
Collaborative Component Interaction

Saeid Masoumi, Ali Mahjur*

Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Tehran 1774-15875, Iran

Corresponding Author Email: mahjur@mut.ac.ir

https://doi.org/10.18280/isi.240312 ABSTRACT

Received: 18 January 2019

Accepted: 5 April 2019

There are many collaboration-based languages, in which a collaboration has multiple roles

inside and a collection of roles from different collaborations forms an object layout. Most of

them use a form of single inheritance to build collaboration. This means every role in a sub

collaboration inherits from a role in the super collaboration. In such a model, the way of

interacting roles affects the reusability of roles and consequently collaborations.

To address this problem, this paper presents components that interact with each other in a

collaborative manner. In our model, components as collaborations, instead of being inherited,

are composed with each other. Moreover, the interaction of components is based on events,

which are soft dependencies and do not affect the reusability of roles and components.

Keywords:

programming language, reusability,

collaboration, event, SOP

1. INTRODUCTION

There are two ways to specify an object. In the first way, the

layout of the object (class) is specified. This is the approach

used by the object oriented paradigm (Like C# and Java). In

the second way, the collaborations that the object is involved

in are specified. In this way, compiler gathers the roles of the

object which are assigned by the collaborations to form its

layout. This is the approach of the collaboration-based

languages. Figure 1 illustrates both approaches in a simple

form.

Figure 1. Class vs Collaboration

It is well known that the collaboration-based approach is

superior to the class-based approach [1-6]. It improves

reusability and supports separation of concerns. Contracts [1],

Role-based designs with C++ templates [5, 7, 8], Mixin layers

[9, 10], Set Oriented Programming (SOP) [11],

ObjectTeam/Java [12], and J& [4] are examples of

collaboration-based design.

In most role based paradigms, a collaboration may inherit

from another collaboration. In such paradigms, roles in a

derived collaboration inherit from the corresponding roles of

the parent collaboration. Therefore, they do not offer

independent roles.

For example, in Figure 1, Collaboration2 inherits from

Collaboration1 and consequently A2 and C2 roles inherit from

A1 and C1, respectively.

Having dependent roles makes it nearly impossible to

crosscut a role by other roles in the same object. Role

crosscutting happens, when a role injects some codes into

another role of different collaboration. Currently, the only way

of crosscutting roles is method calling, which is a hard

dependency and lowers independency and reusability of

collaborations.

For example, supposing that both C1 and C2 roles have m

method, calling m method of C2 is hard-coded in m method of

C3. This forces Collaboration2 (or any of its parents) to

implement m method. Otherwise, compiler throws an error.

Set Oriented Programming (SOP) is one of the recent

collaborative paradigms. It offers independent collaborations

and roles- that is, a role in a collaboration does not depend on

any other roles of other collaborations. Against inheritance

based role paradigms, roles of an object in different

collaborations may have different names.

Instead of inheriting collaborations, SOP composes them.

This means, there are composite collaborations that are

composed of other collaborations. Inside the composite

collaboration, the roles (of similar objects) from composed

collaborations are gathered and placed in a set, which is a new

SOP concept for keeping the object layout by which various

objects are created.

Figure 2. An example of collaboraion composition in SOP

Ingénierie des Systèmes d’Information
Vol. 24, No. 3, June, 2019, pp. 321-329

Journal homepage: http://iieta.org/journals/isi

321

For example, in Figure 2, CollabComposer is a composite

collaboration, which is composed of two other collaborations

(Collaboration1 and Collaboration2) and has a role named A.

A is a set for collecting A1 and A2 roles of an object. Also,

CollabComposer itself can add a role to A. The name of this

role is the same as set name. Therefore, there are three roles

for this object, A1 from Collaboration1, A2 from

Collaboration2 and a role from CollabComposer.

Similar to inheritance based role paradigms, in SOP,

method calling is used to crosscut roles. Inside an object, the

roles of the composer can crosscut other roles in the composed

collaborations and vice versa. However, roles of composed

collaborations cannot crosscut each other. For example, in

Figure 2, A1 and A2 roles in A set cannot crosscut each other.

To overcome this problem, this paper introduces an event-

based role crosscutting mechanism. Crosscutting roles is done

by raising events, instead of calling methods. The outline of

the proposed method is that events are defined and raised in

the roles of composed collaborations. According to

circumstances, in the composing collaboration, they are

delegated to methods of other roles. In fact, the composer will

decide which role event of a composed collaboration is

delegated to which role method of a different composed

collaboration. This way, the roles of an object from different

collaborations can crosscut each other.

In our previous work [13] we applied events on object

features and made OOP class interactive by a new composition

method. It has led us to bring events into the collaboration-

based design since events did not affect the reusability of

classes.

The remainder of this paper is organized as follows. In the

next section, we present a brief overview of SOP. Section 3

proposes our event-based role crosscutting mechanism. In

section 4, a formal representation of our model is introduced.

Section 5 discusses some related works and section 6 conclude

the paper.

2. SET ORIENTED PROGRAMMING

The SOP paradigm is based on two abstractions: component

and set. A component is a stateless compile time entity which

represents a collaboration. It defines the roles of the objects

involved in a collaboration. The objects having the same role

in a component (collaboration) form a set.

In SOP, an application is a collection of components. One

of the components is the main component that defines the

complete behavior of the application. The others should be

instantiated in order to be used.

A typical SOP program is shown in Figure 3. It is made of

four components: main, C1, C2 and C3. main represents the

whole program. It is made of three components: two instances

of C1 and one instance of C2. Moreover, C1 itself is made of

C2 and C3.

Figure 3. A class is the union of the roles defined by

collaborations that the class is involved in

To define the behavior of a component, SOP has a collection

of declarations. They are divided into two groups: the first

group is the usual attribute declarations: attribute, method,

constructor. The second group provides the reusability

mechanisms of SOP: component instantiation.

2.1 Component and set

Let us begin the presentation of SOP by an example. The

example is a doubly linked list. A doubly linked list has two

roles: root and node. The root role is the role of the linked list

itself and the node role is the role of the objects that can be

nodes of the linked list. The collection of the objects that can

have the root role form the Root set and the collection of the

objects that can have the node role form the Node set.

In SOP, a linked list is represented by a component:

LinkedList (Figure 4). It has two interface sets: Root and Node.

The body of a component has the definitions of its internal sets

and declarations. In this example, the LinkedList component

has a constructor and two methods. The constructor and

methods belong to the Root set. The methods are: insert and

remove. insert inserts a node into the linked list and remove

removes a node from it.

A set is the collection of objects having the same role in a

component. Attributes, methods and constructors of a set are

enclosed in a block identified by the set name. An interface set

is a set that the behavior of its members is partially defined by

its component. An internal set is a set that the behavior of its

members is completely defined by its component. Objects can

be created only from internal sets.

Figure 4. LinkedList component

Figure 5. Family component uses a LinkedList insance to

store the children of a marriage

As another example, consider a university. A university has

various roles such as student, professor, department and course.

The student and professor roles should be assigned to persons.

Clearly a person is independent from university and university

only assigns some roles such as professor or student to it.

Therefore, student and professor are interface sets of the

University component. However, department and course are

only meaningful in a university and the university completely

defines the behavior of them. Therefore, they are internal sets

322

of the University component. University has the following

declaration.

As components are stateless, this set is used to store the

specific data of the University component. Of course, This is

not a keyword and any other identifier can be used instead of

it. In the LinkedList example, Root was used for this purpose.

2.2 Instantiation

When a component needs the service of another component,

it declares an instance of that component. For example,

consider a component that stores family information. A family

is formed by the marriage of a man and a woman. In SOP, a

family is implemented as a component: Family component

(Figure 5). It has four interface sets: Marriage, Husband, Wife

and Child. As a marriage may have more than one child, an

instance of LinkedList is used to store them. The Root and

Node sets of LinkedList are assigned to the Marriage and

Child sets of Family respectively.

The code has two methods for the Marriage set: marry and

addChild. marry gets a date, a husband and a wife and marries

them. addChild gets a child and adds him to the linked list of

children. To do so, it calls the insert method of the Root set of

the LinkedList component.

A role assignment defined by an instance declaration may

be named or unnamed. The LinkedList instance of the Family

component defines the following role assignments.

In the declaration of the LinkedList instance, they are

unnamed. However, it is possible to assign a name to each of

them. Therefore, the following declarations are possible too.

When a role is named, it resembles an attribute declaration.

In the first sample, the Root role of the LinkedList instance is

named children. In this case, the properties of the Root role of

the LinkedList instance are accessible under the children name.

Therefore, to add a child to a marriage, the following statement

is used.

children.insert (child);

Every instance of a component is distinct from other

instances of the same component. It means that if two

instances of a component assign the same role to a set, two

copies of the role are added to the members of the set.

To clarify, assume that one needs to store the children of a

marriage in two ways. In the first way, they are sorted using

their name and in the second way, they are sorted using their

age. It is done using two instances of LinkedList.

In the above example, Marriage has two copies of the Root

role of LinkedList. The first one is named ageSorted and the

second one is named nameSorted. In addition, Child objects

have two copies of the Node role. Both of them are unnamed.

So, they are not accessible directly. Of course, they are not

required to be directly accessible too. In fact, the LinkedList

operations are defined on its Root set and the Node roles are

accessible through them.

2.3 A complete application

In SOP, an application itself is a component called the main

component. The name of the main component is arbitrary. It is

the only component that cannot be instantiated. The main

component has just one interface set whose name is the same

as the component name. Unlike other components, the

interface set of the main component is not mentioned explicitly.

The interface set of the main component has a method named

main. The execution of the application begins from this

method and finishes when it finishes.

Figure 6. A complete SOP application

As an example, Figure 6 shows an application named

People. The application has an internal set named Person. It

has a LinkedList of Person objects. The main method of the

application creates 5 Person objects and inserts them into the

linked list. Then, it iterates over the linked list and prints the

Person objects.

2.4 Dynamic dispatch

Dynamic dispatch is an important capability of the object

oriented paradigm. Programming languages have different

approaches to specify methods which are dispatched

dynamically. In SOP, when a component needs to call a

method dynamically, it marks the method as extern. When an

instance of such a component is created, the container

component can provide a new implementation for the extern

method.

Figure 7. Tree component has one extern method

323

Figure 8. People uses an instance of Tree to store Person

objects

As an example, parts of the Tree component are shown in

Figure 7. As the code snippet shows, its Node set has an extern

method (compare). In Figure 8, Tree component is used to

store persons in the People component. Therefore, it provides

an implementation of compare method in Person set.

3. CROSSCUTTING ROLES

This section proposes a new way of crosscutting roles in

SOP. As stated in section 1, roles of composed collaborations

cannot crosscut each other. This means, a role cannot inject

some codes to other roles and vice versa. To overcome this

problem and make interoperability of roles, we use event as

interaction mechanism.

We believe that every role method reaches some specific

states from the beginning to the end point of its code. The

number of states a method has is limited to the size of the

method (the type of work it does). Reaching a method to a state,

in a role composition, must be notified to other roles by raising

an event.

On designing a role, programmer has to define the events of

methods. The definition of an event begins with the event

keyword. Similar to a method definition, an event has a return

type that can be any data type (void is valid too). If the return

type is not void, it must have a default value. Essentially, an

event does not have any body at all. The following code

snippet shows the general form of event definition and the way

of raising it.

An event as a part of a role code refers to a state of a role

method. Therefore, it should have a meaningful name since it

is important for crosscutting roles and also helps to the

understandability of the role code. For instance, BeforeAdd

and AfterAdd are mostly reached events (states) in an element

addition method (e.g. enqu, push, insert, etc.) of some data

structures (like Queue, Stack, Tree, etc.).

Event raisings are not limited to the before and after points

of methods. In fact, an event can be raised at any desired point

of code. For example, in Figure 9, Stack at the beginning state

of adding an element raises an event name evBeforeAdd and

after successful adding of an element raises evAfterAdd. Also,

two other events (i.e. evBeforeRemove and evAfterRemove)

are defined and raised in pop method. These events are

adequate for the most of compositions in which Stack

participates.

An event can be taken either by a role or not at all by any

role. In one hand, by accepting an event, the receiving role

executes a method (in response to the event) and returns a

result if needed. The result depends on the event definition. On

the other hand, when an event is raised and not taken by any

role, its default value is replaced in the raise locations.

In our model, a collaboration should not be aware of the

future collaborations it will be composed with. It is a task of

the composer to compose collaborations and roles and

delegate role events to appropriate methods (like wiring of

hardware components). For example, Stack has no information

about who will catch evAfterAdd event (Counter or Log or any

other role). The important thing is that push method has

reached a state named evAfterAdd. This means, it successfully

added an element to the stack and this stage is the best place

for another role to crosscut Stack and do an action.

Figure 9. Stack collaboration in SOP

The fate of events will be determined at object instantiation

inside the composer. This means, when collaborations are

composed and objects are instantiated, it becomes clear that

which event of a role is delegated to which method of another

role in a set. For example, Figure 10 composes Stack with

Counter and just delegates two events of Stack to the Counter

methods.

An event may have some arguments depending on the state

it reflexes. When a role method raises an event, it gives state

values to the event arguments. For example, in Figure 11, inc

method of Counter informs other roles that it is going to

increase the counter by sending its value over raising of

evBeforeAdd.

Figure 10. Composing stack with counter

324

Figure 11. Interactive counter

Figure 13 is a composite collaboration, which limits

Counter by composing it with Limit and delegating its

evBeforeAdd event to the check method of Limit.

Our model allows programmers to freely define and raise

events at any point of code. Also, there is no restriction for the

arguments of events. Although our type system automatically

checks for any mismatch, it is a duty of programmer to check

the signature of events and methods before any delegation.

Figure 12. Limit collaboration

Figure 13. Composing counter with limit

It is obvious that hard-coding the role interactions inside the

role definition makes it un-reusable. But, our events as

interactions are soft dependencies. This means, when a

collaboration is instantiated alone (not participated in a

composition), its events become neutral operations, and

wherever they are raised their default value is replaced. As a

result, not only does our mechanism lets roles crosscut each

other, but it also keeps reusability.

4. FORMAL REPRESENTATION

4.1 Grammar

A modified grammar of SOP is provided in Figure 14. It

shows that a program (Prog) in SOP is a collection of

component declarations. A component (Comp) is made of

three collections: a collection of interface sets (If), a collection

of internal sets (In) and a collection of declarations (Decl).

The union of the interface and internal sets of a component

forms its sets (Set). The scope of a set is the component

instance containing it. Base denotes the primitive types of the

language. The union of the primitive types and set types of a

component forms the types of the component (Type).

SOP has five categories of declarations: field declaration

(Field), method declaration (Meth), event declaration (Evt),

constructor declaration (Cons), component instance

declaration (Inst).

A field declaration declares a field for set Set whose type is

a primitive type or an internal set. Likewise, a method

declaration defines a method for set Set. The type of the

arguments and return value of a method can be any type

including interface sets. An event declaration is the same as

method declaration, just it does not have any implementation

and needs a default value if its return type is non-void. Finally,

a constructor declaration declares a constructor for Set.

Figure 14. Modified SOP grammar

A component instance declaration declares an instance of a

component (𝐶𝑜𝑚𝑝′). It defines a mapping (𝑀′) from the

interface sets of the instantiated component (𝐼𝑓′) into the sets

of the container component. A mapping can be named or

unnamed. Also, the fate of events in the instantiated

components is determined here by delegations. A delegation

(Delg) links an event from an instantiated component to a

method from another instantiated component.

In the formal definition of the language only seven terms

are defined: this (self object), variable declaration, object

creation, field selection, method call, event raising and

assignment. Some explanations for the terms are followed. this

returns a pointer to the role of the object containing the method.

Objects can be created only from internal sets and primitive

types.

4.2 Semantics rules

In SOP, every declaration adds a role to an object. Some of

them add a primitive role while others add a collection of roles.

Therefore, an object is a tree of roles.

Figure 15 has the rules that form the layout of an object.

They correspond to the declaration rules of the grammar.

L−FIELDB adds a primitive value to a set. L−FIELDI adds a

role to a set.

325

As it was mentioned, instance declaration defines a

mapping from the interface sets of a component (𝐶𝑜𝑚𝑝′) to

the sets of the instantiating component (Comp). L−INSTU and

L−INSTN add the role of an interface set of 𝐶𝑜𝑚𝑝′ to the

corresponding set of Comp. They differ in whether the role is

named or not. Note that each instance declaration adds its own

role.

Figure 15. Layout construction rules

Figure 16. Semantics rules

In the evaluation rules, sometime it is necessary to change

the role of the object. For this reason, function cast (Figure 17)

is provided. It gets a role of an object and returns the role of

the object which is added by the given instantiation. C−BASE

states that a primitive value does not depend on the component

instance. C−SELF states that if the given role corresponds to

the given instance, return the role itself. C−INSTU goes down

or up from a role added by an unnamed role assignment.

C−INSTN does the same for a named role assignment.

A term is evaluated in the context of the component instance

containing it (𝑐𝑜𝑚𝑝𝑡). 𝑐𝑜𝑚𝑝𝑑 is the component instance that

has the declaration that the rule is for it.

The result of the evaluation of a term (v) is a primitive value

(b) or a pointer to a role (�̂�). When the result of a term is a role

two cases happen. Some terms get a role of an object and

return another role of it. Some others select a different object.

In such cases, the role of the object that corresponds to 𝑐𝑜𝑚𝑝𝑡
is returned.

In the grammar, six terms are defined for the language. The

first three ones are trivial. Therefore, no evaluation rules are

provided for them. The evaluation rules for other terms (field

selection, method call, event raising, assignment) are provided

in Figure 16.

There are four rules to evaluate a field selection. The first

one (E−SEL) is the congruence rule. The others are

computation rules. They correspond to layout rules. If an

evaluation rule corresponds to more than one layout rule it is

assigned two names. E−FIELDI (E−INSTN) selects a role

which is added by L−FIELDI or L−INSTN. It returns a pointer

to the role. Note that as a new object may be selected, the role

of the object which is returned is the role added by 𝑐𝑜𝑚𝑝𝑡 .
Finally, E− INSTU returns an unnamed role which is added by

L−INSTU.

There are three rules to evaluate a method call. The called

method belongs to 𝑐𝑜𝑚𝑝𝑑 . E −METH−THIS evaluates the

object that the method is called on. E−METH–ARG evaluates

the arguments of the method. E−METH does the actual call. It

assigns the roles that correspond to 𝑐𝑜𝑚𝑝𝑑 to the arguments.

Finally, the role of the object which is returned is the role

added by 𝑐𝑜𝑚𝑝𝑡 .

Figure 17. Function cast

There are three rules to evaluate an event raising.

E−EVENT–ARG evaluates the arguments of the event. The

raised event belongs to 𝑐𝑜𝑚𝑝𝑑1 and its delegated method

belongs to 𝑐𝑜𝑚𝑝𝑑2 . In E−EVENT- DELG, 𝑐𝑜𝑚𝑝𝑑1 and

𝑐𝑜𝑚𝑝𝑑2 are instances of 𝑐𝑜𝑚𝑝𝑡 . 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 are

respectively sets of 𝑐𝑜𝑚𝑝𝑑1 and 𝑐𝑜𝑚𝑝𝑑2 and mapped to Set in

𝑐𝑜𝑚𝑝𝑡 . 𝑆𝑒𝑡1 defines event e and Set delegates it to method f.

Therefore, raising the event e causes calling the method f. The

return value (𝑣1
′) must be cast since the event and the method

are in different components. Finally, E−EVENT-DVAL

evaluates the event to its default value.

326

The last group of evaluation rules evaluates an assignment.

E−ASSIGN1 and E−ASSIGN2 evaluate the left and right sides

of the assignment and E−ASSIGN3 does the assignment.

Assuming that the location l belongs to 𝑐𝑜𝑚𝑝𝑑, the role of the

value which corresponds to 𝑐𝑜𝑚𝑝𝑑 is assigned to l.

4.3 Typing relation

The type of an expression is evaluated according to the

component that contains it (𝑐𝑜𝑚𝑝𝑡).
Before discussing typing rules, it is necessary to introduce

a function: rtype. rtype gets a set and the component instance

containing it and returns a set of 𝑐𝑜𝑚𝑝𝑡 that corresponds to it.

Figure 18 shows this function. The first rule states that every

set of 𝑐𝑜𝑚𝑝𝑡 is mapped onto itself. The second rule is the

closure rule. It states that if an interface set (𝐼𝑓′′1) of 𝑐𝑜𝑚𝑝′′
is mapped onto 𝑆′1and rtype of 𝑆′1is 𝑆1then rtype of 𝐼𝑓′′1 is

𝑆1too.

Figure 18. Function rtype

Figure 19. Typing relation

Having rtype, Figure 19 shows the typing rules. Like

semantics rules, typing rules are provided only for four terms:

field selection, method call, event raising and assignment.

There are three typing rules for field selection: T −FIELDB

(T−FIELDI), T−INSTU, T−INSTN. They are almost trivial.

The next rule, T−METH, is the typing rule for method call.

It has three parts. The first part specifies that the method

should belong to the current role of the object. The second part

specifies that the argument and the actual argument should

have the same rtype. Finally, it specifies that the type of the

return value is rtype of the return type of the method.

The typing rule of event raising, T-EVENT, specifies that in

an event definition the type of default value and return type

must have the same. Also, it shows that event arguments and

the actual argument values should have the same rtype.

For type checking of a delegation the rule T-DELG is used.

It shows that when an event is delegated to a method their

return type and arguments should have the same rtype.

The last rule, T−ASSIGN, specifies two things: the

conditions that should be true for assignment and the result

type of assignment. Again, the rtypes of the left and the right

sides of the assignment should be the same in order to do an

assignment. The result type of the assignment is the type of the

left side of the assignment.

4.4 Soundness

When a component is instantiated a mapping is defined

from the interface sets of the instantiated component (comp′)

into the sets of the instantiating component (comp).

𝐼𝑓′ ⟼ 𝑆

Using the type mapping function, it is possible to define a

function that gets a component instance (comp′) and a set of it

(if ′) and returns a set (S) of the component instance (comp)

containing it. It is called extended type mapping (ETM).

𝐸𝑇𝑀(𝑐𝑜𝑚𝑝′, 𝐼𝑓′) ⟼ 𝑆

It is clear that ETM is actually a function.

Having ETM, it is possible to show that rtype is actually a

function that gets a type space and a set and returns a set of

𝑐𝑜𝑚𝑝𝑡 .
Now, it is time to prove a soundness theorem for rtype and

cast functions.

Theorem. If r: S and rtype(S) = rtype(S′) then cast(comp′,

r) is defined. Moreover, cast(Comp′, r) : S′.

An important conclusion of the theorem is as follows.

Corollary. If r : S and rtype(S) is defined then cast(𝑐𝑜𝑚𝑝𝑡 ,
r) is defined too.

Theorem Progress. A term t is either a value or there is t′

such that t → t′.

Theorem Preservation. If t: T and t → t′ then one of the

following cases are true.

• t′: T.

• t′: T′ where 𝑇′ ⟼ 𝑇 .

• t′: T′ where T′ is a superset of T.

5. RELATED WORK

Due to the benefits of collaboration-based languages, a

dozen of them were emerged in the past twenty years [1-6, 10,

12, 14-18]. They differ in the definition of collaboration

abstraction, composition model and role attributes.

Some of the collaboration-based languages [5] do not have

an abstraction to denote a collaboration. In such languages, the

roles forming a collaboration are defined independently. In

other words, in such languages the base abstraction is role.

However, most of them have an abstraction to represent a

collaboration. Some of them use a state full abstraction [14,

16] for this purpose, while others use a stateless one [19].

The next feature is the way that a collaboration is defined.

A few languages [15] use a traditional OOP language for this

327

purpose. Therefore, it is not possible that a collaboration uses

another collaboration. However, in most languages a

collaboration can be made using other collaborations. Often

they use single inheritance [16] [3, 14] for this purpose. In such

languages, when a collaboration inherits from another one

every role in the sub collaboration inherits from a role in the

super collaboration which has the same name (name matching).

Of course, single inheritance is not the only approach used

for this purpose. J& [4] uses intersection types which is a form

of multiple-inheritance. Object Team/Java [12] uses playedby

clauses to add a role to a class. In Mixin layers [10], the super

collaboration of a collaboration is specified when it is

instantiated.

The next feature is the scope of the collaboration roles. In

almost all collaboration-based paradigms roles are global.

Therefore, it is possible to create an object whose type is a

specific role everywhere in a program. An exception is Object

Team/Java [12] where an object with a specific role can be

created only within the container collaboration. However, the

role is still accessible everywhere in the program.

6. CONCLUSION

This paper addresses the problem of crosscutting roles in

collaboration-based design. Despite traditional OOP

approaches, we use SOP (a new component-based

programming). To crosscut object roles placed in different

collaborations, events are used. In fact, an event is raised when

a role method wants to inform its state to other roles. Against

method calling, an event raising is a soft dependency. This

means, when a collaboration does not want to participate in a

composition, its events will be neutralized by compiler without

changing its code. This way, events do not affect the

reusability of roles and collaborations. As a result, our

mechanism provides role interactivity while maintains

reusability.

Future research should consider the potential effects of

events more carefully in the design patterns problems. Real-

world examples should be taken into account in order to

examine the advantages, and disadvantages of the approach.

In the next work, we will discuss design pattern problems

and compare our approach with the current solutions in terms

of understandability, flexibility, and reusability.

Furthermore, role, event, and delegation are also needed to

be visualized. Roles can be modeled by extending the UML

class diagram notation and delegations during component

composition can be modeled by extending the UML sequence

diagram notation. Raise points also need to be marked in both

or one of those diagram types.

REFERENCES

[1] Helm, R., Holland, I.M., Gangopadhyay, D. (1990).

Contracts: Specifying behavioral compositions in object-

oriented systems. SIGPLAN Not., 25(10): 169-180.

https://doi.org/10.1145/97945.97967

[2] Mezini, M., Lieberherr, K. (1998). Adaptive plug-and-

play components for evolutionary software development.

SIGPLAN Not., 33(10): 97-116.

https://doi.org/10.1145/286942.286950

[3] Nystrom, N., Chong, S., Myers, A.C. (2004). Scalable

extensibility via nested inheritance. SIGPLAN Not.,

39(10): 99-115.

https://doi.org/10.1145/1035292.1028986

[4] Nystrom, N., Qi, X., Myers, A.C. (2006). J&: nested

intersection for scalable software composition.

SIGPLAN Not., 41(10): 21-36.

https://doi.org/10.1145/1167473.1167476

[5] VanHilst, M., Notkin, D. (1996). Using role components

in implement collaboration-based designs. SIGPLAN

Not., 31(10): 359-369. 10.1145/236338.236375

[6] Ostermann, K. (2002). Dynamically composable

collaborations with delegation layers. in Proceedings of

the 16th European Conference on Object-Oriented

Programming. Springer-Verlag, pp. 89-110.

https://doi.org/10.1007/3-540-47993-7_4

[7] VanHilst, M., Notkin, D. (1996). Decoupling change

from design. in Proceedings of the 4th ACM SIGSOFT

symposium on Foundations of software engineering.

ACM: San Francisco, California, USA. pp. 58-69.

https://doi.org/10.1145/239098.239109

[8] VanHilst, M., Notkin, D. (1996). Using C++ templates to

implement role-based designs. in Object Technologies

for Advanced Software: Second JSSST International

Symposium, ISOTAS '96 Kanazawa, Japan, March 11–

15, 1996 Proceedings, K. Futatsugi and S. Matsuoka,

Editors. Springer Berlin Heidelberg: Berlin, Heidelberg.

pp. 22-37. https://doi.org/10.1007/3-540-60954-7_41

[9] Smaragdakis, Y., Batory, D. (1998). Implementing

layered designs with mixin layers. in ECOOP’98 —

Object-Oriented Programming: 12th European

Conference Brussels, Belgium, July 20–24, 1998

Proceedings, E. Jul, Editor. Springer Berlin Heidelberg:

Berlin, Heidelberg, pp. 550-570.

https://doi.org/10.1007/BFb0054107

[10] Smaragdakis, Y., Batory, D. (2002). Mixin layers: an

object-oriented implementation technique for

refinements and collaboration-based designs. ACM

Trans. Softw. Eng. Methodol., 11(2): 215-255.

[11] Mahjur, A. (2019). Set Oriented Programming.

Submitted to IEEE Transaction on Software Engineering.

[12] Herrmann, S. (2003). Object teams: Improving

modularity for crosscutting collaborations. in Revised

Papers from the International Conference

NetObjectDays on Objects, Components, Architectures,

Services, and Applications for a Networked World.

Springer-Verlag, pp. 248-264. https://doi.org/10.1007/3-

540-36557-5_19

[13] Masoumi, S., Mahjur, A. (2019). Reusable and

interactive classes: A new way of object composition.

Turkish Journal of Electrical Engineering & Computer

Sciences.

[14] Madsen, O.L., Moller-Pedersen, B. (1989). Virtual

classes: A powerful mechanism in object-oriented

programming. SIGPLAN Not., 24(10): 397-406.

https://doi.org/10.1145/74877.74919

[15] Harrison, W., Ossher, H. (1993). Subject-oriented

programming: a critique of pure objects. SIGPLAN Not.,

28(10): 411-428. 10.1145/165854.165932

[16] Ernst, E. (2001). Family polymorphism. in Proceedings

of the 15th European Conference on Object-Oriented

Programming. Springer-Verlag, pp. 303-326.

https://doi.org/10.1007/3-540-45337-7_17

[17] Baldoni, M., Boella, G., van der Torre, L. (2006). Roles

as a Coordination Construct: Introducing powerJava.

Electronic Notes in Theoretical Computer Science,

328

150(1): 9-29.

https://doi.org/10.1016/j.entcs.2005.12.021

[18] Leuthäuser, M., Assmann, U. (2015). Enabling view-

based Programming with SCROLL: Using roles and

dynamic dispatch for etablishing view-based

programming, in Proceedings of the 2015 Joint

MORSE/VAO Workshop on Model-Driven Robot

Software Engineering and View-based Software-

Engineering. ACM: L'Aquila, Italy, pp. 25-33.

https://doi.org/10.1145/2802059.2802062

[19] Jolly, P., Drossopoulou, S., Anderson, C., Ostermann, K.

(2004). Simple Dependent Types: Concord. in ECOOP

Workshop on Formal Techniques for Java Programs, ser.

FTfJP.

[20] Bracha, G., Cook, W. (1990). Mixin-based inheritance.

in Proceedings of the European conference on object-

oriented programming on Object-oriented programming

systems, languages, and applications. ACM: Ottawa,

Canada, pp. 303-311.

https://doi.org/10.1145/97946.97982

[21] Batory, D., Höfner, P., Kim, J. (2011). Feature

interactions, products, and composition. in Proceedings

of the 10th ACM international conference on Generative

programming and component engineering. ACM:

Portland, Oregon, USA. pp. 13-22.

https://doi.org/10.1145/2189751.2047867

329

