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A crucial natural resource that directly affects the ecology is forests. Forest fires have 

become a noteworthy problem recently as a result of both natural and man-made climatic 

changes. A smart city application that uses a forest fire discovery technology based on 

artificial intelligence is provided in order to prevent significant catastrophes. A major 

danger to the environment, animals, and human lives is posed by forest fires. The early 

detection and suppression of these fires is crucial. This work offers a thorough method for 

detecting forest fires using advanced deep learning (DL) algorithms. Preprocessing the 

forest fire dataset is the initial step in order to improve its relevance and quality. Then, to 

enable the model to capture the dynamic character of forest fire data, long short-term 

memory (LSTM) networks are used to extract useful feature from the dataset. In this work, 

weight optimisation in LSTM is performed using a Modified Firefly Algorithm (MFFA), 

which enhances the model's performance and convergence. The Variational Autoencoder 

Generative Adversarial Networks (VAEGAN) model is used to classify the retrieved 

features. Furthermore, every DL model's success depends heavily on hyperparameter 

optimisation. The hyperparameters of an VAEGAN model are tuned in this research using 

the Waterwheel Plant Optimisation Algorithm (WWPA), an optimisation technique 

inspired by nature. WPPA uses the idea of plant growth to properly tune the VAEGAN's 

parameters, assuring the network's peak fire detection performance. The outstanding 

accuracy (ACC) of 97.8%, precision (PR) of 97.7%, recall (RC) of 96.26%, F1-score (F1) 

of 97.3%, and specificity (SPEC) of 97.5% of the suggested model beats all other existing 

models, which is probably owing to its improved architecture and training techniques. 
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1. INTRODUCTION

Forests are crucial to maintaining our way of life because 

they provide a wealth of priceless resources, such as minerals 

and materials required for several industrial operations [1]. 

Beyond their obvious benefits, trees considerably improve the 

environment by purifying the air naturally, collecting carbon 

dioxide, and releasing oxygen that sustains life. Additionally, 

trees provide crucial habitat for a variety of species and act as 

a barrier against sandstorms, safeguarding crops besides 

maintaining ecological balance. But the widespread effects of 

climate change [2, 3] are mostly to blame for the increasing 

frequency of forest fires in recent years. High temperatures 

and dry circumstances encourage the spread of flames, causing 

significant damage to ecosystems, animal habitats, natural 

reserves, and a clear danger to people's lives. Notably, 

coniferous woods, which are distinguished by their needle- or 

cone-shaped foliage, are especially vulnerable to fires because 

the sap found in their branches is flammable [4]. Coniferous 

trees' dense growth patterns also contribute to the fast-moving 

spread of flames. Millions of acres of forest are annually 

destroyed as a result of this worrying trend, with catastrophic 

economic consequences. 

Many nations, including the fires. In particular, the horrific 

Australian bushfires in 2020 provide as a sobering example of 

the intensity of these occurrences, resulting in the irreparable 

loss of forest resources, innumerable animal deaths, and 

human casualties. These flames destroyed 1,500 dwellings, 

approximately 500,000 animals, about 14 million acres of 

forest, and nearly a third of all living things [5]. Similarly, in 

2018 and 2019, devastating wildfires of equal size burned 

large areas of the Amazon rainforest and California's forests, 

causing enormous losses [6]. Surprisingly, between 1992 and 

2015, human activity was responsible for a whopping 85% of 

forest fires in the United States, with natural causes like 

lightning strikes and the effects of climate change accounting 
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for the remaining 15%. More stringent regulations and 

reasonable practises may have prevented many of the human-

caused fires [7]. It is noteworthy to note that during the 

worldwide COVID-19 epidemic, the frequency of forest fires 

decreased as several nations instituted lockdown measures that 

restricted human activity, hence decreasing the risk of human-

induced fires [8]. 

DL networks have been a very successful method for 

addressing the crucial problem of forest fire detection. DL has 

shown its aptitude in a number of fields, including autonomous 

machine translation [9] and image and video categorization. 

This was made possible by DL's capacity to automatically 

extract and categorise properties from data stored on the same 

network [10]. DL is especially good at detecting forest fires 

because to large datasets and improved processing capacity. 

For both ground-based and aerial images, DL-based systems 

have shown their superior performance over conventional 

machine learning techniques in handling the complexity of 

forest fire categorization and detection [11, 12]. The rise of 

automated DL fire detection systems holds enormous potential 

for the development of AI fire models are a useful tool for 

addressing this pressing environmental issue since they can 

quickly and precisely identify and track flames inside the 

camera's field of vision [13]. 

In subsequent work, we intend to look into the following 

possible improvements: 

Attention Mechanisms: By including attention mechanisms 

in the LSTM architecture, the model may be better able to 

identify significant patterns in the data by focusing on 

pertinent elements at certain time steps. 

Ensemble approaches: By integrating several LSTM models 

or other recurrent neural network (RNN) types, one can 

improve the model's prediction presentation and robustness by 

using ensemble approaches. 

Hybrid Architectures: Investigating hybrid architectures 

that integrate transformer models or convolutional neural 

networks (CNNs) with LSTM may offer supplementary 

benefits in sequence modelling and feature extraction. 

This paper's primary contributions are: 

-The dataset for this investigation was first pre-processed. 

This research then improves the quality of information related 

to forest fires by using cutting-edge DL methods and extracts 

useful temporal characteristics using LSTM networks.  

-The performance and convergence of the LSTM model are 

improved by the application of the MFFA for weight 

optimisation.  

-As a tool for classification, the VAEGAN model is used. 

The WWPA for hyperparameter tuning promises to greatly 

improve the ACC and efficacy of systems for detecting forest 

fires. Results are analyzed using five parameter metrics. 

The rest of the research is structured like shadows: The 

literature review is presented in Section 2, followed by a brief 

explanation of the proposed model in Section 3, the results and 

validation analysis in Section 4, and finally, a conclusion and 

summary are given in Section 5. 

 

 

2. RELATED WORK 

 

Abdusalomov et al. [14] developed a better strategy for 

spotting forest fires, according to their study. The Detectron2 

platform, an enhanced version that was constructed from the 

ground up utilising DL techniques to replace the original 

Detectron library, is the foundation of their strategy. To help 

in the training of their model, they carefully chose and 

annotated a special dataset; this critical step ultimately resulted 

in a model with more ACC than rival methods. A dataset of 

5200 photographs served as the testing ground for the 

researchers as they modified the Detectron2 model under 

various situations. Notably, their model proved the ability to 

recognise even little fires at large distances, day or night. Their 

method's usage of the Detectron2 algorithm, which enables 

long-range detection, has several advantages. Their 

investigations' real findings supported the ACC of their 

method for spotting forest fires. They were able to identify 

forest fires with a stunning ACC rate of 99.3%, proving the 

reliability and power of their recommended technique. 

The GXLD technique, developed by Huang et al. [15], 

combines a defogging algorithm with a lightweight YOLOX-

L model to identify forest fires. The dark channel prior 

approach is used by GXLD to remove fog from photos, 

producing sharper, fog-free images. On top of that, they 

improved the YOLOX-L model by adding elements from 

SENet, GhostNet, and depth separable convolution, resulting 

in YOLOX-L-Light. Then, using the defogged photos, this 

optimised model is used to identify forest fires. The 

researchers used the mean average Pr (mAP) metric to rate 

detection ACC and network parameters to determine the 

model's lightweightness in order to evaluate the performance 

of YOLOX-L-Light and GXLD. They ran trials on their 

dataset of forest fires, and the results showed a considerable 

improvement. YOLOX-L-Light increased the mAP by 1.96% 

while reducing the model's parameters by 92.6%. Notably, 

GXLD outperformed YOLOX-L by 2.46% with a remarkable 

mAP of 87.47%. Furthermore, GXLD provided an average 

frame rate of 26.33 frames per second when set up with an 

input picture size of 1280 720. Amazingly, GXLD displayed 

real-time forest fire detection skills with great ACC, strong 

target confidence, and sustained target integrity even under 

difficult foggy circumstances. 

Chen et al. [16] introduced the YOLOv5s-CCAB, an 

improved variant of the YOLOv5s architecture for multi-scale 

forest fire detection, in their article. This model has seen a 

number of revisions. They initially introduced Coordinate 

Attention (CA) to YOLOv5s to direct the network's focus 

especially on traits associated with forest fires. Second, they 

developed a CoT3 module to improve the identification of 

forest fires, reduce parameter complexity, and have the 

capacity to capture global dependencies in photographs of 

forest fires. In order to raise the network's PR while detecting 

potential forest fire targets, the Complete-Intersection-Over-

Union (CIoU) Loss function was enhanced. A Bi-directional 

Feature Pyramid Network (BiFPN) was constructed within the 

model's neck to increase its ability to correctly fuse the 

extracted forest fire features. According to the testing 

outcomes and their specially developed multi-scale forest fire 

dataset, YOLOv5s-CCAB resulted in significant 

improvements. It retains the high Frames Per Second (FPS) 

rate of 36.6 and reaches a rate of 87.7% for the AP@0.5 metric, 

a startling 6.2% increase. These results demonstrate the 

model's very fast and accurate identification. In light of this, 

YOLOv5s-CCAB provides an advantageous point of 

reference for applications requiring precise, real-time multi-

scale forest fire detection. 

For their study, Zhang et al. [17] created the multi-scale 

feature extraction model (MS-FRCNN) for the detection of 

small target forest fires. This model enhances the conventional 

Faster RCNN detection technique. Instead of VGG-16, 
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ResNet50 was employed as the backbone network to lessen 

the possibility of gradient dispersion or explosion during 

feature extraction. In order to benefit from multi-scale feature 

extraction, they also integrated a Feature Pyramid Network 

(FPN), which increased the MS-FRCNN's ability to capture 

comprehensive feature data. They also included a brand-new 

attention module called PAM to help the Regional Proposal 

Network (RPN) focus more on the semantic and geographic 

details of small target forest fires and decrease the distraction 

from complex backgrounds. The model also substituted the 

soft-NMS algorithm for the traditional NMS technique in 

order to reduce errors in identified frames. They conducted 

trials using their carefully curated multi-scale forest fire 

dataset, and the findings revealed a substantial 5.7% increase 

in detection ACC above baseline models. This shows how the 

multi-scale feature extraction approach forest fires. 

A technique for recognising forest fires was proposed by 

Rahman et al. [18] using a Convolutional Neural Network 

(CNN) architecture and freshly created fire detection dataset 

from another study. Their approach utilised separable 

convolution layers for rapid fire detection, making it suitable 

for real-time applications. After training on their dataset, the 

method showed a remarkable 97.63% ACC in identifying 

forest fires in photos, along with a 98.00% F1 and an 80% 

Kappa value. These results show the method's potential to be 

a helpful tool for early fire breakout identification, enabling 

authorities to act promptly and put preventive measures in 

place to minimise damage. 

A system for early fire detection and classification was 

constructed by Avazov et al. [19] using the Internet of Things 

(IoT) and YOLOv5. They use IoT devices in their 

investigation to verify if fires that YOLOv5 claimed to have 

seen may have been fabricated or unreported. The successful 

findings shown that IoT may be used to monitor and verify fire 

incidents in real-time. This approach may greatly improve its 

capacity to reduce forest fires. A system architecture for 

autonomous forest fire detection utilising DL image 

processing methods was suggested in a paper by Ye et al. [20], 

and it was especially created for tiny UAV applications. The 

optimisation process included a number of phases, including 

switching to ShuffleNetV2 as the backbone network, pruning 

the network, sparse training, tuning, and hardware acceleration. 

According to experimental findings, their forest fire detection 

system increased inference speed by 50%, decreased CPU 

utilisation and temperature by 35% and 25%, and consumed 

10% less power while retaining an ACC of 92.5%. It's 

noteworthy that the model's ACC remained steady despite 

alterations in the bird's-eye view angle. 

As an alternative to more traditional models like Fast R-

CNN and Faster R-CNN, Al-Smadi et al. [21] investigated the 

efficacy of a framework intended to reduce the sensitivity of a 

number of YOLO detection methods. On a multi-oriented 

dataset for recognising forest smoke, they employed 

YOLOv5x to increase their model's mean average Pr (mAP) 

ACC from earlier gold-standard techniques to an astounding 

96.8%. Additionally, YOLOv7 outperformed YOLOv3 with a 

95% mAP ACC. These findings supported the method's 

outstanding ability to find forest fires in spite of challenging 

environmental conditions. 

Talaat and ZainEldin [22] presented the discovery system 

(SFDS), based on the YOLOv8 algorithm, as an enhanced fire 

detection method for smart cities. This system employed DL 

to distinguish fire-specific traits in real-time, potentially 

improving fire detection ACC, reducing false alarms, and 

offering a more cost-effective alternative to traditional 

methods. The application, fog, cloud, and IoT layers of the 

recommended architecture employed cloud and fog computing 

to acquire and analyse data in real-time. The SFDS achieved a 

high success rate of 97.1% for all classes and is useful for 

various applications, such as fire safety management and 

intelligent security systems in smart cities. 

Although these existing models for detecting forest fires 

have showed potential, they still have issues with Pr, 

dependability, and flexibility. Our model offers numerous 

significant advances in an effort to reduce the harmful impacts 

of forest fires and enhance early detection. 

 

 

3. PROPOSED METHODOLOGY 

 

We will discuss the compatibility of the proposed model 

with existing forest fire prevention and control systems, 

ensuring that it can seamlessly integrate into the current 

infrastructure without requiring significant modifications. 

Compatibility considerations may include data formats, 

communication protocols, and system architectures. 

We will highlight the model's potential to serve as a real-

time decision support tool for forest fire prevention and control. 

By continuously analyzing incoming data from various 

sources such as remote sensors, weather positions, and satellite 

imagery, the model can provide early warnings, identify high-

risk areas, and assist in resource allocation and deployment 

strategies. Figure 1 shows the flow of the suggested model. 

 

 
 

Figure 1. Work flow of the proposed model
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3.1 Dataset description 

 

As exposed in Figure 2, the dataset utilised in this study 

consists of 3000 images of forest fires that were captured by 

drones and video surveillance equipment in various forest 

environments. It also includes additional forest fire datasets 

discovered using web crawling techniques and publicly 

available forest fire datasets [23]. This collection's 1000 

images all have hand annotations. Then, these 1000 annotated 

images were divided into two subsets: 300 served as a 

specialist test set to assess the model's ACC, and 700 were set 

aside for training purposes to construct a prototype forest fire 

detection model. 2000 images of unlabelled forest fires were 

also included in the dataset and utilised in the training process. 

 

 
 

Figure 2. Schematic diagram of forest fire data set 

 

3.2 Preprocessing 

 

The dataset provides a wide range of photos taken from 

different perspectives, enabling the algorithm to identify 

between forest fire and non-fire events with greater ACC. 

With the help of this information, the model is equipped to 

recognise forest fires based on two key criteria: the existence 

of fire flames and the presence of fire flames mixed with 

smoke. Up to this point, our main attention has been on the 

exacting standards used to divide up the dataset into an equal 

number of images with fire (1) and those without fire (0) [24]: 

Fire (1): Images of forests and mountain ranges that are 

enveloped in flames and/or smoke brought on by fires. 

 

 
 

Figure 3. Images from (a) and (b) Fire class and (c) and (d) 

No-Fire class 

No-Fire (0): Consisting of a wide variety of pictures 

showing forest and mountain vistas devoid of fire. This 

categorization method was developed to make it easier to train 

models with a variety of images while avoiding 

misunderstanding with situations that could seem similar, such 

mountain sunsets. 

The goal of this meticulous dataset refining method was to 

improve overall model performance and streamline the model 

training procedure. As they were the most contextually 

relevant to our study objective at this dataset curation phase, 

we particularly cropped pictures of fires in mountainous or 

forest settings. After then, every image was scaled consistently 

such that it had the same size, 250×250 pixels. These 

preprocessing methods were crucial in helping the model 

successfully include important information about forest fires. 

Figure 3 shows visual representations of both the fire and no-

fire categories within forest fire dataset. 

 

3.3 LSTM feature extraction 

 

After the preprocessing phase, the input characteristics are 

then passed to the LSTM module, a crucial component of our 

methodology [25]. Due to the huge quantity of data gathered 

from the dataset, a typical RNN would not be sufficient for our 

purposes. Gradient disappearance and explosion issues are 

addressed via a customised RNN iteration known as LSTM. 

During the training phase, RNN creates temporal connections 

between prior states and the inputs to provide predictions. 

RNN, on the other hand, finds it challenging to maintain the 

past because to its limited memory capacity, especially when 

dealing with massive volumes of time series data. However, 

LSTM excels at classifying enormous time series datasets and 

locating temporal correlations. Its use covers several sectors 

and yields outstanding results for tasks like speech recognition 

and image classification. 

The LSTM architecture seen in Figure 4 has special memory 

cells designed to make use of prior knowledge and maintain 

key characteristics from massive volumes of time series data. 

These memory cells may store and apply the information that 

was learnt, allowing the model to process and classify input 

effectively. 

 

 
 

Figure 4. Architecture of LSTM 

 

The output gate, also known as the 𝑜𝑡  gate, the forget gate, 

also known as the ft gate, and the input gate all play distinct 

roles in regulating information flow in the LSTM architecture. 
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The major responsibility of the forget gate is to decide what 

data to preserve and what to discard within the cell state. It 

does this by conducting a pointwise multiplication operation 

using the inputs 𝑥𝑡, the current input, and ℎ𝑡−1, the previous 

hidden state information. By using the sigmoid activation 

function, the forget gate generates an output that is either 0 or 

1. Keeping important information in the cell state is indicated 

by a value of 1, whilst removing unimportant information is 

indicated by a value of 0. The forget gate, input gate, and 

output gate's core characteristics are explained in literature [26] 

by Eq. (1) to Eq. (6). 
 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (1) 
 

The forget gate, or 𝑓𝑡, is subjected to a bias called 𝑏𝑓, and 

the process weight 𝑊𝑓  stands for that. The forget gate is 

activated using the activation function, represented by the 

letter "s," to allow choice. Next, a critical decision on whether 

data should be kept in the cell state, 𝐶𝑡, must be made by the 

input gate. It considers both the input, 𝑥𝑡, and the preceding 

hidden state, ℎ𝑡−1 to arrive at this conclusion. Eq. (2) and Eq. 

(3) describe the pointwise multiplication of the forget gate, 𝑓𝑡, 

and hyperbolic tangent (tanh) activation functions in this 

decision-making process: 
 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖  (2) 
 

𝐶𝑡 = tan ℎ (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏0 (3) 
 

While 𝑏𝑖 and 𝑏𝑐 stand for the biases of the neural network, 

𝑊𝑖 and 𝑊𝑐  stand for the weights connected to the input gate (𝑖𝑡) 
and output gate (𝑜𝑡 ). The information about the previous 

concealed cell state is denoted by the word 𝐶𝑡. Eq. (4) shows 

how we combine Eq. (2) and Eq. (3) to conduct a pointwise 

addition operation in order to update the current cell state, 𝐶𝑡
′: 

 

𝐶𝑡
′ = (𝑓𝑡 × (𝐶𝑡)) + (𝑖𝑡 × (𝐶𝑡)) (4) 

The output gate is calculated in Eq. (5). The current input, 

represented as 𝑥𝑡 , and the prior hidden state, ℎ𝑡−1 , which 

incorporates the activation function s, are both used in this gate. 

In order to further hone the output network, a bias term called 

𝑏0 is included. 

 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑜 (5) 

 

A pointwise multiplication operation is used to combine the 

information from the cell state, 𝐶𝑡 , with the updated output 

gate, indicated as 𝑜𝑡 . The hidden state that follows, ℎ𝑡 , is 

produced by this procedure and is represented in Eq. (6). 

 

ℎ𝑡 = 𝜎(𝑂𝑡 × tan ℎ (𝐶𝑡
′)) (6) 

 

The LSTM model may be improved significantly by using 

optimal parameters. The efficacy of feature extraction is 

substantially influenced by these characteristics. With the 

exception of the completely linked dense layer, 50 more 

neurons have been added to each layer to aid in better training. 

Furthermore, a 20% dropout rate has been used to allay any 

overfitting concerns. 

 

3.3.1 Weight optimization in LSTM using MFFA 

Firefly algorithm. In situations where it is necessary to 

optimise not one, but several competing objectives at once, 

WWPA can handle these difficulties. By efficiently exploring 

the trade-off between different objectives, WWPA can 

discover Pareto-optimal solutions that represent the best 

compromise between competing goals. 

Efficient exploration and exploitation. WWPA balances 

exploration (searching diverse regions of the hyperparameter 

space) and exploitation (exploiting promising 0refine 

solutions) effectively. This balanced exploration-exploitation 

trade-off enables WWPA to quickly converge to high-quality 

solutions while avoiding premature convergence to 

suboptimal regions. 

 

 
 

Figure 5. Flowchart of modified firefly algorithm
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The Firefly Algorithm, a metaheuristic method that was 

motivated by the flashing behaviour of fireflies. This tactic is 

based on the idea that different fireflies have different levels 

of attraction and that this impacts how they mate [27, 28]. 

The modified firefly algorithm [29-31] improves on the 

original Firefly Algorithm by reducing its inherent volatility 

and improving firefly movement. Figure 5 depicts the 

Modified Firefly Algorithm's flowchart and the sequential 

steps it goes through. The Modified Firefly Algorithm's 

randomization parameter 𝛼  represents the start and finish 

values for each iteration as 𝛼0 and 𝛼∞ 
, respectively. Higher 

values of this strategy 𝛼  lead to better convergence while 

attempting to strike a balance between the capabilities of 

exploitation and exploration. The ith lightning bug motion and 

the distance function 𝑟𝑖 are described in Eq. (7) and Eq. (8), 

respectively. 

 

𝑟𝑖,𝑏𝑒𝑠𝑡 = (𝑥𝑖 − 𝑥𝑔𝑏𝑒𝑠𝑡)
2 + (𝑦𝑖 − 𝑦𝑔𝑏𝑒𝑠𝑡)

2 (7) 

 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒
−𝛾𝑡2𝑦(𝑥𝑗 − 𝑥𝑖) 

+𝛽0𝑒
−𝛾𝑡2

𝑡, 𝑏𝑒𝑠𝑡(𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝛼𝜀 + 𝜆𝜀(𝑥𝑖

− 𝑔𝑏𝑒𝑠𝑡) 

(8) 

 

where,  𝜀 =  𝑟𝑎𝑛𝑑 −  1 ∕ 2, 𝑔𝑏𝑒𝑠𝑡 =  𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 . When a 

local best solution is not available close by, the ith firefly is 

drawn to the best choice. The MFFA reduces the possibility of 

becoming stranded in local optima by carefully limiting 

unpredictability. Fireflies may progress towards the global 

optimum thanks to the rapid convergence brought on by this 

well controlled randomness reduction. Please refer to Figure 5 

for a flowchart illustrating the Modified Firefly Algorithm's 

steps and sequence. 

 

3.4 VAEGAN classification 

 

In this work, the classification of data related to forest fires 

is done using VAEGAN. during GAN (Generative Adversarial 

Network) excels at creating samples precisely, it often exhibits 

instability during learning. Contrarily, VAE (Variational 

Autoencoder) generates a variety of samples while retaining a 

respectable amount of stability during the course of learning. 

The VAEGAN framework may take use of the advantages that 

each of these generative models have to offer by combining 

them. VAEGAN is able to deliver samples that are both highly 

fidelity and variety while keeping their stability while learning 

is taking place. Typically, an encoder plus a decoder makes up 

a VAE [32]. The input data must be transformed into a latent 

vector by the encoder, and the decoder must estimate the input 

from the latent vector. The mathematical representations of the 

encoder and decoder processes are shown in Eq. (9) and Eq. 

(10), respectively. 

 

𝑧~𝐸𝑛𝑐(𝑥) = 𝑞𝜙(𝑧|𝑥) (9) 

 

�̂�~𝐷𝑒𝑐(𝑧) = 𝑝𝜙(𝑥|𝑧) (10) 

 

In this situation, the input, latent vector, and estimated input 

are each represented by x, z, and �̂�. The encoder and decoder 

models are affected by the parameters 𝜙 and 𝜃. The genuine 

posterior 𝑝𝜙(𝑥|𝑧) is approximated by the term 𝑞𝜙(𝑧|𝑥). The 

reconstruction error and a previous regularisation term, which 

are added together, make up the two halves of the loss function 

connected to VAE. 

 

𝐽𝑉𝐴𝐸 = 𝐽𝑟𝑒𝑐𝑜𝑛 + 𝐽𝑝𝑟𝑖𝑜𝑟  (11) 

 

𝐽𝑟𝑒𝑐𝑜𝑛 = −𝐸𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] (12) 

 

�̂�~𝐷𝑒𝑐(𝑧) = 𝑝𝜙(𝑥|𝑧) (13) 

 

where, 𝐷𝐾𝐿  and 𝑝𝜙(𝑧) represent the prior distribution of z and 

the Kullback-Leibler divergence. A GAN model's generator 

and discriminator are its usual components [32]. Probability 𝑎 

and probability 1−𝑎 are assigned by the discriminator, whereas 

the generator translates the latent vector to data space. The 

primary goal of a GAN is to discover a discriminator that can 

differentiate between generated and real data, while also 

adjusting the generator to fit the distribution of real data. As a 

function of both the discriminator and generator, the binary 

cross entropy represents the loss function of a GAN. 

 

 
 

Figure 6. Structure of VAE-GAN 
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𝑣 = 𝐷𝑖𝑠(𝑢) 𝜖 [0,1], 𝑢 = 𝐺𝑒𝑛(𝑤) (14) 

 

𝐽𝐺𝐴𝑁 = log (𝐷𝑖𝑠(𝑢)) + log (1 − 𝐷𝑖𝑠(𝐺𝑒𝑛(𝑤))) (15) 

 

In this instance, "w" is a random variable represented by the 

probability density function p(w), and "u" represents a genuine 

sample. While it's true that GANs may produce synthetic data 

without using density functions in certain circumstances, such 

as when dealing with unbalanced data, there are other 

situations when getting fresh samples from the generator with 

specified distributions might be advantageous. In order to do 

this, a generative model is built by using the VAE's decoder 

component as the GAN's generator. A visual illustration of the 

VAE-GAN model's structure is shown in Figure 6. 

The following is a representation of the loss function of the 

VAE-GAN [32]. 

 

𝐽𝑉𝐴𝐸−𝐺𝐴𝑁 = 𝐽𝑝𝑟𝑖𝑜𝑟 + 𝐽𝐷𝑖𝑠𝑙
+ 𝐽𝐺𝐴𝑁 (16) 

 

𝐽𝐷𝑖𝑠𝑙
= −𝐸𝑞(𝑧|𝑥)[log 𝑝(𝐷𝑖𝑠𝑙(𝑥)|𝑧)] (17) 

 

where, 𝐷𝑖𝑠𝑙(𝑥) denotes a Gaussian observation model with an 

identical covariance and 𝐷𝑖𝑠𝑙(�̃�) as the mean. 

 

3.4.1 Hyper parameter tuning using WWPA 

The WWPA is described in this section. Here, we explore 

the motivation behind the method and provide a thorough 

mathematical explanation of how it works. 

 

 
 

Figure 7. Image of the WW plant. (a) A side view of a shot 

that is free-floating and loaded with traps. (b) Frontal view 

with both open and shut traps. (c) Just one open trap. (d) An 

open trap schematic illustration 

 

Inspiration of WWPA. Aldrovanda vesiculosa, the 

alternative name for the waterwheel (WW) plant, has broad 

petioles that contain its unusual traps, which are barely 1/12 

inches in size and resemble tiny transparent flytraps [33]. The 

interactions with other aquatic plants won't cause these traps 

to deteriorate or unintentionally activate because of their 

skilled design. They are protected by a ring of bristles that 

resemble hair. These traps include a variety of hook-like teeth 

along their edges that interlock when the trap catches its victim, 

much like the teeth seen in a typical flytrap. The Aldrovanda 

trap has more than 40 elongated trigger hairs, compared to the 

normal 6-8 trigger hairs on a Venus flytrap. When one or more 

triggers are pulled, these trigger hairs allow the trap to shut. 

These carnivorous plants have trigger hairs as well as glands 

that emit acid to help in the digesting of their caught prey. The 

sealant and the plant's interlocking teeth trap the prey. By 

leading the prey towards the hinge at the base of the trap, the 

seal successfully catches the prey. The body fluids of the prey 

are extensively broken down by the plant's digestive secretions, 

and any leftover material is excreted. Similar to a flytrap, an 

Aldrovanda trap can hold and digest two to before filling to 

capacity. The infrastructure of the waterwheel plant is shown 

in Figure 7. 

The WWPA mathematical model. This section describes 

how WWPA is set up before going into detail about how the 

WW's location is updated throughout both the exploration and 

exploitation phases using a classical based on the actual 

behaviour of WWs. 

Initialization. The population-based approach of the 

WWPA tries to locate the ideal solution by using the collective 

search capabilities of its population members within the 

solution space. Each of the WWs that make up the population 

of this algorithm represents a potential resolution to the 

problem and has a specific set of problem-related variables. 

Vectors may be used to formally represent these responses. 

The whole population of the WWPA, which consists of all 

WWs as given in Eq. (18), may be represented by a matrix. At 

the beginning of WWPA, the positions of these WWs inside 

the solution space are initialised at random using Eq. (19). 

 

𝑃 =

[
 
 
 
 
𝑃1

⋮
𝑃𝑖

⋮
𝑃𝑁]

 
 
 
 

=

[
 
 
 
 
𝑝1,1 ⃛ 𝑝1,𝑗 ⃛ 𝑝1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1 ⃛ 𝑝1,𝑗 ⃛ 𝑝𝑖,𝑚

⋮ ⋰ ⋮ ⋱ ⋮
𝑝𝑁,1 ⃛ 𝑃𝑁,𝑗 ⃛ 𝑃𝑁,𝑀]

 
 
 
 

 (18) 

 

𝑝𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖,𝑗.(𝑢𝑏𝑗 − 𝑙𝑏𝑗) 

𝑖 = 1,2, … , 𝑁, 𝑗 = 1,2, … ,𝑚 
(19) 

 

where, N stands for the quantity of WWs, and m stands for the 

quantity of variables. The limits for the j-th issue variable are 

represented by 𝑙𝑏𝑗 and 𝑢𝑏𝑗, while the variable 𝑟𝑖,𝑗. has random 

values between [0, 1]. The population matrix of WW locations 

is designated as P, where 𝑝𝑖  is the j-th WW, which corresponds 

to a problem variable, and 𝑝𝑖,𝑗  denotes its i-th dimension. The 

target function may be calculated for each WW as they each 

stand in for a possible answer to the issue. Studies have proven 

that a vector may be used to properly represent the variables 

that make up the objective function in Eq. (20). 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

 (20) 

 

where, F denotes the vector containing all of the values for the 

objective functions, and 𝐹𝑖 is the i-th WW. Most of the time, 

objective are used to choose the best keys. The best candidate 

solution, indicated by the highest objective function value, and 

the worst candidate solution, indicated by the lowest value, are 

thus the most crucial metrics. Given that WWs pass across the 

search region at varying speeds throughout each iteration, the 

optimal solution could evolve over time. 

Stage 1: Recognising positions and hunting for insects 

WWs flourish as skilled hunters capable of locating pests 

because to their exceptional sense of smell. A WW attacks as 

soon as it notices an insect nearby, focusing on the bug's 

particular location and starting a chase to trap it. For the first 
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stage of its populace update procedure, the WWPA simulates 

the behaviour of a WW. The WWPA improves its exploration 

skills by modelling the hunting behaviours of WWs, allowing 

it to find ideal places while avoiding being caught in local 

optima. This is accomplished by simulating the large motions 

of the WW as it approaches the insect within the solution space. 

This simulation of the WW's approach to the insect is 

integrated using an Eq. (21) as shown below, to predict the 

WW's new location. If moving the WW to the newly 

determined position increases the charge of the target function, 

as shown in Eq. (21) and Eq. (22), the old position is 

abandoned in favour of the new one. 

 

�⃗⃗⃗� = 𝑟 1.(�⃗� (𝑡) + 2𝐾) (21) 

 

�⃗� (𝑡 + 1) = �⃗� (𝑡) + �⃗⃗⃗� . (2𝐾 + 𝑟 2) (22) 

 

Alternately, the WW's location may be changed using the 

following Eq. (23) if the results do not improve after three 

consecutive repetitions: 

 

�⃗� (𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑝, 𝜎) + 𝑟 1 ( 
�⃗� (𝑡) + 2𝐾

�⃗⃗⃗� 
) (23) 

 

In this Eq. (23) the random variables 𝑟 ⃗⃗ 1  and 𝑟 ⃗⃗ 2  may, 

respectively, have values of 0 or 2 and 0 or 1. The vector �⃗⃗⃗�  
represents the radius of each circle that the WW plant 

evaluates as possible regions, and K is a variable with values 

between 0 and 1. 

Stage 2: Carrying the insect in the suitable tube 

(exploitation) 

The behaviour of insects being transported to feeding tubes 

by waterwheels serves as the model for the second stage of 

population updates in WWPA. By simulating this behaviour, 

WWPA may improve its convergence towards answers that 

are very similar to those it has already collected. WWPA 

modifies the location of the WW inside the problem region by 

simulating the insect's journey to the proper tube for ingestion. 

To do this, each WW was first placed in a fresh, arbitrary 

position that represented a "favourable region for insect 

consumption," according to the WWPA designers. Eq. (24) 

and Eq. (25) show that if the objective function produces a 

better value at the new position, the WW is moved. 

 

�⃗⃗⃗� = 𝑟 3(𝐾�⃗� 𝑏𝑒𝑠𝑡(𝑡) + 𝑟3�⃗� (𝑡)) (24) 

 

�⃗� (𝑡 + 1) = �⃗� (𝑡) + 𝐾�⃗⃗⃗�  (25) 

 

After three iterations, if the response still doesn't indicate 

progress, the method incorporates a mutation process akin to 

the exploration stage. The algorithm undergoes certain 

alterations throughout this mutation phase to avoid being stuck 

in local minima. In this adaptive method, the current answer, 

indicated as 𝑃 ⃗⃗  ⃗ at iteration t, is represented as (P) at iteration t, 

and the ideal solution is written as 𝑃 ⃗⃗  ⃗
𝑏𝑒𝑠𝑡 . A random mutable 

with values between [0, 2] is 𝑟 3 . This strategy aids the 

algorithm's robustness and effective escape from local maxima. 

 

�⃗� (𝑡 + 1) = (𝑟 1 + 𝐾) sin (
𝐹

𝐶
𝜃) (26) 

 

where, [-5, 5] is a range for the random variables F and C's 

values. Additionally, using the Eq. (27), K's value falls down 

rapidly. 

 

𝐾 = (1 +
2 ∗ 𝑡2

𝑇𝑚𝑎𝑥

+ 𝐹) (27) 

 
The proposed WWPA's pseudocode 

The iterative process used by the WWPA has the following 

three phases. Once the first and second steps are complete, 

each WW is moved in the third and final stage. This 

adjustment, which results in the key adjustments of the best 

candidate solution, is based on a comparison of target function 

values. The WW positions are then adjusted in preparation for 

the next iteration. This repeated process is carried out till the 

algorithm achieves its conclusion. Implement WWPA as 

instructed, following the detailed instructions in Algorithm 1. 

Based on its iterative development, WWPA offers the most 

promising candidate solution after being completely deployed. 

 
Algorithm 1: The projected algorithm of WWPA 

1: Place the WW plants' initial placements 𝑃𝑖(𝑖 =
1,2, … , 𝑛)  for 𝑛  function 𝑓𝑛, iterations 𝑇𝑚𝑎𝑥 ,parameters of 

𝑟, 𝑟 1, 𝑟 2, 𝑟 3, 𝑓, 𝑐, and 𝐾 

2: Calculate fitness of 𝑓𝑛  for each position 𝑃𝑖  

3: Find best plant position𝑃𝑏𝑒𝑠𝑡 

4: Set 𝑡 = 1 

5: while 𝑡 ≤  𝑇𝑚𝑎𝑥 𝑑𝑜 

6:    for(𝑖 = 1 ∶ 𝑖 < 𝑛 + 1)𝑑𝑜 

7:          if(𝑟 < 0.5) then 

8:             Explore the WW plant space using: 

�⃗⃗⃗� =  𝑟 1. (�⃗� (𝑡) + 2𝐾) 

�⃗� (𝑡 + 1) = �⃗� (𝑡) + �⃗⃗⃗� . (2𝐾 + 𝑟 2) 

9:             if Solution does not change for three repetitions, 

then 

10:                �⃗� (𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑝, 𝜎) + 𝑟 1(
�⃗� 𝑡+2𝐾

𝑊
) 

11:             end if 

12:           else 

13:               Deed the current keys to get best solutions 

using: 

�⃗⃗⃗� = 𝑟 3. (𝐾�⃗� 𝑏𝑒𝑠𝑡(𝑡) + 𝑟3�⃗� (𝑡)) 

�⃗� (𝑡 + 1) = �⃗� (𝑡) + 𝐾�⃗⃗⃗�  
14:              If the solution remains the same after three 

attempts, then 

15: �⃗� (𝑡 + 1) = (𝑟 1 + 𝐾)sin (
𝐹

𝐶
𝜃) 

16:                𝑒𝑛𝑑 𝑖𝑓 
17:            𝑒𝑛𝑑 𝑖𝑓 
18:         𝑒𝑛𝑑 𝑓𝑜𝑟 

19:         𝑅𝑒𝑑𝑢𝑐𝑒 𝐾′𝑠 𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑢𝑡𝑖𝑙𝑖𝑠𝑖𝑛𝑔: 

𝐾 = (1 +
2 ∗ 𝑡2

(𝑇𝑚𝑎𝑥)3
+ 𝑓) 

20:          Update 𝑟, 𝑟 1, 𝑟 2, 𝑟 3, 𝑓, 𝑐, 
21:           Compute function  𝑓𝑛 for respectively position 𝑃𝑖  

22:           Find the finest position 

23:         Set 𝑡 = 𝑡 + 1 

24:   end while 

25:   Return the greatest solution 𝑃𝑏𝑒𝑠𝑡  
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4. RESULTS AND DISCUSSION 

 

In the paper, we will deliver an inclusive discussion of the 

identified failure cases, highlighting common patterns or 

themes observed across different instances. We will also 

discuss the implications of these findings for the practical 

application of the proposed approach and provide insights into 

the model's limitations. 

Recommendations for Improvement: Based on our analysis 

of model failure cases, we will offer recommendations for 

improving the performance of the classical. This may include 

suggestions for refining the model architecture, collecting 

additional data to address specific challenges, or incorporating 

additional preprocessing steps to enhance model robustness. 

 

4.1 Experimental setup 

 

On a processer with a Core i5 CPU, 8 𝐺𝐵 𝑜𝑓 𝑅𝐴𝑀, besides 

a 500 GB hard drive, the trials will be carried out. The 

programming language used for this project is Python 3. Both 

Anaconda and Jupyter Notebook are used in the backend 

infrastructure. Table 1 lists some of the benefits of Jupyter 

Notebook, including its capacity to function on internet servers. 

 

Table 1. Specifications table 

 
Specifications Value 

CPU 1.5-2.7GHZ 

Generation 4th 

RAM 12GB 

GPU 920 m NVidia 

Internet 8Mbps upload, 8Mbps download 

 

4.2 Performance metrics 

 

The output metrics shown in Eq. (28) to Eq. (32) include 

ACC, PR, RC, SPEC, and F-score. Based on these criteria, the 

following tables compares the predicted and actual results: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑐𝑐) =
(𝑇𝑅𝑃 + 𝑇𝑅𝑁)

𝑇𝑅𝑃 + 𝐹𝐿𝑃 + 𝑇𝑅𝑁 + 𝐹𝐿𝑁
% (28) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐿𝑃
 (29) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐶) =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐿𝑁
 (30) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐹1) =
2𝑇𝑅𝑃

2𝑇𝑅𝑃 + 𝐹𝐿𝑃 + 𝑇𝑅𝑁
 (31) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃𝐸𝐶) =
𝑇𝑅𝑁

𝑇𝑅𝑁 + 𝑇𝑅𝑃
× 100% (32) 

 

where, TRP is the true positive value, FLP is the false positive 

value, TRN is the true negative value, TRN is the true negative 

value. 

 

4.3 Classification analysis based on 70:30 ratio 

 

The performance indicators for several models are 

effectively summarised based on 70:30 ration in Table 2 and 

Figures 8-10. Here the existing models such as Deep Belief 

Network (DBN), Auto encoder (AE) and Variational auto 

encoder (VAE) are tested with the proposed model to compare 

the results of performance metrics. 

 

Table 2. Comparison of 70:30 ratio classification models 

 
Models ACC PR RC F1 SPEC 

DBN 87.5 91 87 89 88 

AE 91.7 92.5 92.5 93.4 95 

VAE 94 94.2 95 94.6 96.3 

Proposed model 98.2 97 97 97.8 97.5 

 

 
 

Figure 8. ACC of 70:30 ratio classification 

 

 
 

Figure 9. Analysis of PR and RC of 70:30 ratio classification 

 

 
 

Figure 10. Analysis of F1 and SPEC of 70:30 ratio 

classification 

 

DBN: 87.5% ACC rate, 91% PR, 87% RC, 89% F1, and 

88% SPEC were shown by DBN 

AE: Achieved a 91.7% ACC rate, 92.5% PR, 92.5% RC, 

93.4% F1, and 95% SPEC. 

VAE: Displayed impressive results with a 94% ACC rate, 

94.2% PR, 95% RC, 94.6% F1, and 96.3% SPEC. 

Proposed model: Exceptional ACC rate of 98.2%, PR of 

97%, RC of 97%, F1 of 97.8%, and SPEC of 97.5% 

outperformed others. 

The suggested VAEGAN model has a novel mix of 
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generative and discriminative characteristics, outperforming 

DBN, AE, and VAE. VAEGAN combines adversarial training, 

allowing it to better capture complicated data distributions and 

provide more realistic examples, in contrast to DBN, AE, and 

VAE, which only concentrate on encoding and decoding data. 

With the assistance of this adversarial component, VAEGAN 

is able to develop more substantial and accurate latent 

representations, improving its capacity to reconstruct data and 

create fresh samples with more accuracy and variety. Because 

VAEGAN data creation and reconstruction, it is a more 

effective and adaptable solution for a variety of work. 

 

4.4 Classification validation based on LSTM 

 

The following performance metrics for several 

classification models were seen in the study shown in Table 3 

and Figures 11-15. 

 

Table 3. Classification without LSTM 

 

Models 
ACC 

(%) 

PR 

(%) 

RC 

(%) 

F1 

(%) 

SPEC 

(%) 

DBN 81.02 63.7 70.4 67.8 70.85 

AE 82.54 55.2 82.6 79.5 81.68 

VAE 85.38 83.2 87.6 86.2 87.50 

Proposed 

model 
92.10 92.7 91.26 90.3 91.13 

 

 
 

Figure 11. ACC analysis 

 

 
 

Figure 12. PR validation 

 

DBN earned a score of 67.8% on the F1, ACC of 81.02%, 

PR of 63.7%, RC of 70.4%, and Spec of 70.85%. The ACC, 

PR, RC, F1, and Spec of AE were 82.54%, 55.2%, 82.6%, and 

79.5%, respectively. An F1 of 86.2%, an ACC of 85.38%, a 

PR of 83.2%, a RC of 87.6%, and a Spec of 87.50% were 

attained with VAE. The suggested model performed better 

than the others, attaining a 92.10% ACC, a 92.7% PR, a 

91.26% RC, a 90.3% F1, and a 91.13% SPEC. 

 
 

Figure 13. RC analysis 

 

 
 

Figure 14. F1 validation 

 

 
 

Figure 15. Spec analysis 

 

The study shown in Table 4 and Figures 11-15 compares the 

effectiveness of several classification algorithms 

using multiple metrics. With a PR of 83.7%, RC of 87.6%, F1 

of 87.8%, and SPEC of 87.9%, the DBN model achieves an 

ACC of 86.6%. AE gets slightly better ACC, PR, RC, F1, and 

SPEC values of 88.6%, 85.2%, 89.5%, and 89.5%, 

respectively. With a high ACC of 93.9%, PR of 92.2%, RC of 

94.6%, F1 of 95.2%, and SPEC of 94.4%, the VAE model, on 

the other hand, shows outstanding results. With an ACC of 

97.8%, PR of 97.7%, RC of 96.26%, F1 of 97.3%, and Spec 

of 97.5%, the suggested model surpasses them all. According 

to these results, the suggested model performs very well in a 

number of areas related to forest fire detection, making it an 

ideal choice for this task. In LSTM feature extraction networks, 
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weight optimisation is carried by using the MFFA. It results in 

improved convergence along with potentially higher ACC. 

 

Table 4. Classification with LSTM 

 

Models 
ACC 

(%) 

PR 

(%) 

RC 

(%) 

F1 

(%) 

SPEC 

(%) 

DBN 86.6 83.7 87.6 87.8 87.9 

AE 88.6 85.2 89.5 89.5 88.6 

VAE 93.9 92.2 94.6 95.2 94.4 

Proposed 

model 
97.8 97.7 96.26 97.3 97.5 

 

Table 5. Learning rate 

 
Optimizers 0.1 0.01 0.001 

GWO 92.13 95.36 96.22 

SSA 95.25 96.72 97.56 

GSA 97.67 98.69 98.95 

Proposed model 98 6 98.56 99.21 

 

Table 5 and Figure 16 illustrates that the learning rate of our 

proposed model achieved ACC of 98.6% in 0.1, 98.56% in 

0.01, 99.21% in 0.001. Grey wolf optimization (GWO) 

achieved ACC of 92.13% in 0.1, 95.36% in 0.01, 96.22% in 

0.001. Sparrow search Algorithm (SSA) achieved ACC of 

95.25% in 0.1, 96.72% in 0.01, 97.56% in 0.001. Grid search 

algorithm (GSA) achieved ACC of 97.67% in 0.1, 98.69% in 

0.01, 98.95% in 0.001. 

 

 
 

Figure 16. Learning rate graph 

 

 

5. CONCLUSION 

 

In conclusion, this research offerings an inclusive and 

cutting-edge strategy to tackle the urgent tricky of forest fires, 

which have become worse owing to both natural and human-

caused climate changes. recognising the terrible effects that 

forest fires have on ecosystems, animals, and people. This 

study advances the accuracy and convergence of forest fire 

detection models by using DL approaches, such as LSTM 

grids for feature extraction and the use of an MFFA for weight 

optimisation in LSTM. Additionally, this work uses the 

VAEGAN model for feature classification. The WWPA, an 

optimisation technique inspired by nature, is used in this work 

to fine-tune the VAEGAN model since it is well 

acknowledged that hyperparameter tuning is a crucial 

component of model performance. The creative use of WWPA, 

which takes cues from plant development, makes sure that the 

network's parameters are efficiently optimised, eventually 

resulting in greater performance in detecting forest fires. The 

accuracy rate for the DBN model is 86.6%. With an accuracy 

of 88.6%, AE only slightly surpasses. The VAE model shows 

a high level of accuracy of 93.9%.  

The recommended model, however, exceeds them all, 

obtaining a remarkable accuracy of 97.8%. The geographic 

resolution of the photos in the collection for detecting forest 

fires will be improved in further studies. A CNN-based image 

segmentation method will also be suggested in order to further 

alarms for the issue of forest detection. By addressing these 

future research directions and overcoming technical 

challenges, the "Detection of Forest Fire using Modified 

LSTM based Feature Extraction with Waterwheel Plant 

Optimization Algorithm based VAE-GAN model" can 

continue to advance and contribute to the development of more 

effective and reliable forest fire detection systems, ultimately 

aiding in the preservation of natural ecosystems and protection 

of public safety. 
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