
 

 
 
 

 
 

 
1. INTRODUCTION 

Heated pins are used for different application areas in 
engineering such as passive cooling or heating of rooms, 
buildings, radiators, heat exchangers, boilers and some solar 
applications. In these systems, the predominant heat transfer 
mechanism is natural convection. Calculation of generated 
entropy is very important to make good design and energy 
efficient systems [1-6].  

An experimental comparison study has been done by Kim 
et al. [7] to compare efficiencies of plate-fin and pin-fin heat 
sinks. Results indicate better performances of plate-fin.   
Yalcın et al. [8] studied the three-dimensional heat transfer by 
testing the clearance gap between fin tips and shroud. The 
heat transfer was found to increase proportionally to the 
clearance parameter. Varol et al. [9] worked on isothermal 
longitudinal heater located in triangular enclosure. They 
observed that taller cavity and central position of the fin give 
higher heat exchange. Appadurai and Velmurugan [10] used 
fins to improve the performances of a solar still. They 
conducted both theoretical and experimental work to compare 
conventional still and different types of finned stills. The heat 
transfer was increased by attaching fins. Fins were also used 
for heat exchangers as given by Ryu and Lee [11]. Joo and 

Kim [12] studied the heat transfer of a vertical plate equipped 
by plate-fin or pin-fin heat sinks. They developed a 
correlation which they validated experimentally.  

Research studies on 3D natural convection are very few. 
Three-dimensional natural convection in a plate-type fin 
attached surface was analyzed by Baskaya et al. [13] using a 
commercial code. They developed a correlation between 
geometrical parameters and Rayleigh number to estimate the 
rate of heat transfer. They found that the increase of fin height 
enhances the heat transfer. Da Silva and Gosselin [14] studied 
the 3D natural convection in cubic cavity equipped by a 
conductive fin. They showed that the geometrical parameters 
have an important effect on heat transfer and flow structure. 
Bocu and Altac [15] conducted a three-dimensional study on 
free convection heat transfer and fluid flow with pin-fin 
arrays. They showed heat transfer varies proportionally to 
Rayleigh number. Recently Kolsi et al [16-22] published 
some paper on natural convection in 3D cavities with inside 
different shapes active and non-active obstacles. 

In this work the natural convection in a cubic cavity heated 
by circular fins is exanimated numerically to study heat 
transfer, flow structure and entropy generation with a focus 
on the fins number and length. 
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ABSTRACT 

  
In this study, heat transfer, flow structure and produced entropy due to natural convection in a three-
dimensional cavity heated via heat sinks are investigated numerically. One wall of the cavity is heated via pin-
fins and opposite wall is maintend at lower temperature. Remaining bouandaries are considered as adiabatic. 
Finite volume method is used to solve governing equations. Three geometrical cases are tested according to 
number and location of the fins. Other governing parameters are Rayleigh number and fin length. Number and 
length of the fins were found to be the most effective parameters on both heat transfer and entropy generation. 
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2. PHYSICAL MODEL 

Figure 1 shows a three-dimensional isometric configuration 
(on the left) and a section of this configuration (in the middle). 
Three different configurations are chosen and named as Cases  

I, II and III as shown at the right side of Figure 1. As 
shown on the figure, heated pins are mounted on the left hot 
wall and the right-side wall is maintained at cold temperature. 
All other walls are considered as adiabatic and gravity acts in 
y-direction. 
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Figure 1. Physical Model; (a): 3D configuration; (b): sectional plan; (c): cases

3. GOVERNING EQUATIONS AND NUMERICAL 

PROCEDURE 

The formulation )( 


  is used for the numerical model. 

This Formalism is defined by the two following relations: 

'' V


   and '' 


V . 

The setting for the above relations exists with more details 
in the work of Kolsi et al. [16]. The dimensionless governing 
equations are as follow:  
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The generated entropy is written in the following form:   
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The dissipation function Φ’ is written in incompressible 
flow as:   
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The produced entropy is written as [23]: 
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Using the dimensionless parameters, the local 

dimensionless entropy generation can be written as:   
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from where   
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  represents the irreversibility coefficient. 

The total produced entropy is:  
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With Sth and Sfr are respectively the thermal and viscous 

entropy generations.  
The local and average Nusselt at the cold wall are given by: 
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Governing equations [(1)-(3)] and (8) are discretized using 
the finite volume method. Convective terms are treated using 
a central-difference scheme and the temporal derivatives are 
discretized using the fully implicit procedure. The blocked of 
region method is used to impose fixed temperature and zero 
velocity in the fins. The grids are uniform in all directions 
with additional nodes on boundaries. The resolution of the 
non-linear algebraic equations is assured by the successive 
relaxation iteration scheme. After a grid dependency test a 

spatial mesh of (717171) was retained and the time step 
is fixed at (10-4). The convergence test is based on the 
following criterion each step of time:  
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4. VALIDATION 

Results were validated by comparing with studies of 
Wakashima and Saitho [24]) and (Fusegi et al. [25]) for air 
filled cubic cavity. As seen from table 1, obtained results are 
acceptable when compared with literature.  

Table 1. Validation of results 
 

Ra Authors z  (center) z  (center) maxxV  (y) m axyV  

(x) 
avNu  

104 Present work 0.05528 1.1063 0.199 (0.826) 0.221 (0.112) 2.062 

 Wakashima and saitho [24] 0.05492 1.1018 0.198 (0.825) 0.222 (0.117) 2.062 

 Fusegi et al. [25] --- --- 0.201 (0.817) 0.225 (0.117) 2.1 

105 Present work 0.034 0.262 0.143 (0.847) 0.245 (0.064) 4.378 

 Wakashima and saitoh [24] 0.03403 0.2573 0.147 (0.85) 0.246 (0.068) 4.,366 

 Fusegi et al. [25] --- --- 0.147 (0.,855) 0.247 (0.065) 4.361 

106 Present work 0.01972 0.1284 0.0832 (0.847) 0.254 (0.032) 8.618 

 Wakashima and saitho [24] 0.01976 0.1366 0.0811 (0.86) 0.2583(0.032) 8.6097 

 Fusegi et al. [25] --- --- 0.0841 (0.856) 0.259 (0.033) 8.77 

 

 

5. RESULTS AND DISCUSSION 

A numerical study on 3D natural convection and entropy 
production in a heated pin incorporated enclosure is 
presented. Results are illustrated via iso-surfaces of 
temperature, local and average Nusselt number, local and 
total entropy generation, and particle trajectories for three 
different cases varying length of the fins and Rayleigh 
number.  

Fig. 2 presents the particle trajectories for case 1 and b = 
0.25 for different Ra. The flow structure behaves like a 
differentially heated cavity due to great number of heater in 
case 1. Almost circular shaped flow trajectory is observed for 
the lowest value of Rayleigh number. Then, its dimension is 
increases with Ra and the flow becomes more complex with 
an intensification of the 3D character.  

Fig. 3 illustrates the iso-surfaces of temperature for case 1 
and b = 0.25 to analyze effect of Ra on temperature 
distribution. As given in the figure, temperature distribution is 
almost parallel to the heated pinned wall for the lowest value 
of Rayleigh number and they twisted with the increasing of 
Ra. They are almost parallel to the ceiling and bottom 
horizontal walls at the middle of the cavity. Based on the 
mechanism of the natural convection, the heated air around 
the pin rises vertically. Thus, “S” shaped temperature 
distribution is observed. Near the heated wall, mountain-like 
distribution is observed due to presence of the heated pins. 
After that part it resembles to the differentially heated cavity. 
The iso-surfaces of temperature are characterized by a central 
horizontal stratification for low Ra and a central vertical 
stratification for high Ra.   
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(a) (b) (c) 

Figure 2. Some particles trajectories for case 1 and b = 0.25 ; (a) Ra = 103; (b) Ra = 104; (c) Ra = 105 

(a) (b) (c) 

Figure 3. Iso-surfaces of temperature for case 1 and b = 0.25 ; (a) Ra = 103; (b) Ra = 104; (c) Ra = 105 

Iso-contours of Nuloc on cold wall for case 1 and b = 0.25 
are shown in Fig. 4, for different Rayleigh numbers. Due to 
domination of conductive heat transfer mode, Nuloc is 
presented almost horizontal at the central region of the wall. 

U-shaped distribution is observed at the top of the wall due to
the existence of an intensive vertical air movement. Values of
Nuloc decrease from top to bottom of the cold wall as an
expected result.

(a) (b) (c) 

Figure 4. Local Nusselt number at cold wall, for case 1 and b = 0.25; (a) Ra = 103; (b) Ra = 104; (c) Ra=105 

Fig. 5 presents the variation of Nuav with Ra for case 1. As 
seen from the figure, Nuav is increased almost linearly with 
increasing of Ra. But values of Nuav are decreased with 
decreasing of b due to decreasing of incoming energy into 
system. 

Total, friction and thermal local entropy generation are 
presented in Fig. 6 at z = 0.2 plan. Produced entropy due to 
heat transfer becomes higher near the edges of fins but the 
contours are denser near the bottom of the cavity due to rising 
of the air flow from bottom to top. This effect is clear for 
higher Rayleigh numbers as seen from the figures. Also, 
entropy is generated near the top right wall due to the 
clustering of temperature near that part as noticed from iso-
surfaces of temperature. Entropy generation due to friction is 
presented in the second row of the Fig. 6 and it is noticed that 
it is concentrated near of the walls due to the manifestation of 
the viscous effect. 
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Figure 5. Mean Nusselt number for case 1 
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Figure 6. Local entropy generation in z = 0.2 plan 
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Figure 7. Projection of the velocity vector in z = 0.2 plan for Ra = 105. 

Entropy generation contours on walls becomes thinner with 
the increasing of Ra due to decreasing of boundary layer. 
Also, total entropy generation is presented on the bottom row 
and it presents similar distribution with other figures. As seen 
from the figures, edges of the pins are very effective on 
entropy generation. 

Variations of thermal, viscous and total entropy 
generations are presented in Fig. 7 at different Rayleigh 
number for case 1. Entropy generation increases almost 
linearly with Ra due to incoming energy into the system. 

For a best understanding of the flow structures vector 
velocity projections in z = 0.2 plan for Ra = 105 are presented 
in Fig.8 for different lengths and numbers of fins. It is noticed 

that numbers and location of the vortex becomes same fit the 
same values of fin length. However, flow strength is a 
function of fin length.  

Variations of Nuav as a function of length of fin for 
different cases are given in Fig. 8. As an expected result, heat 
transfer is decreased with decreasing of fin number, thus, heat 
transfer becomes lowest for case 3 and results for case 1 and 
2 are almost the same. As a similar manner, total entropy 
generation is decreased with number of fin and maximum 
total entropy generation is observed for case 1 as given in Fig. 
9. Total entropy generation value is increased with fin 
length due to increasing of heat transfer surface.
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Figure 9. Average Nusselt number as function of b for 
Ra=105 

Figure 10. Total entropy generation as a function of b for 
Ra=105 

6. CONCLUSION

Effects of heated fin number, fin length and Rayleigh 
number on heat transfer, fluid flow and entropy generation 
are studied for three-dimensional domain by using a 
numerical technique. It is noticed that the main effective 
parameter on heat transfer, fluid flow and entropy generation 
are length and location of the fins. Edge of the fins plays the 
dominant role on entropy distribution due to flow friction at 
that part. Increasing of heat transfer and total entropy 
generation is almost linear with Rayleigh number. The 
minimum of produced entropy is observed for the highest 
number of fins, namely, case 1. Increasing of fin length 
enhances both heat transfer and entropy generation.  
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NOMENCLATURE 

b Fin length 

g  Acceleration due to gravity (m.s-2) 
k  Thermal conductivity (W.m−1.K−1) 
l  Enclosure Width 
lz  Enclosure depth 
Nu  Nusselt number 
Ns Local dimensionless entropy 
P  Pressure (N.m-2) 
Pr  Prandtl number 

q


  Heat flux vector 

Ra  Rayleigh number 
S  Generated entropy 
t  Dimensionless time 
T  Dimensionless Temperature 
V  Dimensionless velocity vector 

 

Greek symbols 

 

 

α  Thermal diffusivity (m2·s-1) 
β  Thermal expansion coefficient (K-1) 
ΔT  Temperature difference (K) 
μ  Dynamic viscosity, (kgm-1 s-1) 
ν  Kinematic viscosity (m2·s-1) 
ρ  Density (kg·m-3) 

Φ’ Dissipation function  

φ Irreversibility coefficient  
   vector potential 
  vorticity 

 

Subscripts 

 

 

c  cold 
f  fluid 
fr  friction 
gen  generated 
h  hot 
m  average 
n  normal 
th  thermal 
tot total 
x, y, z  Cartesian coordinates 
0  Reference 

 

Superscript 

 

 

'   dimensionnal variable 
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