.519159 2.07243 2.62571 3.17899

… … … … …

From Table 9, it is observed that the features are ranked in

the following sequence:

Ranking of features

{

PARAMETER_COUNT : 4.240942,

NUM_OPERANDS : 4.23156,

NUM_OPERATORS : 4.200942,

NUM_UNIQUE_OPERANDS : 4.190942,

NUM_UNIQUE_OPERATORS : 4.180942,

HALSTEAD_CONTENT : 4.180665,

HALSTEAD_DIFFICULTY : 4.170942,

HALSTEAD_EFFORT : 4.05236,

HALSTEAD_ERROR_EST : 4.0123,

264

HALSTEAD_LENGTH : 3.98252,

HALSTEAD_PROG_TIME : 3.9152,

HALSTEAD_LEVEL : 3.894743,

LOC_CODE_AND_COMMENT : 3.89154,

HALSTEAD_VOLUME : 3.89121,

NUMBER_OF_LINES : 3.7862,

LOC_BLANK : 3.68205,

PERCENT_COMMENTS : 3.548544,

LOC_COMMENTS : 3.54582,

LOC_TOTAL : 3.49235,

LOC_EXECUTABLE : 3.48525,

CYCLOMATIC_COMPLEXITY : 3.46256,

DECISION_COUNT : 3.30255,

DESIGN_COMPLEXITY : 3.25625,

ESSENTIAL_COMPLEXITY : 3.1252,

DESIGN_DENSITY : 3.115794,

ESSENTIAL_DENSITY : 3.10225,

MAINTENANCE_SEVERITY : 2.596495,

MODIFIED_CONDITION_COUNT : 2.4693,

MULTIPLE_CONDITION_COUNT : 2.2145

}

In Ranking of features, it is observed that the feature

“PARAMETER_COUNT” holds the major impact in the

design of the software testing process, it is followed by

NUM_OPERANDS, NUM_OPERATORS and so on. The

feature with the least priority is

MULTIPLE_CONDITION_COUNT.

To conclude, in the design of the software process, the

feature “PARAMETER_COUNT” should be given higher

priority for delivering a good quality software product.

5. RANDOM FOREST APPROACH FOR FEATURE

SELECTION

Random forest is an ensembled algorithm and applies

supervised learning. The algorithm generates a series of

decision trees from a randomly chosen subset of data from the

given data set. The algorithm aggregates the votes from the

generated decision trees and based on which the decision class

is chosen. Random Forest also evaluates the feature

importance apart from the classification. For every feature in

the data set a score is computed during the training phase. The

process is repeated and the sum of the votes are aggregated at

each round. Finally, if the sum equals to one, then the feature

is having highest priority. The value ranges from zero to one.

Based on the rank obtained for the feature the level of

importance is identified.

To evaluate the feature importance for the test case data set

PC5 [7] the random forest algorithm is applied. The

pseudocode for FSRF is given as follows:

Feature selection using random forest

Algorithm FSRF (input: dataset, output: featureRankList):

1. Input: Data = [PC5]

2. Model:

a. Design Metrics

i. DEFECT~EDGE_COUNT+NODE_COUNT+BRANCH_C

OUNT+CALL_PAIRS+CONDITION_COUNT+CYCLOM
ATIC_COMPLEXITY+DECISION_COUNT+DESIGN_CO

MPLEXITY+DESIGN_DENSITY+ESSENTIAL_COMPLE

XITY+ESSENTIAL_DENSITY+MAINTENANCE_SEVER

ITY+MODIFIED_CONDITION_COUNT+MULTIPLE_CO

NDITION_COUNT

b. Code Metrics

i. DEFECT~PARAMETER_COUNT+NUM_OPERANDS+N

UM_OPERATORS+NUM_UNIQUE_OPERANDS+NUM_

UNIQUE_OPERATORS+HALSTEAD_CONTENT+HALS
TEAD_DIFFICULTY+HALSTEAD_EFFORT+HALSTEA

D_ERROR_EST+HALSTEAD_LENGTH+HALSTEAD_L

EVEL+HALSTEAD_PROG_TIME+HALSTEAD_VOLUM
E+NUMBER_OF_LINES+LOC_BLANK+LOC_CODE_A

ND_COMMENT+LOC_COMMENTS+LOC_EXECUTAB

LE+PERCENT_COMMENTS+LOC_TOTAL

3. Train & Test

4. Process: The experiment is repeated to calculate the

efficiency of the model for the metrics (code and

design).

5. Output: Return the array of Rank List of Features

(featureRankList)

The input is the data set PC5. The data set is categorized in

to code metrics and design metrics. The decision class depends

on the DEFECT attribute. Therefore, the model is generated

against the DEFECT attribute with the attributes. Once the

model is finalized, the process enters into the training and

testing phase. As per the standard procedure, for training

eighty percentage of the data set is considered in a random

manner and the remaining twenty percent of the data is

available for the testing purpose. To get the correctness of the

model, the execution is repeated until the accuracy level gets

saturated. Figure 1a and 1b shows the result of feature

selection on code and design metrics.

(a) Code complexity

(b) Design complexity

Figure 1. Feature ranking using random forest on

265

In the code metrics, it is observed that the feature

NUM_OPERANDS is having the highest priority than the

other features. Extensive care should be taken while designing

the software in selecting the operands. The least impact feature

is HALSTEAD_VOLUME, which may be given lesser

priority while designing the test case. Similarly, in the design

metrics CYCLOMATIC_COMPLEXITY is to be given

highest priority and the least one is ESSENTIAL_DENSITY.

Figure 2a and 2b represents the ROC of Code and Design

Metrics.

(a) Code metrics

(b) Design metrics

Figure 2. Receiver operating characteristic curve for PC5

From the Figure 2, it is observed that the rate of accuracy

attained is more than 95 % for the data set PC5. It specifies

that the model applied for the code and the design metrics is

achieving a good percentage in successfully classifying the

defective percentage. In a similar manner, the ROC curve for

the data sets PC1, PC2, PC3, PC4 and PC5 are compared for

the metrics code and design and is shown in Figure 3a and 3b.

As for PC5, the other data sets are also exhibiting a similar

behaviour that the accuracy level is 95 % for the code and

design metrics. The ranking generated by the Fuzzy Entropy

Measure and the Random Forest exhibits similar results.

However, there were minor variations in some of the features

in their order of ranking. The similarity between the fuzzy

entropy measure and the random forest is almost 95 %.

Therefore, test case priority for the respective feature is to be

given while designing the test case in the development of the

software.

(a) Code metrics

(b) Design metrics

Figure 3. Receiver operating characteristic curve for the data

sets PC1, PC2, PC3, PC4 and PC5

6. CONCLUSIONS

The proposed methodology provides the methodology to

identify right feature which has a major impact in the

evaluation of the test case. The machine learning approach

using Random Forest and the Fuzzy based Entropy measure

produces a similar type of result, i.e. the feature

NUM_OPERANDS is one the vital feature when not coded

properly it results in the failure of the test case, thereby

degrading the quality of the developed software. The feature

that has the highest impact is to be given priority while coding

and designing. High focus on the specific attribute

subsequently increases the quality of the product developed.

The methods adopted using fuzzy and random forest provides

the similar results for the given set of data sets. However, there

were minor change in position of some of the attributes but

still the similarity between the results generated by the

Random Forest and Fuzzy is approximately 95%. The

methodology can be extended to other approaches and higher

accuracy is to be achieved.

REFERENCES

[1] Singh, P., Verma, S. (2015). Cross project software fault

266

prediction at design phase. International Journal of

Computer and Information Engineering, World

Academy of Science, Engineering and Technology, 9(3):

800-805. https://doi.org/10.1109/ICTAI.2006.77

[2] Menzes, T., Turhan, B., Bener. A., Gay, G., Cukic, B.,

Jiang, Y. (2008). Implications of ceiling effects in defect

predictors. Proceedings of the 4th international workshop

on Predictor Models in Software Engineering

(PROMISE), pp. 47-54.

http://doi.org/10.1145/1370788.1370801

[3] Andersson, C. (2007). A replicated empirical study of a

selection method for software reliability growth models.

Empirical Software Eng., 12(2): 161-182.

https://doi.org/10.1007/s10664-006-9018-0

[4] Fenton, N.E., Ohlsson, N. (2000). Quantitative analysis

of faults and failures in a complex software system. IEEE

Trans. Software Eng., 26(8): 797-814.

https://doi.org/10.1109/32.879815

[5] Zimmermann, T., Nagappan, N., Gall, H. (2009). Cross-

project defect prediction: A large scale experiment on

data vs. domain vs. process. Proceedings of the 7th Joint

Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pp. 91-100.

https://doi.org/10.1145/1595696.1595713

[6] Turhan, B., Menzies, T., Bener, A. (2009). On the

relative value of cross company and within_company

data for defect prediction. Empir. Softw. Eng., 14(5):

540-578. https://doi.org/10.1007/s10664-008-9103-7

[7] PROMISE,

https://terapromise.csc.ncsu.edu/!/#repo/view/head/defe

ct/mccabehalsted/pc, last accessed on 20.05.2019.

[8] Zhang, D. (2006). Machine learning in value-based

software test data generation. Proceedings of the 18th

IEEE International Conference on Tools with Artificial

Intelligence (ICTAI'06), pp. 1-5.

https://doi.org/10.1109/ICTAI.2006.77

[9] Yoo, S., Harman, M. (2010). Using hybrid algorithm for

Pareto efficient multi-objective test suite minimisation. J.

Syst. Softw., 83(4): 689-701.

https://doi.org/10.1016/j.jss.2009.11.706

[10] Yoo, S., Harman, M., Ur, S. (2011). Highly scalable

multi objective test suite minimisation using graphics

cards. Proc. 3rd Int.Conf. Search Based Softw. Eng., pp.

219-236. https://doi.org/10.1007/978-3-642-23716-4_20

[11] Meiliana, Karim, S., Warnars, H.L.H.S., Soewito, B.

(2017). Software metrics for fault prediction using

machine learning approaches. IEEE International

Conference on Cybernetics and Computational

Intelligence (CyberneticsCom), pp. 19-23.

https://doi.org/10.1109/CYBERNETICSCOM.2017.831

1708

[12] Gove, R., Faytong, J. (2011). Identifying infeasible GUI

test cases using support vector machines and induced

grammars. IEEE Fourth International Conference on

Software Testing, Verification and Validation

Workshops, pp. 201-211.

https://doi.org/10.1109/ICSTW.2011.73

[13] Kaur, A., Malhotra, R. (2008). Application of random

forest in predicting fault-prone classes. International

Conference on Advanced Computer Theory and

Engineering, pp. 37-43.

https://doi.org/10.1109/ICACTE.2008.204

[14] Miranda, B., Bertolino, A. (2016). Scope-aided test

prioritization, selection and minimization for software

reuse. The Journal of Systems and Software, 131: 528-

549. http://dx.doi.org/10.1016/j.jss.2016.06.058

[15] Kumar, M., Sharma, A., Kumar, R. (2014). Fuzzy

entropy-based framework for multi-faceted test case

classification and selection: An empirical study. IET

Software, 8(3): 103-112. https://doi.org/10.1049/iet-

sen.2012.0198

[16] Lam, S.S.B., Hari Prasada Raju, M.L., Uday Kiran, M.,

Swarj, Ch., Srivatsav, P.R. (2012). Automated

generation of independent paths and test suite

optimization using artificial bee colony. Proceedia

Engineering, Elsevier, 30: 191-200.

https://doi.org/10.1016/j.proeng.2012.01.851

[17] Tahvili, S., Saadatmand, M., Larsson, S., Afzal, W.,

Bohlin, M., Sundmark, D. (2016). Dynamic integration

test selection based on test case dependencies. IEEE

Ninth International Conference on Software Testing,

Verification and Validation Workshops.

https://doi.org/10.1109/ICSTW.2016.14

[18] Black, J., Melachrinoudis, E., Kaeli, D. (2004). Bi-

criteria models for all-uses test suite reduction. in Proc.

26th Int. Conf. Softw. Eng., pp. 106-115.

https://doi.org/10.1109/ICSE.2004.1317433

[19] Khalilian, A., Azgomi, M.A., Fazlalizadeh, Y. (2012).

An improved method for test case prioritization by

incorporating historical test case data. Science of

Computer Programming, 78(1): 93-116.

https://doi.org/10.1016/j.scico.2012.01.006

[20] Hettiarachchi, C., Do, H., Choi, B. (2016). Risk-based

test case prioritization using a fuzzy expert system.

Information and Software Technology, 69: 1-15.

https://doi.org/10.1016/j.infsof.2015.08.008

[21] Eghbali, S., Tahvildari, L. (2016). Test case prioritization

using lexicographical ordering. IEEE Transactions on

Software Engineering, 42(12): 1178-1195.

https://doi.org/10.1109/TSE.2016.2550441

[22] Mei, L.J., Cai, Y., Ji, C.J., Jiang, B., Chan, W.K., Zhang,

Z.Y., Tse, T.H. (2015). A subsumption hierarchy of test

case prioritization for composite services. IEEE

Transactions on Services Computing, 8(5): 658-673.

https://doi.org/10.1109/TSC.2014.2331683

[23] Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.

(2014). Predicting vulnerable software components via

text mining. IEEE Transactions on Software Engineering,

40(10): 993-1006.

https://doi.org/10.1109/TSE.2014.2340398

[24] Strandberg, P.E., Afzal, W., Ostrand, T.J., Weyuker, E.J.,

Sundmark, D. (2017). Automated system-level

regression test prioritization in a nutshell. IEEE Software,

34(4): 30-37. https://doi.org/10.1109/MS.2017.92

[25] Huang, R.B., Chen, J.F., Towey, D., Chan, A.T.S., Lu,

Y.S. (2015). Aggregate-strength interaction test suite

prioritization. The Journal of Systems and Software, 99:

36-51. https://doi.org/10.1016/j.jss.2014.09.002

[26] https://www.stat.berkeley.edu/~breiman/randomforest2

001.pdf, last accessed on 13.06.2019.

[27] Guyon, I., Elisseeff, A. (2003). An Introduction to

Variable and Feature Selection, Journal of Machine

Learning Research, 3: 1157-1182.

[28] Wang, P. (2008). An entropy decision model for

selection of QoS-aware services provisioning. Fifth

International Conference on Fuzzy Systems and

Knowledge Discovery, Shandong, pp. 552-558.

267

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8304916
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8304916
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8304916
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954009
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954009
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954009
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4124007
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4124007

https://doi.org/10.1109/FSKD.2008.141

[29] https://smartbear.com/SmartBear/media/ebooks/The-

State-of-Testing-2017_Report_Final. pdf, accessed on

20.05.2019.

[30] Jiang, Y., Cukic, B., Menzies, T., Bartlow, N. (2008).

Comparing design and code metrics for software quality

prediction. Proceedings of the 4th International

Workshop on Predictor Models in Software Engineering,

pp. 11-18. https://doi.org/10.1145/1370788.1370793

[31] Murugan, S., Ramachandran, V. (2014). Fuzzy decision

making model for byzantine agreement. Journal of

Engineering Science and Technology, 9(2): 206-219.

Taylor’s University.

https://doi.org/10.3844/jcssp.2012.382.388

[32] Ramachandran, V., Sankaranarayan, V. (1991). Fuzzy

concepts applied to statistical decision making methods.

Proceedings of the 15th IFIP International Conference,

Zurich, Switzerland.

[33] Ibrahim, D.R., Ghnemat, R., Hudaib, A. (2017).

Software defect prediction using feature selection and

random forest algorithm. IEEE International Conference

on New Trends in Computing Sciences.

http://doi.org/10.1109/ICTCS.2017.39

268

