
Detection of Forest Fire Using Modified LSTM Based Feature Extraction with Waterwheel

Plant Optimisation Algorithm Based VAE-GAN Model

Yuva Krishna Aluri1 , Vandavagula Satya Anusuya Devi2 , Manjunath Chinthakunta3 , Manohar Manur3 ,

Praveen Kumar Jayapal4 , Gunapriya Balan5 , Kranthi Kumar Lella6*

1 Department of Computer Science and Engineering, PVP Siddhartha Institute of Technology, Vijayawada 520007, India
2 Department of Chemistry, New Horizon College of Engineering, Bengaluru 560103, India
3 Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bangalore 560074, India
4 DiSTAP, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
5 Department of Electrical and Electronics Engineering, New Horizon College of Engineering, Bengaluru 560103, India
6 School of Computer Science and Engineering, VIT-AP University, Vijayawada 522237, India

Corresponding Author Email: kranthi.kl@vitap.ac.in

Copyright: ©2024 The authors. This piece is published by IIETA and is approved under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140202 ABSTRACT

Received: 11 October 2023

Revised: 27 March 2024

Accepted: 9 April 2024

Available online: 26 April 2024

A crucial natural resource that directly affects the ecology is forests. Forest fires have

become a noteworthy problem recently as a result of both natural and man-made climatic

changes. A smart city application that uses a forest fire discovery technology based on

artificial intelligence is provided in order to prevent significant catastrophes. A major

danger to the environment, animals, and human lives is posed by forest fires. The early

detection and suppression of these fires is crucial. This work offers a thorough method for

detecting forest fires using advanced deep learning (DL) algorithms. Preprocessing the

forest fire dataset is the initial step in order to improve its relevance and quality. Then, to

enable the model to capture the dynamic character of forest fire data, long short-term

memory (LSTM) networks are used to extract useful feature from the dataset. In this work,

weight optimisation in LSTM is performed using a Modified Firefly Algorithm (MFFA),

which enhances the model's performance and convergence. The Variational Autoencoder

Generative Adversarial Networks (VAEGAN) model is used to classify the retrieved

features. Furthermore, every DL model's success depends heavily on hyperparameter

optimisation. The hyperparameters of an VAEGAN model are tuned in this research using

the Waterwheel Plant Optimisation Algorithm (WWPA), an optimisation technique

inspired by nature. WPPA uses the idea of plant growth to properly tune the VAEGAN's

parameters, assuring the network's peak fire detection performance. The outstanding

accuracy (ACC) of 97.8%, precision (PR) of 97.7%, recall (RC) of 96.26%, F1-score (F1)

of 97.3%, and specificity (SPEC) of 97.5% of the suggested model beats all other existing

models, which is probably owing to its improved architecture and training techniques.

Keywords:

forest fire, long short term memory, modified

firefly algorithm, waterwheel plant

optimization, variational autoencoder

1. INTRODUCTION

Forests are crucial to maintaining our way of life because

they provide a wealth of priceless resources, such as minerals

and materials required for several industrial operations [1].

Beyond their obvious benefits, trees considerably improve the

environment by purifying the air naturally, collecting carbon

dioxide, and releasing oxygen that sustains life. Additionally,

trees provide crucial habitat for a variety of species and act as

a barrier against sandstorms, safeguarding crops besides

maintaining ecological balance. But the widespread effects of

climate change [2, 3] are mostly to blame for the increasing

frequency of forest fires in recent years. High temperatures

and dry circumstances encourage the spread of flames, causing

significant damage to ecosystems, animal habitats, natural

reserves, and a clear danger to people's lives. Notably,

coniferous woods, which are distinguished by their needle- or

cone-shaped foliage, are especially vulnerable to fires because

the sap found in their branches is flammable [4]. Coniferous

trees' dense growth patterns also contribute to the fast-moving

spread of flames. Millions of acres of forest are annually

destroyed as a result of this worrying trend, with catastrophic

economic consequences.

Many nations, including the fires. In particular, the horrific

Australian bushfires in 2020 provide as a sobering example of

the intensity of these occurrences, resulting in the irreparable

loss of forest resources, innumerable animal deaths, and

human casualties. These flames destroyed 1,500 dwellings,

approximately 500,000 animals, about 14 million acres of

forest, and nearly a third of all living things [5]. Similarly, in

2018 and 2019, devastating wildfires of equal size burned

large areas of the Amazon rainforest and California's forests,

causing enormous losses [6]. Surprisingly, between 1992 and

2015, human activity was responsible for a whopping 85% of

forest fires in the United States, with natural causes like

lightning strikes and the effects of climate change accounting

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 329-340

Journal homepage: http://iieta.org/journals/ijsse

329

https://orcid.org/0000-0003-3701-5137
https://orcid.org/0000-0002-3784-6822
https://orcid.org/0000-0002-6675-1777
https://orcid.org/0000-0003-1110-3673
https://orcid.org/0000-0002-4940-2946
https://orcid.org/0000-0002-8176-9932
https://orcid.org/0000-0001-7736-5321
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140202&domain=pdf

for the remaining 15%. More stringent regulations and

reasonable practises may have prevented many of the human-

caused fires [7]. It is noteworthy to note that during the

worldwide COVID-19 epidemic, the frequency of forest fires

decreased as several nations instituted lockdown measures that

restricted human activity, hence decreasing the risk of human-

induced fires [8].

DL networks have been a very successful method for

addressing the crucial problem of forest fire detection. DL has

shown its aptitude in a number of fields, including autonomous

machine translation [9] and image and video categorization.

This was made possible by DL's capacity to automatically

extract and categorise properties from data stored on the same

network [10]. DL is especially good at detecting forest fires

because to large datasets and improved processing capacity.

For both ground-based and aerial images, DL-based systems

have shown their superior performance over conventional

machine learning techniques in handling the complexity of

forest fire categorization and detection [11, 12]. The rise of

automated DL fire detection systems holds enormous potential

for the development of AI fire models are a useful tool for

addressing this pressing environmental issue since they can

quickly and precisely identify and track flames inside the

camera's field of vision [13].

In subsequent work, we intend to look into the following

possible improvements:

Attention Mechanisms: By including attention mechanisms

in the LSTM architecture, the model may be better able to

identify significant patterns in the data by focusing on

pertinent elements at certain time steps.

Ensemble approaches: By integrating several LSTM models

or other recurrent neural network (RNN) types, one can

improve the model's prediction presentation and robustness by

using ensemble approaches.

Hybrid Architectures: Investigating hybrid architectures

that integrate transformer models or convolutional neural

networks (CNNs) with LSTM may offer supplementary

benefits in sequence modelling and feature extraction.

This paper's primary contributions are:

-The dataset for this investigation was first pre-processed.

This research then improves the quality of information related

to forest fires by using cutting-edge DL methods and extracts

useful temporal characteristics using LSTM networks.

-The performance and convergence of the LSTM model are

improved by the application of the MFFA for weight

optimisation.

-As a tool for classification, the VAEGAN model is used.

The WWPA for hyperparameter tuning promises to greatly

improve the ACC and efficacy of systems for detecting forest

fires. Results are analyzed using five parameter metrics.

The rest of the research is structured like shadows: The

literature review is presented in Section 2, followed by a brief

explanation of the proposed model in Section 3, the results and

validation analysis in Section 4, and finally, a conclusion and

summary are given in Section 5.

2. RELATED WORK

Abdusalomov et al. [14] developed a better strategy for

spotting forest fires, according to their study. The Detectron2

platform, an enhanced version that was constructed from the

ground up utilising DL techniques to replace the original

Detectron library, is the foundation of their strategy. To help

in the training of their model, they carefully chose and

annotated a special dataset; this critical step ultimately resulted

in a model with more ACC than rival methods. A dataset of

5200 photographs served as the testing ground for the

researchers as they modified the Detectron2 model under

various situations. Notably, their model proved the ability to

recognise even little fires at large distances, day or night. Their

method's usage of the Detectron2 algorithm, which enables

long-range detection, has several advantages. Their

investigations' real findings supported the ACC of their

method for spotting forest fires. They were able to identify

forest fires with a stunning ACC rate of 99.3%, proving the

reliability and power of their recommended technique.

The GXLD technique, developed by Huang et al. [15],

combines a defogging algorithm with a lightweight YOLOX-

L model to identify forest fires. The dark channel prior

approach is used by GXLD to remove fog from photos,

producing sharper, fog-free images. On top of that, they

improved the YOLOX-L model by adding elements from

SENet, GhostNet, and depth separable convolution, resulting

in YOLOX-L-Light. Then, using the defogged photos, this

optimised model is used to identify forest fires. The

researchers used the mean average Pr (mAP) metric to rate

detection ACC and network parameters to determine the

model's lightweightness in order to evaluate the performance

of YOLOX-L-Light and GXLD. They ran trials on their

dataset of forest fires, and the results showed a considerable

improvement. YOLOX-L-Light increased the mAP by 1.96%

while reducing the model's parameters by 92.6%. Notably,

GXLD outperformed YOLOX-L by 2.46% with a remarkable

mAP of 87.47%. Furthermore, GXLD provided an average

frame rate of 26.33 frames per second when set up with an

input picture size of 1280 720. Amazingly, GXLD displayed

real-time forest fire detection skills with great ACC, strong

target confidence, and sustained target integrity even under

difficult foggy circumstances.

Chen et al. [16] introduced the YOLOv5s-CCAB, an

improved variant of the YOLOv5s architecture for multi-scale

forest fire detection, in their article. This model has seen a

number of revisions. They initially introduced Coordinate

Attention (CA) to YOLOv5s to direct the network's focus

especially on traits associated with forest fires. Second, they

developed a CoT3 module to improve the identification of

forest fires, reduce parameter complexity, and have the

capacity to capture global dependencies in photographs of

forest fires. In order to raise the network's PR while detecting

potential forest fire targets, the Complete-Intersection-Over-

Union (CIoU) Loss function was enhanced. A Bi-directional

Feature Pyramid Network (BiFPN) was constructed within the

model's neck to increase its ability to correctly fuse the

extracted forest fire features. According to the testing

outcomes and their specially developed multi-scale forest fire

dataset, YOLOv5s-CCAB resulted in significant

improvements. It retains the high Frames Per Second (FPS)

rate of 36.6 and reaches a rate of 87.7% for the AP@0.5 metric,

a startling 6.2% increase. These results demonstrate the

model's very fast and accurate identification. In light of this,

YOLOv5s-CCAB provides an advantageous point of

reference for applications requiring precise, real-time multi-

scale forest fire detection.

For their study, Zhang et al. [17] created the multi-scale

feature extraction model (MS-FRCNN) for the detection of

small target forest fires. This model enhances the conventional

Faster RCNN detection technique. Instead of VGG-16,

330

ResNet50 was employed as the backbone network to lessen

the possibility of gradient dispersion or explosion during

feature extraction. In order to benefit from multi-scale feature

extraction, they also integrated a Feature Pyramid Network

(FPN), which increased the MS-FRCNN's ability to capture

comprehensive feature data. They also included a brand-new

attention module called PAM to help the Regional Proposal

Network (RPN) focus more on the semantic and geographic

details of small target forest fires and decrease the distraction

from complex backgrounds. The model also substituted the

soft-NMS algorithm for the traditional NMS technique in

order to reduce errors in identified frames. They conducted

trials using their carefully curated multi-scale forest fire

dataset, and the findings revealed a substantial 5.7% increase

in detection ACC above baseline models. This shows how the

multi-scale feature extraction approach forest fires.

A technique for recognising forest fires was proposed by

Rahman et al. [18] using a Convolutional Neural Network

(CNN) architecture and freshly created fire detection dataset

from another study. Their approach utilised separable

convolution layers for rapid fire detection, making it suitable

for real-time applications. After training on their dataset, the

method showed a remarkable 97.63% ACC in identifying

forest fires in photos, along with a 98.00% F1 and an 80%

Kappa value. These results show the method's potential to be

a helpful tool for early fire breakout identification, enabling

authorities to act promptly and put preventive measures in

place to minimise damage.

A system for early fire detection and classification was

constructed by Avazov et al. [19] using the Internet of Things

(IoT) and YOLOv5. They use IoT devices in their

investigation to verify if fires that YOLOv5 claimed to have

seen may have been fabricated or unreported. The successful

findings shown that IoT may be used to monitor and verify fire

incidents in real-time. This approach may greatly improve its

capacity to reduce forest fires. A system architecture for

autonomous forest fire detection utilising DL image

processing methods was suggested in a paper by Ye et al. [20],

and it was especially created for tiny UAV applications. The

optimisation process included a number of phases, including

switching to ShuffleNetV2 as the backbone network, pruning

the network, sparse training, tuning, and hardware acceleration.

According to experimental findings, their forest fire detection

system increased inference speed by 50%, decreased CPU

utilisation and temperature by 35% and 25%, and consumed

10% less power while retaining an ACC of 92.5%. It's

noteworthy that the model's ACC remained steady despite

alterations in the bird's-eye view angle.

As an alternative to more traditional models like Fast R-

CNN and Faster R-CNN, Al-Smadi et al. [21] investigated the

efficacy of a framework intended to reduce the sensitivity of a

number of YOLO detection methods. On a multi-oriented

dataset for recognising forest smoke, they employed

YOLOv5x to increase their model's mean average Pr (mAP)

ACC from earlier gold-standard techniques to an astounding

96.8%. Additionally, YOLOv7 outperformed YOLOv3 with a

95% mAP ACC. These findings supported the method's

outstanding ability to find forest fires in spite of challenging

environmental conditions.

Talaat and ZainEldin [22] presented the discovery system

(SFDS), based on the YOLOv8 algorithm, as an enhanced fire

detection method for smart cities. This system employed DL

to distinguish fire-specific traits in real-time, potentially

improving fire detection ACC, reducing false alarms, and

offering a more cost-effective alternative to traditional

methods. The application, fog, cloud, and IoT layers of the

recommended architecture employed cloud and fog computing

to acquire and analyse data in real-time. The SFDS achieved a

high success rate of 97.1% for all classes and is useful for

various applications, such as fire safety management and

intelligent security systems in smart cities.

Although these existing models for detecting forest fires

have showed potential, they still have issues with Pr,

dependability, and flexibility. Our model offers numerous

significant advances in an effort to reduce the harmful impacts

of forest fires and enhance early detection.

3. PROPOSED METHODOLOGY

We will discuss the compatibility of the proposed model

with existing forest fire prevention and control systems,

ensuring that it can seamlessly integrate into the current

infrastructure without requiring significant modifications.

Compatibility considerations may include data formats,

communication protocols, and system architectures.

We will highlight the model's potential to serve as a real-

time decision support tool for forest fire prevention and control.

By continuously analyzing incoming data from various

sources such as remote sensors, weather positions, and satellite

imagery, the model can provide early warnings, identify high-

risk areas, and assist in resource allocation and deployment

strategies. Figure 1 shows the flow of the suggested model.

Figure 1. Work flow of the proposed model

331

3.1 Dataset description

As exposed in Figure 2, the dataset utilised in this study

consists of 3000 images of forest fires that were captured by

drones and video surveillance equipment in various forest

environments. It also includes additional forest fire datasets

discovered using web crawling techniques and publicly

available forest fire datasets [23]. This collection's 1000

images all have hand annotations. Then, these 1000 annotated

images were divided into two subsets: 300 served as a

specialist test set to assess the model's ACC, and 700 were set

aside for training purposes to construct a prototype forest fire

detection model. 2000 images of unlabelled forest fires were

also included in the dataset and utilised in the training process.

Figure 2. Schematic diagram of forest fire data set

3.2 Preprocessing

The dataset provides a wide range of photos taken from

different perspectives, enabling the algorithm to identify

between forest fire and non-fire events with greater ACC.

With the help of this information, the model is equipped to

recognise forest fires based on two key criteria: the existence

of fire flames and the presence of fire flames mixed with

smoke. Up to this point, our main attention has been on the

exacting standards used to divide up the dataset into an equal

number of images with fire (1) and those without fire (0) [24]:

Fire (1): Images of forests and mountain ranges that are

enveloped in flames and/or smoke brought on by fires.

Figure 3. Images from (a) and (b) Fire class and (c) and (d)

No-Fire class

No-Fire (0): Consisting of a wide variety of pictures

showing forest and mountain vistas devoid of fire. This

categorization method was developed to make it easier to train

models with a variety of images while avoiding

misunderstanding with situations that could seem similar, such

mountain sunsets.

The goal of this meticulous dataset refining method was to

improve overall model performance and streamline the model

training procedure. As they were the most contextually

relevant to our study objective at this dataset curation phase,

we particularly cropped pictures of fires in mountainous or

forest settings. After then, every image was scaled consistently

such that it had the same size, 250×250 pixels. These

preprocessing methods were crucial in helping the model

successfully include important information about forest fires.

Figure 3 shows visual representations of both the fire and no-

fire categories within forest fire dataset.

3.3 LSTM feature extraction

After the preprocessing phase, the input characteristics are

then passed to the LSTM module, a crucial component of our

methodology [25]. Due to the huge quantity of data gathered

from the dataset, a typical RNN would not be sufficient for our

purposes. Gradient disappearance and explosion issues are

addressed via a customised RNN iteration known as LSTM.

During the training phase, RNN creates temporal connections

between prior states and the inputs to provide predictions.

RNN, on the other hand, finds it challenging to maintain the

past because to its limited memory capacity, especially when

dealing with massive volumes of time series data. However,

LSTM excels at classifying enormous time series datasets and

locating temporal correlations. Its use covers several sectors

and yields outstanding results for tasks like speech recognition

and image classification.

The LSTM architecture seen in Figure 4 has special memory

cells designed to make use of prior knowledge and maintain

key characteristics from massive volumes of time series data.

These memory cells may store and apply the information that

was learnt, allowing the model to process and classify input

effectively.

Figure 4. Architecture of LSTM

The output gate, also known as the 𝑜𝑡 gate, the forget gate,

also known as the ft gate, and the input gate all play distinct

roles in regulating information flow in the LSTM architecture.

332

The major responsibility of the forget gate is to decide what

data to preserve and what to discard within the cell state. It

does this by conducting a pointwise multiplication operation

using the inputs 𝑥𝑡, the current input, and ℎ𝑡−1, the previous

hidden state information. By using the sigmoid activation

function, the forget gate generates an output that is either 0 or

1. Keeping important information in the cell state is indicated

by a value of 1, whilst removing unimportant information is

indicated by a value of 0. The forget gate, input gate, and

output gate's core characteristics are explained in literature [26]

by Eq. (1) to Eq. (6).

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (1)

The forget gate, or 𝑓𝑡, is subjected to a bias called 𝑏𝑓, and

the process weight 𝑊𝑓 stands for that. The forget gate is

activated using the activation function, represented by the

letter "s," to allow choice. Next, a critical decision on whether

data should be kept in the cell state, 𝐶𝑡, must be made by the

input gate. It considers both the input, 𝑥𝑡, and the preceding

hidden state, ℎ𝑡−1 to arrive at this conclusion. Eq. (2) and Eq.

(3) describe the pointwise multiplication of the forget gate, 𝑓𝑡,

and hyperbolic tangent (tanh) activation functions in this

decision-making process:

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖 (2)

𝐶𝑡 = tan ℎ (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏0 (3)

While 𝑏𝑖 and 𝑏𝑐 stand for the biases of the neural network,

𝑊𝑖 and 𝑊𝑐 stand for the weights connected to the input gate (𝑖𝑡)
and output gate (𝑜𝑡). The information about the previous

concealed cell state is denoted by the word 𝐶𝑡. Eq. (4) shows

how we combine Eq. (2) and Eq. (3) to conduct a pointwise

addition operation in order to update the current cell state, 𝐶𝑡
′:

𝐶𝑡
′ = (𝑓𝑡 × (𝐶𝑡)) + (𝑖𝑡 × (𝐶𝑡)) (4)

The output gate is calculated in Eq. (5). The current input,

represented as 𝑥𝑡 , and the prior hidden state, ℎ𝑡−1 , which

incorporates the activation function s, are both used in this gate.

In order to further hone the output network, a bias term called

𝑏0 is included.

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑜 (5)

A pointwise multiplication operation is used to combine the

information from the cell state, 𝐶𝑡 , with the updated output

gate, indicated as 𝑜𝑡 . The hidden state that follows, ℎ𝑡 , is

produced by this procedure and is represented in Eq. (6).

ℎ𝑡 = 𝜎(𝑂𝑡 × tan ℎ (𝐶𝑡
′)) (6)

The LSTM model may be improved significantly by using

optimal parameters. The efficacy of feature extraction is

substantially influenced by these characteristics. With the

exception of the completely linked dense layer, 50 more

neurons have been added to each layer to aid in better training.

Furthermore, a 20% dropout rate has been used to allay any

overfitting concerns.

3.3.1 Weight optimization in LSTM using MFFA

Firefly algorithm. In situations where it is necessary to

optimise not one, but several competing objectives at once,

WWPA can handle these difficulties. By efficiently exploring

the trade-off between different objectives, WWPA can

discover Pareto-optimal solutions that represent the best

compromise between competing goals.

Efficient exploration and exploitation. WWPA balances

exploration (searching diverse regions of the hyperparameter

space) and exploitation (exploiting promising 0refine

solutions) effectively. This balanced exploration-exploitation

trade-off enables WWPA to quickly converge to high-quality

solutions while avoiding premature convergence to

suboptimal regions.

Figure 5. Flowchart of modified firefly algorithm

333

The Firefly Algorithm, a metaheuristic method that was

motivated by the flashing behaviour of fireflies. This tactic is

based on the idea that different fireflies have different levels

of attraction and that this impacts how they mate [27, 28].

The modified firefly algorithm [29-31] improves on the

original Firefly Algorithm by reducing its inherent volatility

and improving firefly movement. Figure 5 depicts the

Modified Firefly Algorithm's flowchart and the sequential

steps it goes through. The Modified Firefly Algorithm's

randomization parameter 𝛼 represents the start and finish

values for each iteration as 𝛼0 and 𝛼∞
, respectively. Higher

values of this strategy 𝛼 lead to better convergence while

attempting to strike a balance between the capabilities of

exploitation and exploration. The ith lightning bug motion and

the distance function 𝑟𝑖 are described in Eq. (7) and Eq. (8),

respectively.

𝑟𝑖,𝑏𝑒𝑠𝑡 = (𝑥𝑖 − 𝑥𝑔𝑏𝑒𝑠𝑡)
2 + (𝑦𝑖 − 𝑦𝑔𝑏𝑒𝑠𝑡)

2 (7)

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒
−𝛾𝑡2𝑦(𝑥𝑗 − 𝑥𝑖)

+𝛽0𝑒
−𝛾𝑡2

𝑡, 𝑏𝑒𝑠𝑡(𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝛼𝜀 + 𝜆𝜀(𝑥𝑖

− 𝑔𝑏𝑒𝑠𝑡)

(8)

where, 𝜀 = 𝑟𝑎𝑛𝑑 − 1 ∕ 2, 𝑔𝑏𝑒𝑠𝑡 = 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 . When a

local best solution is not available close by, the ith firefly is

drawn to the best choice. The MFFA reduces the possibility of

becoming stranded in local optima by carefully limiting

unpredictability. Fireflies may progress towards the global

optimum thanks to the rapid convergence brought on by this

well controlled randomness reduction. Please refer to Figure 5

for a flowchart illustrating the Modified Firefly Algorithm's

steps and sequence.

3.4 VAEGAN classification

In this work, the classification of data related to forest fires

is done using VAEGAN. during GAN (Generative Adversarial

Network) excels at creating samples precisely, it often exhibits

instability during learning. Contrarily, VAE (Variational

Autoencoder) generates a variety of samples while retaining a

respectable amount of stability during the course of learning.

The VAEGAN framework may take use of the advantages that

each of these generative models have to offer by combining

them. VAEGAN is able to deliver samples that are both highly

fidelity and variety while keeping their stability while learning

is taking place. Typically, an encoder plus a decoder makes up

a VAE [32]. The input data must be transformed into a latent

vector by the encoder, and the decoder must estimate the input

from the latent vector. The mathematical representations of the

encoder and decoder processes are shown in Eq. (9) and Eq.

(10), respectively.

𝑧~𝐸𝑛𝑐(𝑥) = 𝑞𝜙(𝑧|𝑥) (9)

�̂�~𝐷𝑒𝑐(𝑧) = 𝑝𝜙(𝑥|𝑧) (10)

In this situation, the input, latent vector, and estimated input

are each represented by x, z, and �̂�. The encoder and decoder

models are affected by the parameters 𝜙 and 𝜃. The genuine

posterior 𝑝𝜙(𝑥|𝑧) is approximated by the term 𝑞𝜙(𝑧|𝑥). The

reconstruction error and a previous regularisation term, which

are added together, make up the two halves of the loss function

connected to VAE.

𝐽𝑉𝐴𝐸 = 𝐽𝑟𝑒𝑐𝑜𝑛 + 𝐽𝑝𝑟𝑖𝑜𝑟 (11)

𝐽𝑟𝑒𝑐𝑜𝑛 = −𝐸𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] (12)

�̂�~𝐷𝑒𝑐(𝑧) = 𝑝𝜙(𝑥|𝑧) (13)

where, 𝐷𝐾𝐿 and 𝑝𝜙(𝑧) represent the prior distribution of z and

the Kullback-Leibler divergence. A GAN model's generator

and discriminator are its usual components [32]. Probability 𝑎

and probability 1−𝑎 are assigned by the discriminator, whereas

the generator translates the latent vector to data space. The

primary goal of a GAN is to discover a discriminator that can

differentiate between generated and real data, while also

adjusting the generator to fit the distribution of real data. As a

function of both the discriminator and generator, the binary

cross entropy represents the loss function of a GAN.

Figure 6. Structure of VAE-GAN

334

𝑣 = 𝐷𝑖𝑠(𝑢) 𝜖 [0,1], 𝑢 = 𝐺𝑒𝑛(𝑤) (14)

𝐽𝐺𝐴𝑁 = log (𝐷𝑖𝑠(𝑢)) + log (1 − 𝐷𝑖𝑠(𝐺𝑒𝑛(𝑤))) (15)

In this instance, "w" is a random variable represented by the

probability density function p(w), and "u" represents a genuine

sample. While it's true that GANs may produce synthetic data

without using density functions in certain circumstances, such

as when dealing with unbalanced data, there are other

situations when getting fresh samples from the generator with

specified distributions might be advantageous. In order to do

this, a generative model is built by using the VAE's decoder

component as the GAN's generator. A visual illustration of the

VAE-GAN model's structure is shown in Figure 6.

The following is a representation of the loss function of the

VAE-GAN [32].

𝐽𝑉𝐴𝐸−𝐺𝐴𝑁 = 𝐽𝑝𝑟𝑖𝑜𝑟 + 𝐽𝐷𝑖𝑠𝑙
+ 𝐽𝐺𝐴𝑁 (16)

𝐽𝐷𝑖𝑠𝑙
= −𝐸𝑞(𝑧|𝑥)[log 𝑝(𝐷𝑖𝑠𝑙(𝑥)|𝑧)] (17)

where, 𝐷𝑖𝑠𝑙(𝑥) denotes a Gaussian observation model with an

identical covariance and 𝐷𝑖𝑠𝑙(�̃�) as the mean.

3.4.1 Hyper parameter tuning using WWPA

The WWPA is described in this section. Here, we explore

the motivation behind the method and provide a thorough

mathematical explanation of how it works.

Figure 7. Image of the WW plant. (a) A side view of a shot

that is free-floating and loaded with traps. (b) Frontal view

with both open and shut traps. (c) Just one open trap. (d) An

open trap schematic illustration

Inspiration of WWPA. Aldrovanda vesiculosa, the

alternative name for the waterwheel (WW) plant, has broad

petioles that contain its unusual traps, which are barely 1/12

inches in size and resemble tiny transparent flytraps [33]. The

interactions with other aquatic plants won't cause these traps

to deteriorate or unintentionally activate because of their

skilled design. They are protected by a ring of bristles that

resemble hair. These traps include a variety of hook-like teeth

along their edges that interlock when the trap catches its victim,

much like the teeth seen in a typical flytrap. The Aldrovanda

trap has more than 40 elongated trigger hairs, compared to the

normal 6-8 trigger hairs on a Venus flytrap. When one or more

triggers are pulled, these trigger hairs allow the trap to shut.

These carnivorous plants have trigger hairs as well as glands

that emit acid to help in the digesting of their caught prey. The

sealant and the plant's interlocking teeth trap the prey. By

leading the prey towards the hinge at the base of the trap, the

seal successfully catches the prey. The body fluids of the prey

are extensively broken down by the plant's digestive secretions,

and any leftover material is excreted. Similar to a flytrap, an

Aldrovanda trap can hold and digest two to before filling to

capacity. The infrastructure of the waterwheel plant is shown

in Figure 7.

The WWPA mathematical model. This section describes

how WWPA is set up before going into detail about how the

WW's location is updated throughout both the exploration and

exploitation phases using a classical based on the actual

behaviour of WWs.

Initialization. The population-based approach of the

WWPA tries to locate the ideal solution by using the collective

search capabilities of its population members within the

solution space. Each of the WWs that make up the population

of this algorithm represents a potential resolution to the

problem and has a specific set of problem-related variables.

Vectors may be used to formally represent these responses.

The whole population of the WWPA, which consists of all

WWs as given in Eq. (18), may be represented by a matrix. At

the beginning of WWPA, the positions of these WWs inside

the solution space are initialised at random using Eq. (19).

𝑃 =

[

𝑃1

⋮
𝑃𝑖

⋮
𝑃𝑁]

=

[

𝑝1,1 ⃛ 𝑝1,𝑗 ⃛ 𝑝1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1 ⃛ 𝑝1,𝑗 ⃛ 𝑝𝑖,𝑚

⋮ ⋰ ⋮ ⋱ ⋮
𝑝𝑁,1 ⃛ 𝑃𝑁,𝑗 ⃛ 𝑃𝑁,𝑀]

 (18)

𝑝𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖,𝑗.(𝑢𝑏𝑗 − 𝑙𝑏𝑗)

𝑖 = 1,2, … , 𝑁, 𝑗 = 1,2, … ,𝑚
(19)

where, N stands for the quantity of WWs, and m stands for the

quantity of variables. The limits for the j-th issue variable are

represented by 𝑙𝑏𝑗 and 𝑢𝑏𝑗, while the variable 𝑟𝑖,𝑗. has random

values between [0, 1]. The population matrix of WW locations

is designated as P, where 𝑝𝑖 is the j-th WW, which corresponds

to a problem variable, and 𝑝𝑖,𝑗 denotes its i-th dimension. The

target function may be calculated for each WW as they each

stand in for a possible answer to the issue. Studies have proven

that a vector may be used to properly represent the variables

that make up the objective function in Eq. (20).

𝐹 =

[

𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

=

[

𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 (20)

where, F denotes the vector containing all of the values for the

objective functions, and 𝐹𝑖 is the i-th WW. Most of the time,

objective are used to choose the best keys. The best candidate

solution, indicated by the highest objective function value, and

the worst candidate solution, indicated by the lowest value, are

thus the most crucial metrics. Given that WWs pass across the

search region at varying speeds throughout each iteration, the

optimal solution could evolve over time.

Stage 1: Recognising positions and hunting for insects

WWs flourish as skilled hunters capable of locating pests

because to their exceptional sense of smell. A WW attacks as

soon as it notices an insect nearby, focusing on the bug's

particular location and starting a chase to trap it. For the first

335

stage of its populace update procedure, the WWPA simulates

the behaviour of a WW. The WWPA improves its exploration

skills by modelling the hunting behaviours of WWs, allowing

it to find ideal places while avoiding being caught in local

optima. This is accomplished by simulating the large motions

of the WW as it approaches the insect within the solution space.

This simulation of the WW's approach to the insect is

integrated using an Eq. (21) as shown below, to predict the

WW's new location. If moving the WW to the newly

determined position increases the charge of the target function,

as shown in Eq. (21) and Eq. (22), the old position is

abandoned in favour of the new one.

�⃗⃗⃗� = 𝑟 1.(�⃗� (𝑡) + 2𝐾) (21)

�⃗� (𝑡 + 1) = �⃗� (𝑡) + �⃗⃗⃗� . (2𝐾 + 𝑟 2) (22)

Alternately, the WW's location may be changed using the

following Eq. (23) if the results do not improve after three

consecutive repetitions:

�⃗� (𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑝, 𝜎) + 𝑟 1 (
�⃗� (𝑡) + 2𝐾

�⃗⃗⃗�
) (23)

In this Eq. (23) the random variables 𝑟 ⃗⃗ 1 and 𝑟 ⃗⃗ 2 may,

respectively, have values of 0 or 2 and 0 or 1. The vector �⃗⃗⃗�
represents the radius of each circle that the WW plant

evaluates as possible regions, and K is a variable with values

between 0 and 1.

Stage 2: Carrying the insect in the suitable tube

(exploitation)

The behaviour of insects being transported to feeding tubes

by waterwheels serves as the model for the second stage of

population updates in WWPA. By simulating this behaviour,

WWPA may improve its convergence towards answers that

are very similar to those it has already collected. WWPA

modifies the location of the WW inside the problem region by

simulating the insect's journey to the proper tube for ingestion.

To do this, each WW was first placed in a fresh, arbitrary

position that represented a "favourable region for insect

consumption," according to the WWPA designers. Eq. (24)

and Eq. (25) show that if the objective function produces a

better value at the new position, the WW is moved.

�⃗⃗⃗� = 𝑟 3(𝐾�⃗� 𝑏𝑒𝑠𝑡(𝑡) + 𝑟3�⃗� (𝑡)) (24)

�⃗� (𝑡 + 1) = �⃗� (𝑡) + 𝐾�⃗⃗⃗� (25)

After three iterations, if the response still doesn't indicate

progress, the method incorporates a mutation process akin to

the exploration stage. The algorithm undergoes certain

alterations throughout this mutation phase to avoid being stuck

in local minima. In this adaptive method, the current answer,

indicated as 𝑃 ⃗⃗ ⃗ at iteration t, is represented as (P) at iteration t,

and the ideal solution is written as 𝑃 ⃗⃗ ⃗
𝑏𝑒𝑠𝑡 . A random mutable

with values between [0, 2] is 𝑟 3 . This strategy aids the

algorithm's robustness and effective escape from local maxima.

�⃗� (𝑡 + 1) = (𝑟 1 + 𝐾) sin (
𝐹

𝐶
𝜃) (26)

where, [-5, 5] is a range for the random variables F and C's

values. Additionally, using the Eq. (27), K's value falls down

rapidly.

𝐾 = (1 +
2 ∗ 𝑡2

𝑇𝑚𝑎𝑥

+ 𝐹) (27)

The proposed WWPA's pseudocode

The iterative process used by the WWPA has the following

three phases. Once the first and second steps are complete,

each WW is moved in the third and final stage. This

adjustment, which results in the key adjustments of the best

candidate solution, is based on a comparison of target function

values. The WW positions are then adjusted in preparation for

the next iteration. This repeated process is carried out till the

algorithm achieves its conclusion. Implement WWPA as

instructed, following the detailed instructions in Algorithm 1.

Based on its iterative development, WWPA offers the most

promising candidate solution after being completely deployed.

Algorithm 1: The projected algorithm of WWPA

1: Place the WW plants' initial placements 𝑃𝑖(𝑖 =
1,2, … , 𝑛) for 𝑛 function 𝑓𝑛, iterations 𝑇𝑚𝑎𝑥 ,parameters of

𝑟, 𝑟 1, 𝑟 2, 𝑟 3, 𝑓, 𝑐, and 𝐾

2: Calculate fitness of 𝑓𝑛 for each position 𝑃𝑖

3: Find best plant position𝑃𝑏𝑒𝑠𝑡

4: Set 𝑡 = 1

5: while 𝑡 ≤ 𝑇𝑚𝑎𝑥 𝑑𝑜

6: for(𝑖 = 1 ∶ 𝑖 < 𝑛 + 1)𝑑𝑜

7: if(𝑟 < 0.5) then

8: Explore the WW plant space using:

�⃗⃗⃗� = 𝑟 1. (�⃗� (𝑡) + 2𝐾)

�⃗� (𝑡 + 1) = �⃗� (𝑡) + �⃗⃗⃗� . (2𝐾 + 𝑟 2)

9: if Solution does not change for three repetitions,

then

10: �⃗� (𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑝, 𝜎) + 𝑟 1(
�⃗� 𝑡+2𝐾

𝑊
)

11: end if

12: else

13: Deed the current keys to get best solutions

using:

�⃗⃗⃗� = 𝑟 3. (𝐾�⃗� 𝑏𝑒𝑠𝑡(𝑡) + 𝑟3�⃗� (𝑡))

�⃗� (𝑡 + 1) = �⃗� (𝑡) + 𝐾�⃗⃗⃗�
14: If the solution remains the same after three

attempts, then

15: �⃗� (𝑡 + 1) = (𝑟 1 + 𝐾)sin (
𝐹

𝐶
𝜃)

16: 𝑒𝑛𝑑 𝑖𝑓
17: 𝑒𝑛𝑑 𝑖𝑓
18: 𝑒𝑛𝑑 𝑓𝑜𝑟

19: 𝑅𝑒𝑑𝑢𝑐𝑒 𝐾′𝑠 𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑢𝑡𝑖𝑙𝑖𝑠𝑖𝑛𝑔:

𝐾 = (1 +
2 ∗ 𝑡2

(𝑇𝑚𝑎𝑥)3
+ 𝑓)

20: Update 𝑟, 𝑟 1, 𝑟 2, 𝑟 3, 𝑓, 𝑐,
21: Compute function 𝑓𝑛 for respectively position 𝑃𝑖

22: Find the finest position

23: Set 𝑡 = 𝑡 + 1

24: end while

25: Return the greatest solution 𝑃𝑏𝑒𝑠𝑡

336

4. RESULTS AND DISCUSSION

In the paper, we will deliver an inclusive discussion of the

identified failure cases, highlighting common patterns or

themes observed across different instances. We will also

discuss the implications of these findings for the practical

application of the proposed approach and provide insights into

the model's limitations.

Recommendations for Improvement: Based on our analysis

of model failure cases, we will offer recommendations for

improving the performance of the classical. This may include

suggestions for refining the model architecture, collecting

additional data to address specific challenges, or incorporating

additional preprocessing steps to enhance model robustness.

4.1 Experimental setup

On a processer with a Core i5 CPU, 8 𝐺𝐵 𝑜𝑓 𝑅𝐴𝑀, besides

a 500 GB hard drive, the trials will be carried out. The

programming language used for this project is Python 3. Both

Anaconda and Jupyter Notebook are used in the backend

infrastructure. Table 1 lists some of the benefits of Jupyter

Notebook, including its capacity to function on internet servers.

Table 1. Specifications table

Specifications Value

CPU 1.5-2.7GHZ

Generation 4th

RAM 12GB

GPU 920 m NVidia

Internet 8Mbps upload, 8Mbps download

4.2 Performance metrics

The output metrics shown in Eq. (28) to Eq. (32) include

ACC, PR, RC, SPEC, and F-score. Based on these criteria, the

following tables compares the predicted and actual results:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑐𝑐) =
(𝑇𝑅𝑃 + 𝑇𝑅𝑁)

𝑇𝑅𝑃 + 𝐹𝐿𝑃 + 𝑇𝑅𝑁 + 𝐹𝐿𝑁
% (28)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐿𝑃
 (29)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐶) =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐿𝑁
 (30)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐹1) =
2𝑇𝑅𝑃

2𝑇𝑅𝑃 + 𝐹𝐿𝑃 + 𝑇𝑅𝑁
 (31)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃𝐸𝐶) =
𝑇𝑅𝑁

𝑇𝑅𝑁 + 𝑇𝑅𝑃
× 100% (32)

where, TRP is the true positive value, FLP is the false positive

value, TRN is the true negative value, TRN is the true negative

value.

4.3 Classification analysis based on 70:30 ratio

The performance indicators for several models are

effectively summarised based on 70:30 ration in Table 2 and

Figures 8-10. Here the existing models such as Deep Belief

Network (DBN), Auto encoder (AE) and Variational auto

encoder (VAE) are tested with the proposed model to compare

the results of performance metrics.

Table 2. Comparison of 70:30 ratio classification models

Models ACC PR RC F1 SPEC

DBN 87.5 91 87 89 88

AE 91.7 92.5 92.5 93.4 95

VAE 94 94.2 95 94.6 96.3

Proposed model 98.2 97 97 97.8 97.5

Figure 8. ACC of 70:30 ratio classification

Figure 9. Analysis of PR and RC of 70:30 ratio classification

Figure 10. Analysis of F1 and SPEC of 70:30 ratio

classification

DBN: 87.5% ACC rate, 91% PR, 87% RC, 89% F1, and

88% SPEC were shown by DBN

AE: Achieved a 91.7% ACC rate, 92.5% PR, 92.5% RC,

93.4% F1, and 95% SPEC.

VAE: Displayed impressive results with a 94% ACC rate,

94.2% PR, 95% RC, 94.6% F1, and 96.3% SPEC.

Proposed model: Exceptional ACC rate of 98.2%, PR of

97%, RC of 97%, F1 of 97.8%, and SPEC of 97.5%

outperformed others.

The suggested VAEGAN model has a novel mix of

337

generative and discriminative characteristics, outperforming

DBN, AE, and VAE. VAEGAN combines adversarial training,

allowing it to better capture complicated data distributions and

provide more realistic examples, in contrast to DBN, AE, and

VAE, which only concentrate on encoding and decoding data.

With the assistance of this adversarial component, VAEGAN

is able to develop more substantial and accurate latent

representations, improving its capacity to reconstruct data and

create fresh samples with more accuracy and variety. Because

VAEGAN data creation and reconstruction, it is a more

effective and adaptable solution for a variety of work.

4.4 Classification validation based on LSTM

The following performance metrics for several

classification models were seen in the study shown in Table 3

and Figures 11-15.

Table 3. Classification without LSTM

Models
ACC

(%)

PR

(%)

RC

(%)

F1

(%)

SPEC

(%)

DBN 81.02 63.7 70.4 67.8 70.85

AE 82.54 55.2 82.6 79.5 81.68

VAE 85.38 83.2 87.6 86.2 87.50

Proposed

model
92.10 92.7 91.26 90.3 91.13

Figure 11. ACC analysis

Figure 12. PR validation

DBN earned a score of 67.8% on the F1, ACC of 81.02%,

PR of 63.7%, RC of 70.4%, and Spec of 70.85%. The ACC,

PR, RC, F1, and Spec of AE were 82.54%, 55.2%, 82.6%, and

79.5%, respectively. An F1 of 86.2%, an ACC of 85.38%, a

PR of 83.2%, a RC of 87.6%, and a Spec of 87.50% were

attained with VAE. The suggested model performed better

than the others, attaining a 92.10% ACC, a 92.7% PR, a

91.26% RC, a 90.3% F1, and a 91.13% SPEC.

Figure 13. RC analysis

Figure 14. F1 validation

Figure 15. Spec analysis

The study shown in Table 4 and Figures 11-15 compares the

effectiveness of several classification algorithms

using multiple metrics. With a PR of 83.7%, RC of 87.6%, F1

of 87.8%, and SPEC of 87.9%, the DBN model achieves an

ACC of 86.6%. AE gets slightly better ACC, PR, RC, F1, and

SPEC values of 88.6%, 85.2%, 89.5%, and 89.5%,

respectively. With a high ACC of 93.9%, PR of 92.2%, RC of

94.6%, F1 of 95.2%, and SPEC of 94.4%, the VAE model, on

the other hand, shows outstanding results. With an ACC of

97.8%, PR of 97.7%, RC of 96.26%, F1 of 97.3%, and Spec

of 97.5%, the suggested model surpasses them all. According

to these results, the suggested model performs very well in a

number of areas related to forest fire detection, making it an

ideal choice for this task. In LSTM feature extraction networks,

338

weight optimisation is carried by using the MFFA. It results in

improved convergence along with potentially higher ACC.

Table 4. Classification with LSTM

Models
ACC

(%)

PR

(%)

RC

(%)

F1

(%)

SPEC

(%)

DBN 86.6 83.7 87.6 87.8 87.9

AE 88.6 85.2 89.5 89.5 88.6

VAE 93.9 92.2 94.6 95.2 94.4

Proposed

model
97.8 97.7 96.26 97.3 97.5

Table 5. Learning rate

Optimizers 0.1 0.01 0.001

GWO 92.13 95.36 96.22

SSA 95.25 96.72 97.56

GSA 97.67 98.69 98.95

Proposed model 98 6 98.56 99.21

Table 5 and Figure 16 illustrates that the learning rate of our

proposed model achieved ACC of 98.6% in 0.1, 98.56% in

0.01, 99.21% in 0.001. Grey wolf optimization (GWO)

achieved ACC of 92.13% in 0.1, 95.36% in 0.01, 96.22% in

0.001. Sparrow search Algorithm (SSA) achieved ACC of

95.25% in 0.1, 96.72% in 0.01, 97.56% in 0.001. Grid search

algorithm (GSA) achieved ACC of 97.67% in 0.1, 98.69% in

0.01, 98.95% in 0.001.

Figure 16. Learning rate graph

5. CONCLUSION

In conclusion, this research offerings an inclusive and

cutting-edge strategy to tackle the urgent tricky of forest fires,

which have become worse owing to both natural and human-

caused climate changes. recognising the terrible effects that

forest fires have on ecosystems, animals, and people. This

study advances the accuracy and convergence of forest fire

detection models by using DL approaches, such as LSTM

grids for feature extraction and the use of an MFFA for weight

optimisation in LSTM. Additionally, this work uses the

VAEGAN model for feature classification. The WWPA, an

optimisation technique inspired by nature, is used in this work

to fine-tune the VAEGAN model since it is well

acknowledged that hyperparameter tuning is a crucial

component of model performance. The creative use of WWPA,

which takes cues from plant development, makes sure that the

network's parameters are efficiently optimised, eventually

resulting in greater performance in detecting forest fires. The

accuracy rate for the DBN model is 86.6%. With an accuracy

of 88.6%, AE only slightly surpasses. The VAE model shows

a high level of accuracy of 93.9%.

The recommended model, however, exceeds them all,

obtaining a remarkable accuracy of 97.8%. The geographic

resolution of the photos in the collection for detecting forest

fires will be improved in further studies. A CNN-based image

segmentation method will also be suggested in order to further

alarms for the issue of forest detection. By addressing these

future research directions and overcoming technical

challenges, the "Detection of Forest Fire using Modified

LSTM based Feature Extraction with Waterwheel Plant

Optimization Algorithm based VAE-GAN model" can

continue to advance and contribute to the development of more

effective and reliable forest fire detection systems, ultimately

aiding in the preservation of natural ecosystems and protection

of public safety.

REFERENCES

[1] Zanchi, G., Yu, L., Akselsson, C., Bishop, K., Köhler, S.,

Olofsson, J., Belyazid, S. (2021). Simulation of water

and chemical transport of chloride from the forest

ecosystem to the stream. Environmental Modelling &

Software, 138: 104984.

https://doi.org/10.1016/j.envsoft.2021.104984

[2] Wu, D., Zhang, C.J., Ji, L., Ran, R., Wu, H.Y., Xu, Y.M.

(2021). Forest fire recognition based on feature

extraction from multi-view images. Traitement du Signal,

38(3): 775-783. https://doi.org/10.18280/ts.380324

[3] Vardoulakis, S., Marks, G., Abramson, M. J. (2020).

Lessons learned from the Australian bushfires: climate

change, air pollution, and public health. JAMA Internal

Medicine, 180(5): 635-636.

https://doi.org/10.1001/jamainternmed.2020.0703

[4] Peruzzi, G., Pozzebon, A., Van Der Meer, M. (2023).

Fight fire with fire: Detecting forest fires with embedded

machine learning models dealing with audio and images

on low power IoT Devices. Sensors, 23: 783.

https://doi.org/10.3390/s23020783

[5] Srinivasan, V., Raj, V.H., Thirumalraj, A., Nagarathinam,

K. (2024). Original research article detection of data

imbalance in MANET network based on ADSY-

AEAMBi-LSTM with DBO feature selection. Journal of

Autonomous Intelligence, 7(4): 1094.

https://doi.org/10.32629/jai.v7i4.1094

[6] Zheng, X., Chen, F., Lou, L., Cheng, P., Huang, Y.

(2022). Real-time detection of full-scale forest fire

smoke based on deep convolution neural network.

Remote Sensing, 14(3): 536.

https://doi.org/10.3390/rs14030536

[7] Rodrigues, M., Gelabert, P.J., Ameztegui, A., Coll, L.,

Vega-García, C. (2021). Has COVID-19 halted winter-

spring wildfires in the Mediterranean? Insights for

wildfire science under a pandemic context. Science of the

Total Environment, 765: 142793.

https://doi.org/10.1016/j.142793

[8] Kountouris, Y. (2020). Human activity, daylight saving

time and wildfire occurrence. Science of the Total

Environment, 727: 138044.

https://doi.org/10.1016/j.scitotenv.2020.138044

[9] Ren, B. (2022). Neural network machine translation

model based on deep learning technology. In

339

International Conference on Multi-modal Information

Analytics, Huhehaote, China, pp. 643-64.

https://doi.org/10.1007/978-3-031-05237-8_79

[10] McCoy, J., Rawal, A., Rawat, D.B., Sadler, B.M. (2022).

Ensemble deep learning for sustainable multimodal UAV

classification. IEEE Transactions on Intelligent

Transportation Systems, 24(12): 15425-15434.

https://doi.org/10.1109/TITS.2022.3170643

[11] Zhang, Y., Kwong, S., Xu, L., Zhao, T. (2022). Advances

in deep-learning-based sensing, imaging, and video

processing. Sensors, 22(16): 6192.

https://doi.org/10.3390/s22166192

[12] Hazra, A., Choudhary, P., Sheetal Singh, M. (2021).

Recent advances in deep learning techniques and its

applications: An overview. In Advances in Biomedical

Engineering and Technology: Select Proceedings of

ICBEST 2018, Raipur, India, pp. 103-122.

https://doi.org/10.1007/978-981-15-6329-4_10

[13] Seo, P.H., Nagrani, A., Arnab, A., Schmid, C. (2022).

End-to-end generative pretraining for multimodal video

captioning. In 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), New Orleans,

LA, USA, pp. 17938-17947.

https://doi.org/10.1109/CVPR52688.2022.01743

[14] Abdusalomov, A.B., Islam, B.M.S., Nasimov, R.,

Mukhiddinov, M., Whangbo, T.K. (2023). An improved

forest fire detection method based on the detectron2

model and a deep learning approach. Sensors, 23(3):

1512. https://doi.org/10.3390/s23031512

[15] Huang, J., He, Z., Guan, Y., Zhang, H. (2023). Real-time

forest fire detection by ensemble lightweight YOLOX-L

and defogging method. Sensors, 23(4): 1894.

https://doi.org/10.3390/s23041894

[16] Chen, G., Zhou, H., Li, Z., Gao, Y., Bai, D., Xu, R., Lin,

H. (2023). Multi-scale forest fire recognition model

based on improved YOLOv5s. Forests, 14(2): 315.

https://doi.org/10.3390/f14020315

[17] Zhang, L., Wang, M., Ding, Y., Bu, X. (2023). MS-

FRCNN: A multi-scale faster RCNN model for small

target forest fire detection. Forests, 14(3): 616.

https://doi.org/10.3390/f14030616

[18] Rahman, A.K.Z.R., Sakif, S., Sikder, N., Masud, M.,

Aljuaid, H., Bairagi, A.K. (2023). Unmanned aerial

vehicle assisted forest fire detection using deep

convolutional neural network. Intelligent Automation &

Soft Computing, 35(3): 3259-3277.

http://dx.doi.org/10.32604/iasc.2023.030142

[19] Avazov, K., Hyun, A.E., Sami S.A.A., Khaitov, A.,

Abdusalomov, A.B., Cho, Y.I. (2023). Forest fire

detection and notification method based on AI and IoT

approaches. Future Internet, 15(2): 61.

https://doi.org/10.3390/fi15020061

[20] Ye, J., Ioannou, S., Nikolaou, P., Raspopoulos, M.

(2023). CNN based real-time forest fire detection system

for low-power embedded devices. In 023 31st

Mediterranean Conference on Control and Automation

(MED), Limassol, Cyprus, pp. 137-143.

https://doi.org/10.1109/MED59994.2023.10185692

[21] Al-Smadi, Y., Alauthman, M., Al-Qerem, A., Aldweesh,

A., Quaddoura, R., Aburub, F., Mansour, K., Alhmiedat,

T. (2023). Early wildfire smoke detection using different

YOLO models. Machines, 11(2): 246.

https://doi.org/10.3390/machines11020246

[22] Talaat, F.M., ZainEldin, H. (2023). An improved fire

detection approach based on YOLO-v8 for smart cities.

Neural Computing and Applications, 35(28): 20939-

20954. https://doi.org/10.1007/s00521-023-08809-1

[23] Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., Baik,

S.W. (2018). Convolutional neural networks based fire

detection in surveillance videos. IEEE Access, 6: 18174-

18183. https://doi.org/10.1109/ACCESS.2018.2812835

[24] Khan, S., Khan, A. (2022). Ffirenet: Deep learning based

forest fire classification and detection in smart cities.

Symmetry, 14(10): 2155.

https://doi.org/10.3390/sym14102155

[25] Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M.,

Choi, J. G. (2020). LSTM and bat-based RUSBoost

approach for electricity theft detection. Applied Sciences,

10(12): 4378. https://doi.org/10.3390/app10124378

[26] Hasan, M.N., Toma, R.N., A., Islam, M.M., Kim, J.M.

(2019). Electricity theft discovery in smart grid systems:

A CNN-LSTM based tactic. Energies, 12(17): 3310.

https://doi.org//en12173310

[27] Aravinda, K., Santosh Kumar, Kavin, B.P., Thirumalraj,

A. (2024). Traffic sign detection for practical application

using hybrid deep belief network classification. In

Advanced Geospatial Does in Natural Environment

Resource Management, pp. 214-233.

https://doi.org/10.4018/979-8-3693-1396-1.ch011

[28] Chopra, N., Ansari, M.M. (2022). Golden jackal

optimization: A novel nature-inspired optimizer for

engineering applications. Expert Systems with

Applications, 198: 116924.

https://doi.org/10.1016/j.eswa.2022.116924

[29] Dehghani, M., Montazeri, Z., Trojovská, E., Trojovský,

P. (2023). Coati optimization algorithm: A new bio-

inspired metaheuristic algorithm for solving optimization

problems. Knowledge-Based Systems, 259: 110011.

https://doi.org/10.1016/j.knosys.2022.110011

[30] Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi,

A. H. (2020). Marine predators algorithm: A nature-

inspired metaheuristic. Expert Systems with

Applications, 152: 113377.

https://doi.org/10.1016/j.eswa.2020.113377

[31] Abdollahzadeh, B., Gharehchopogh, F.S., Khodadadi, N.,

Mirjalili, S. (2022). Mountain gazelle optimizer: A new

nature-inspired metaheuristic algorithm for global

optimization problems. Advances in Engineering

Software, 174: 103282.

https://doi.org/10.1016/j.advengsoft.2022.103282

[32] Thirumalraj, A., Anandhi, R.J., Revathi, V., Stephe, S.

(2024). Supply chain management using fermatean

fuzzy-based decision making with ISSOA. In

Convergence of Industry 4.0 and Supply Chain

Sustainability, pp. 296-318. https://doi.org/10.4018/979-

8-3693-1363-3.ch011

[33] Poppinga, S., Smaij, J., Westermeier, A.S., Horstmann,

M., Kruppert, S., Tollrian, R., Speck, T. (2019). Prey

capture analyses in the carnivorous aquatic waterwheel

plant (Aldrovanda vesiculosa L., Droseraceae). Scientific

Reports, 9(1): 18590. https://doi.org/10.1038/s41598-

019-54857-w

340

