
Self-Stabilizing Algorithms for Computing Maximal Distance-2 Independent Sets and 

Minimal Dominating Sets in Networks 

Djamila Bouhata , Souheila Bouam , Hamouma Moumen* , Badreddine Benreguia , Chafik Arar

LAMIE Laboratory, Department of Computer Science, University of Batna 2, Batna 05078, Algeria 

Corresponding Author Email: hamouma.moumen@univ-batna2.dz 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/isi.290219 ABSTRACT 

Received: 29 May 2023 

Revised: 4 September 2023 

Accepted: 11 October 2023 

Available online: 25 April 2024 

This study devises self-stabilizing algorithms that leverage the expression distance-2 

paradigm to compute (i) a maximal distance-2 independent set, wherein selected nodes 

maintain a separation exceeding two edges, ensuring non-adjacency; and (ii) a minimal 

dominating set, wherein each external node has at least one node as a neighbor in the 

dominating set. The efficacy and convergence of the algorithms are established through 

rigorous proofs within the framework of the expression model. Extensive simulation tests 

validate the algorithms' proficiency in selecting a minimal subset of nodes across expansive 

network topologies. These algorithms find practical applications in network operations, 

particularly in ad hoc and wireless sensor networks for the selection of cluster heads that 

facilitate critical services. Moreover, the self-stabilizing property of the algorithms 

guarantees the robust reconfiguration of cluster heads post-failure, thereby preserving 

network functionality amidst disruptions. 
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1. INTRODUCTION

Self-stabilization emerges as a pivotal fault tolerance 

paradigm within distributed systems and networks, facilitating 

convergence to a correct global state from an unspecified 

initial configuration. Such a self-stabilizing algorithm, 

operational without the necessity for external intervention, is 

capable of amending the distributed system's global state 

within a determinate timeframe. The literature is replete with 

a spectrum of self-stabilizing algorithms derived from graph 

theory. These algorithms address an assortment of 

computational problems including leader election, node 

coloring, and the provision of solutions to domination and 

independent set issues, as well as the construction of spanning 

trees. The practical significance of these algorithms is 

accentuated in their application to network architectures such 

as sensor and ad-hoc networks, where they are instrumental in 

defining cluster heads [1-3]. 

Let G=(V, E) be a graph where V represents the node set 

and E is the edge set. The present work employs several 

variants of independent and dominating sets, which are 

frequently referenced throughout subsequent sections. The 

definitions of these terms are as follows: 

• Independent Set: is defined as a subset of nodes in V,

denominated S, such that no two nodes within S share an

edge.

• Maximal Independent Set (MIS): It is an independent

set, denoted as S, for which no larger set exists that

preserves independence. It is implicit that within MIS,

the distance between any node pair in S exceeds one.

• Maximal Distance-2 Independent Set (MD2IS): This

is a particular set of the independent set, S, wherein no

node in S is reached by another node in S only through 

at least 3 edges. In MD2IS, there are no two independent 

nodes in S that could be reached through two edges. 

• Minimal Dominating Set (MDS): is a subset of nodes,

denoted as S, where every node in the graph is either

included in S or is adjacent to at least one node of S. The

dominating set is considered minimal if no smaller

subset of S can satisfy the conditions of being a

dominating set.

Figure 1 serves as an illustrative guide for conceptualizing 

the Maximal Independent Set, Maximal Distance-2 

Independent Set, and Minimal Dominating Set. In this figure, 

nodes delineated in green represent members of the respective 

set. It is noteworthy that, as depicted in Figure 1(a), the MIS 

showcases a pairwise node distance of at least two edges. In 

contrast, Figure 1(b) reveals that within the MD2IS, the inter-

node distance is strictly greater than two edges. In the case of 

MDS, any node not inside the MDS (represented with black) 

is at least adjacent to one member of the MDS, thereby 

satisfying the domination property. 

Historically, the pursuit of solutions for the MDS and MIS 

conundrums has been vigorous within the realm of self-

stabilization research. Traditional approaches predominantly 

employ the distance-one model, which permits interactions 

solely between immediate neighboring nodes. In a novel 

departure, the distance-2 model for self-stabilization-

introduced by Turau [4] extends this interaction to nodes 

within a two-hop radius. This study seeks to highlight the 

capacity of the distance-2 model to underpin the development 

of novel self-stabilizing algorithms. The abstraction inherent 

in the distance-2 model paves the way for the forthcoming 

design of algorithms targeting both MD2IS and MDS. 

Ingénierie des Systèmes d’Information 
Vol. 29, No. 2, April, 2024, pp. 581-590 

Journal homepage: http://iieta.org/journals/isi 

581

https://orcid.org/0000-0001-5723-1019
https://orcid.org/0000-0002-2970-9625
https://orcid.org/0000-0002-1986-7590
https://orcid.org/0000-0002-1181-3950
https://orcid.org/0000-0002-8830-7140
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290219&domain=pdf


 

However, the application of such algorithms within the 

distance-1 paradigm necessitates the utilization of a 

transformer. Despite the ease of algorithm design afforded by 

the distance-2 model, direct application is untenable; hence, 

transformation to the executable distance-1 model is 

imperative. The transformer introduced by Turau [4] will be 

used in this research. 

In practical scenarios, the implementation of MIS, MD2IS, 

and MDS finds resonance in ad hoc and wireless sensor 

networks. Here, nodes within these sets assume the role of 

servers or cluster heads, providing a suite of services to 

adjacent nodes, designated as cluster members. These services 

encompass but are not limited to routing data, key distribution 

for encryption, and management of member identity. Given 

the propensity for failures in ad hoc and, particularly, sensor 

networks (often attributed to battery limitations) the 

indispensability of self-stabilizing algorithms becomes 

pronounced. Such algorithms are integral to the restoration of 

cluster headsets, thereby ensuring network resilience and 

operational continuity. 

 

 
(a) MIS: Maximal Independent Set 

 

 
(b) MD2IS: Maximal Distance-2 Independent Set 

 

 
(c) MDS: Minimal Dominating Set 

 

Figure 1. Three variants of independent and dominating sets 

composed of green nodes 

 

1.1 Paper organization 

 

The structure of the paper is methodically divided into seven 

sections for clarity and coherence. Section 2 discusses the 

prior art and delineates the contributions of the current study. 

Section 3 presents the model and the terminological 

foundation used in self-stabilization. The algorithms proposed 

for identifying the Maximal Independent Set at a distance-2 

and then for the computation of the Minimal Dominating Set 

using the distance-2 model are introduced in Sections 4 and 5. 

In section 6, we illustrate the simulation tests to demonstrate 

the efficiency of the proposed algorithms. Lastly, in Section 7, 

the conclusion summarizes the main points presented in this 

paper. 

 

 

2. RELATED WORK AND PAPER CONTRIBUTION 

 

Shukla et al. [5] have introduced a self-stabilizing algorithm 

to compute the maximal independent set. Their approach is 

based on two simple rules: (1) a node v has to enter into the set 

S if v has no neighbor within S, (2) and each node inside S has 

to exit S if it has a neighbor that belongs to S to preserve 

independence. Hedetniemi et al. [6] have presented a self-

stabilizing algorithm to calculate the minimal dominating set. 

Subsequently, numerous algorithms have emerged, using 

additional domination parameters such as total domination [7, 

8], efficient domination [9, 10], connected dominating set [11, 

12], influence domination [13, 14], and distance-k domination 

[15]. 

Other algorithms to address specific challenges of 

independent sets have appeared, aiming to minimize 

algorithmic complexity [16] or to align with distributed 

daemon environments [7, 17]. A detailed study of existing 

algorithms in the self-stabilization context is provided in the 

survey [18], particularly for independent and dominating sets. 

Moreover, additional constraints beyond independence are 

imposed in certain algorithms for independent sets. For 

instance, Neggazi et al. [19] have proposed an algorithm aimed 

at identifying a maximal independent set S, wherein each node 

u outside of S must have a neighbor v in S, satisfying 

degree(v)>degree(u). All the mentioned above algorithms are 

developed under the habitual distance-1 model. 

Arapoglu and Dagdeviren [2] introduced an algorithm for 

Maximal Independent Sets (MIS), using distance-2 

information. This algorithm, designed to compute MIS within 

a distributed daemon, was specifically designed for wireless 

sensor networks to minimize energy consumption. Under the 

distance-2 model, nodes allocate 50% of their transmission 

power for data transfer within distance-1, while utilizing 100% 

of their transmission power for propagating information across 

distance-2. Employing the message-passing model, every 

node could diffuse information to neighbors within a distance-

2 only when its state changes. 

Johnen [20, 21] has introduced a self-stabilizing algorithm 

aimed at identifying an independent set S where any two nodes 

can only reached through k+1 or more edges. The algorithm 

presented in the study by Johnen [21] marks an enhancement 

in memory management compared to the study [20]. In a 

separate work by Datta et al. [15], an algorithm is proposed to 

determine a dominating set S, (not necessarily independent) 

where every node outside of S remains reached at a distance of 

at most k from S. Despite the bounded complexity of O(n+k) 

in rounds for the algorithms, the authors highlight the 

possibility of non-convergence under a distributed daemon, as 

an enabled node could be overlooked. In the literature on self-

stabilization, a finite round complexity does not guarantee 

convergence [15]. Hence, determining the convergence time 

remains an unresolved issue [15, 20, 21] to compute the 

independence between nodes in the general case of distance 

k≥2. In this paper where k=2, we show that our self-stabilizing 

algorithm converges during a period of finite time. 
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2.1 Contribution 

 

Using the expression distance-2 model, this paper proposes 

two new self-stabilizing algorithms called MD2IS and 

MDSD2. The first algorithm MD2IS aims to find the maximal 

independent set S where any pair of nodes in S are only linked 

through 3 or more edges. The second algorithm MDSD2 seeks 

to find the minimal dominating set using the expression model. 

The proofs of the correctness and convergence of the proposed 

algorithms are formally presented. The main goal is to show 

the power of the expression distance-2 model to facilitate the 

design of new self-stabilizing algorithms. 

The complexity of the proposed algorithms is O(n) to reach 

the legitimate configuration, assuming using the expression 

model and the central daemon. The conversion of the 

algorithms into the distance-one model provides an equivalent 

algorithm that converges to the correct configuration in O(nm) 

moves under a distributed daemon, where m is the number of 

edges. Simulation tests confirm the correctness and 

convergence of the proposed algorithms as has been illustrated 

in the proofs. Tests provide small-reduced independent 

dominating sets, which is considered as a valuable result for 

many applications in the case of large-scale networks. 

 

 

3. MODEL AND TERMINOLOGY 
 

Distributed systems are typically represented as graphs, 

denoted as G(V, E). The set V of vertices, called also nodes, 

represents the processing units of the distributed system. The 

connections between units are represented by the set of links 

E, called also edges. Nodes u which shares a link with 𝑣 ∈ 𝑉 

is the set of v neighbors defined as 𝑁(𝑣) = {𝑢 ∈ 𝑉: 𝑣𝑢 ∈ 𝐸}. 

Two nodes 𝑣, 𝑢 are considered adjacent if 𝑢 ∈ 𝑁(𝑣). 

We define the concept of the neighborhood at distance-2, 

denoted as 𝑁(𝑣)𝑑𝑖𝑠𝑡2 = 𝑁(𝑣) ∪ {𝑤 ∈ 𝑉: ∃𝑢 ∈ 𝑁(𝑣): 𝑤 ∈
𝑁(𝑢)}. Consequently, all neighbors of v at distance 2 are either 

at a distance of 1 or 2 from v.  

A subset 𝑆 in 𝑉 is said independent if there are no adjacent 

nodes in 𝑆, or there are no pair of nodes in 𝑆 that are linked by 

an edge. Similarly, a subset 𝑆 is called distance-k independent 

if there are no two nodes in S that are linked by k (or less) 

edges. Any pair of nodes in 𝑆 are connected only through k+1 

(or more) edges [20]. Thus, we call a set S distance-2 

independent, if any two nodes in S are reached only through a 

number of edges that is strictly greater than 2. It is worth 

noting that in the Maximal Independent Set (MIS), every node 

v is either independent if v is inside the MIS, or dominated at 

least by an independent node u if v is outside the MIS [4]. In 

the literature, the MIS is also known as the independent 

dominating set. 

Any node 𝑢 outside of the maximal distance-2 independent 

set, called MD2IS, is: 

-either, u has at least an adjacent node 𝑣 ∈ 𝑀𝐷2𝐼𝑆 , (hence, 

u is dominated), 

-or u is dominated (at distance-2) by a node 𝑣 ∈
𝑀𝐷2𝐼𝑆 where u could reach v only through 2 edges.  

Note that multiple nodes from the MD2IS set could 

dominate a node u outside the MD2IS set. Figure 1(b) 

illustrates an example of a node u that could be dominated by 

a couple of nodes v1 and v2. The distance between u and v1 is 

1 and the distance between u and v2 is 2. 

Definition 1: In a graph G(V, E), a subset S in V is said a 

distance-2 independent set if and only if any two nodes in S 

are reached only through a number of edges that is greater or 

equal to 3. S is maximal if there is no other set S’ that contains 

S such that S’ is a distance-2 independent set. 

Definition 2: In a graph G(V, E), a dominating set is a 

subset S in V where every node u outside of S has at least an 

adjacent node v inside S. 

In the self-stabilization context, an algorithm needs to (1) 

attain a globally legitimate configuration (2) within a finite 

period called convergence. Upon reaching the legitimate 

configuration, the algorithm must remain within the legitimate 

configuration and cannot move again outside the legitimate 

configuration. This condition is referred to, in the literature, as 

closure. Consequently, to demonstrate the self-stabilizing 

nature of an algorithm, it is necessary to show the closure and 

the convergence. The closure aims to illustrate that the reached 

legitimate configuration remains legitimate without any risk of 

moving again to an illegitimate state. The convergence is the 

certainty of achieving a legitimate configuration in a finite 

period. 

In a self-stabilizing system, each node has a number of rules: 

R1, R2, … Ri. For every rule, written generally as 

guard→statement, the guard is checked using an infinite loop. 

The statement can be executed if the guard is true. If all nodes 

execute the same rules i.e. the same code, the distributed 

system is known as uniform in contrary to other systems where 

some nodes could execute a different code such as semi-

uniform systems wherein one node has a different code. 

Generally, local variables are used at the level of each node to 

define the node state. The local state can be read and modified 

only by the local owner. Adjacent nodes can read the state of 

the local node, but cannot write in the local variable of their 

neighbor node. 

Besides a local variable, the expression model proposes that 

every node can use (read/write) a local expression exp to have 

a partial view in the neighborhood at distance-1. Since any 

other node can read (but not write) the expression exp of its 

neighbors, it reaches in fact, information at distance 2. Thus, 

the expression model is executed based on information 

obtained at distance 2. 

The guard consists of Boolean conditions using variables 

and/or expressions of the local node or the neighbor nodes. 

During the infinite check loop, when a guard is true, its 

corresponding rule is known as enabled or privileged. Thus, a 

node is enabled or privileged if there is an enabled rule among 

its set of rules. The execution of a statement leads to a change 

in the local state and consequently, to a new configuration of 

the global configuration. This transition through an enabled 

node is known in the literature as a move. However, the 

execution of a move is only allowed after getting the 

permission of a scheduler or a daemon. The algorithm is self-

stabilizing if the sequence of executed moves is finite 

(whatever serial or distributed) leading certainly to a 

legitimate configuration. 

 

3.1 Daemon notion 

 

Before starting to design a new self-stabilizing algorithm, 

an important hypothesis must be assumed whether the 

algorithm is executed in a parallel or sequential way. Despite 

the parallel execution seems more efficient, it is difficult to 

formally show the correctness and the convergence under the 

distributed execution compared to the sequential execution. 

In this direction, the daemon concept, known also as a 

scheduler, comes to provide researchers with an abstract tool 
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to make a suitable hypothesis according to the context in 

which is facing. 

In a central daemon, it is supposed that privileged nodes are 

executed one by one in a sequential order determined by the 

daemon which is also referred to as serial daemon. Conversely, 

in a distributed daemon, the daemon may select many 

privileged nodes to execute a move simultaneously, forming a 

round. In the case the daemon allows all privileged nodes to 

execute a move simultaneously, this scheduler is said 

synchronous. 
 

3.2 Transformers 

 

A commonly employed method, as discussed in the work of 

Turau et al. [4, 22], involves the conversion of a self-

stabilizing algorithm A, which operates within specific 

assumptions, into a new algorithm AT, that runs under other 

assumptions. Despite this transformation, both algorithms are 

equivalent and ensure to achieve the same final configuration. 

Various types of transformers, such as distance transformers 

and daemon transformers, can be found in the literature. 

However, the transformation typically introduces additional 

time complexity by algorithm AT to reach the final correct 

configuration.  

In this paper, we adopt the transformer of Turau [4], to 

convert the initially proposed algorithm A under the 

expression model and a central daemon to obtain a distributed 

algorithm AT. The expression distance-2 model provides an 

abstraction on the proposed algorithm A which facilitates 

proving the correctness and convergence. On the contrary, the 

design of new algorithms is complicated under the distance-1 

context due to the details presented in this case. However, the 

hypotheses, on which the algorithm A is supposed to run, are 

either not feasible or not efficient for the execution of A. For 

instance, self-stabilizing algorithms cannot use directly 

distance-2 in reality and need to use gradually distance-1. 

Since distributed execution is more efficient than serial 

execution in terms of time of convergence, the transformation 

is an imperative necessity for an algorithm developed under 

the expression model. 

 

3.3 Our execution model 

 

We assume first that our algorithm is executing with the 

expression model and a central scheduler. The transformer is 

adopted then to allow our algorithm to function under other 

hypotheses. 

 

 

4. SELF-STABILIZING ALGORITHM MD2IS 

 

Algorithm 1 is a uniform self-stabilizing algorithm designed 

to identify the maximal distance-2 independent set MD2IS. 

Every node v maintains a local variable state and an expression 

exp. The state variable can hold either In or Out as values to 

indicate whether node v is inside or outside the set MD2IS. 

The exp expression helps to count the number of neighbors 

that are inside MD2IS. Once the legitimate configuration is 

reached, all nodes are disabled, and the set 𝑆 = {𝑣 ∈

𝑉: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛} is the maximal distance-2 independent set.  

During the illegitimate configuration, enabled nodes 

execute serial moves until the system converges to the correct 

global configuration. After each move, a randomly enabled 

node is chosen by the central daemon to execute a new move. 

Algorithm 1. Maximal Distance-2 Independent Set – MD2IS 

(1) 𝑣 . 𝑒𝑥𝑝: : |{𝑢 ∈ 𝑁(𝑣): 𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛}| 
(2) 𝐑𝟏: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ ∀𝑢

∈ 𝑁(𝑣): (𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ 𝑢. 𝑒𝑥𝑝 = 0)
→ 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 

(3) 𝐑𝟐: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∧ ∃𝑢
∈ 𝑁(𝑣 ): (𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∨ 𝑢. 𝑒𝑥𝑝 > 1)
→ 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 

 

Each node checks its state and its neighborhood by utilizing 

state and exp. The expression exp is specifically employed to 

compute the number of neighbors belonging to the set S. The 

expression model facilitates the detection of neighbors that are 

inside S within a distance of 2. When a node accesses to 

expressions of its neighbors, it gets information about the 

neighbors located at a distance of 2. 

In the MD2IS algorithm, the first rule R1 allows the local 

node to move from outside to inside S, however R2 moves 

nodes from inside to outside S. Given a node v outside of S, R1 

examines the states and the expressions of neighbor nodes. If 

the state of all neighbors is Out and the expression of all 

neighbors is equal to 0, then v moves from outside to inside S. 

When a node v is inside S, R2 checks if there exists at least a 

neighbor u with either u.state = In or u.exp>1 (u is dominated 

at least by two nodes: v and another node), thus v needs to 

move from inside to outside S due to the existence of a 

neighbor u within a distance of 2 inside S. 

The execution of R1 guarantees that the independence 

property within distance 2 remains respected after moving a 

new node v from outside to inside S. However, if a given node 

v violated the independency condition, the execution of R2 

removes v from S to outside. 

 

 
 

Figure 2. Convergence to the final legitimate MD2IS 

configuration 

 

Figure 2 illustrates how algorithm MD2IS reaches the 

legitimate configuration after it starts from a random initial 

configuration. Black nodes are outside S while green nodes 

denoted elements inside S. If nodes are surrounded with red 

circles, the system is in an illegitimate configuration. Nodes 

surrounded in red color represent privileged nodes that are 

capable of executing a move. Using a central daemon, at each 

step, the daemon selects only one privileged node to carry out 

a move. The MD2IS set is achieved after five moves according 

to the sequence of rules: R2, R2, R2, R1, R1. Once no node 

(surrounded with red color) exists, the graph is considered in 

the final legitimate configuration. Note that, certain moves, 

such as the transition from configuration c to configuration d, 

may activate additional nodes in subsequent configurations.  
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4.1 Closure 

 

Lemma 1 The set S={v∈V, v.state=In} is maximal distance-

2 independent when there is no activate node. 

 

Proof When the system reaches the final legitimate 

configuration, all the nodes are inactivated. Thus, no node can 

execute R2 because the guard of R2 is false. Hence, for each 

node v in S, all neighbors u of v: (u.state=Out ∧ u.exp ≤ 1). 

Thus, all neighbor nodes u are outside of S, and within a 

distance of 2 from v, there is no node inside S because u.exp≤1, 

(When u.exp=1, only v is in S since u has only v as a neighbor 

in S).  

We prove the maximality by contradiction assuming that S 

is not yet maximal. Suppose in the legitimate configuration 

where all the nodes are inactivated, we add into the set S a node 

v (with v.state=Out) and S remains independent. However, 

since R1 is inactivated, v has at least one neighbor in S within 

distance 2. This is a contradiction to the distance-2 

independence property. 

 

4.2 Convergence 

 

Lemma 2 When node v executes R1, then:  

v becomes independent and remains independent because 

every neighbor node within distance-2 remains outside of S 

and cannot be activated. 

 

Proof Suppose a node v has executed R1. Thus, all neighbor 

nodes u within a distance of 2 from v are outside of S. 

Consequently, none of u nodes could enable R1 because there 

is at least node v in S as a neighbor of u within a distance of 2. 

Therefore, v remains in S, and all neighbors within a distance 

of 2 still be outside of S. 

 

Lemma 3 Any node in V will be activated at most twice by 

R2 followed by R1. Consequently, MD2IS terminates at most 

after 2n moves. 

 

Proof As demonstrated by Lemma 2, once every node 

executes R1, it remains stationary and cannot move again. This 

implies that, in the worst-case scenario, each node could be 

activated solely by R2 followed by R1. Hence, n nodes need a 

maximum of 2n moves to reach the legitimate configuration. 

 

Theorem 1 MD2IS is a self-stabilizing algorithm that 

computes the Maximal Distance-2 Independent Set in a linear 

time complexity of O(n) moves, using the expression model 

under the central daemon. 
 

Proof The proof is followed by Lemma 1 and Lemma 3. 

 

Although the distance-2 model simplifies the creation of 

new self-stabilizing algorithms, the developed algorithm 

cannot be applied directly. Instead, it must be converted into 

an executable distance-1 model. This transformer suggests 

converting any self-stabilizing algorithm A operating under a 

central daemon, to an equivalent algorithm AT that executes 

under a distributed daemon. The latter algorithm is more 

efficient in real contexts. The transformer converts also the 

theoretical distance-2 model to a real applicable distance-1 

model.  

 

Theorem 2 Using a distributed daemon with a distance-1 

model, MD2ISD reaches the legitimate configuration of the 

Maximal Distance-2 Independent Set in O(nm) moves. 

 

Proof The proof is followed from Theorem 18 of the paper 

of Turau [4], where m represents the number of edges. 

 

 

5. SELF-STABILIZING ALGORITHM MDSD2  

 

In the literature, Hedetniemi et al. [6] have introduced an 

algorithm for MDS based on using In and Out states. To 

converge to the legitimate configuration, nodes move from In 

to Out or from Out to In until reaching stabilization. The 

authors use also a pointer for nodes out of S to determine nodes 

that have exactly one neighbor inside S. For nodes having 

more than a neighbor in S, the pointer is null. Figure 3 

illustrates this additional process of pointing (node out S points 

its unique neighbor in S) in moves 2 and 3. This section aims 

to show how the expression model could simplify designing a 

new algorithm in the self-stabilization context. The expression 

model has the power to make abstraction on distance-2 in 

contrast to the habitual distance-1 model. It allows masking 

details like the above-mentioned process of pointing which is 

considered as an additional complication in proposing new 

algorithms. Using the expression distance-2 model, we 

propose an algorithm called MDSD2 to compute the minimal 

dominating set. 

 

 
 

Figure 3. Convergence to the MDS using Hedetniemi 

algorithm [7] 

 

 
 

Figure 4. Convergence to the MDS using expression 

distance-2 model 

 

In Algorithm 2, each node v includes a local variable state 

and an expression exp. The state value can be either "In" or 

"Out", indicating whether a node is inside the dominating set. 

Once the system reaches a legitimate state, the set S={vV: 

v.state=In} represents the dominating set. For the local 

expression exp, it calculates the number of neighbors in S of 

the current node. It helps to determine whether every node 

outside of S is dominated. Rule R1 guarantees that every node 

outside S must be dominated, otherwise, it moves any node 

outside of S that is not dominated from Out to In. In contrast, 

R2 aims to minimize the set S as small as possible. If a given 
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node v inside S exits S so that S remains a dominating set, then 

R2 forces v to leave S. Note that before a node v decides to exit 

S, exp is used to ensure that all neighbors 𝑢 ∈ 𝑁𝑉−𝑆(𝑣) 

maintain the domination condition after v's departure. If it is 

determined that after v switches from In to Out, at least one 

neighbor 𝑤 ∈ 𝑁𝑉−𝑆(𝑣)  would become undominated, and v 

cannot exit S. Figure 4 illustrates an example of the algorithm's 

execution converging to the minimal dominating set within 3 

moves. 

 

Algorithm 2. Minimal Dominating Set - MDSD2 

(1) 𝑣 . 𝑒𝑥𝑝 ∶ |{𝑢 ∈ 𝑁(𝑣): 𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛}| 
(2) 𝐑𝟏: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ 𝑣. 𝑒𝑥𝑝 < 1 →  𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 
(3) 𝐑𝟐: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∧ 𝑣. 𝑒𝑥𝑝 ≥ 1 ∧ ∀𝑢 ∈ 𝑁𝑉−𝑆(𝑣): 𝑢. 𝑒𝑥𝑝

> 1 →  𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 

 

5.1 Closure 

 

Lemma 4 The set S is a minimal dominating set when all 

nodes are inactivated. 

 

Proof We demonstrate that (a) S is a dominating set and (b) 

S is minimal. 

 

(a) Given that R1 is inactivated, it follows that for any node 

v outside of S, the local expression v.exp≥1. Consequently, 

every node v outside of S is dominated. Thus, S is a dominating 

set.  

 

(b) We show that S is minimal by contradiction. Let's 

assume that all system nodes are inactive, and there exists a 

dominating set S0 which is a subset of S such that S0=S−{v}. 

Consequently, |NS0(v)| ≥ 1 (since S0 is a dominating set), 

implying that |NS(v)|≥1 due to NS0(v)=NS(v). Since none of the 

S nodes is activated (R2 is not enabled for v) and v.exp ≥ 1, 

there exists a node u neighbor of v outside of S such that u.exp 

≤ 1, leading to |NS(u)|≤1. Also, since v is a neighbor of u and 

S0=S−{v} thus |NS0(u)|=|NS(u)|−1. Hence |NS0(u)|<1 due to 

|NS(u)|≤1. This is a contradiction because every node outside 

of S0 must be dominated. 

 

5.2 Convergence and Complexity Analysis 

 

Lemma 5 For every node w outside of S which is dominated 

(w.exp≥ 1), the value w.exp remains greater than or equal to 

1 and cannot decrease below 1. 

 

Proof Consider a node w outside of S with u.exp≥1. The 

value of u.exp may decrease if and only if any neighbor node 

v moves from inside to outside S. According to rule R2, when 

node v switches from inside to outside S, all neighbors u of v 

that are outside S have u.exp>1. Let’s denote S2 as the new set 

of nodes with state=In after v is removed from S, therefore, 

|NS2(u)|=|NS(u)−1|. Consequently, |NS(u)−1|≥1 implies 

|NS2(u)|≥1, ensuring that u.exp remains ≥1 through recurrence. 

 

Lemma 6 Once a node exits set S, it cannot return to S 

thereafter. 

 

Proof As any node exits S has exp ≥1, R1 cannot be 

executed. Lemma 5 indicates that Rule R1 cannot be triggered 

again. 

 

Lemma 7 Using the expression distance-2 model with the 

central daemon, if each node executes R1 followed by R2, 

algorithm 2 terminates in the worst case by executing 2n 

moves. 

 

Proof The proof is evident according to Lemma 5 and 

Lemma 6. 

 

Theorem 3 Using a central daemon and under the 

expression model, the self-stabilizing algorithm MDSD2 

reaches the minimal dominating set in O(n) moves. 

 

Proof According to Lemma 4 and Lemma 7, the proof is 

adopted. 

In the following theorem, we employ the transformer of 

Turau [4] that provides an alternative self-stabilizing 

algorithm MDSD2D which executes under a distributed 

daemon with the habitual distance-one model. 

 

Theorem 4 Using a distributed daemon and under the 

distance-1 model, the self-stabilizing algorithm MDSD2D 

computes the minimal dominating set and converges to the 

legitimate configuration within O(nm) moves. 

 

Proof The proof is adopted according to Theorem 18 of 

Turau [4], where m is the number of edges in the graph. 

 

 

6. SIMULATION RESULTS 

 

In this section, the simulation tests are presented to evaluate 

the proposed algorithms MD2IS and MDSD2. Evaluations are 

performed according to two metrics: (1) cardinality (the 

number of elements) of the independent and/or dominating set, 

(2) and convergence (the number of moves) to reach the 

legitimate configuration. A self-stabilizing algorithm is more 

preferment if it has a smaller cardinality and converges sooner 

to the legitimate configuration. The convergence metric 

reflects the communication complexity between nodes in the 

network.  

The algorithms MD2IS and MDSD2 have been written in 

Java using an expression model. For MIS [7] and MDS [6], the 

implementation of Kuszner [23] has been reutilized. The 

graphs have been generated randomly with different densities 

and sizes using the Erdos-Renyi model [24], called also 

random networks. To control the number of edges, a parameter 

of density is changed from 0 to 1. The more the density 

parameter grows, the more the number of edges increases. 

When the density parameter equals 1, the graph is fully 

connected. The generated graphs varied from 500 nodes to 

20000 nodes. For each size of graphs, we have carried out from 

5 to 10 executions. The average value has been considered 

after the algorithm converges to the legitimate configuration. 

Figure 5 illustrates the size variation of MD2IS and MIS 

according to graph density. MD2IS produces smaller 

independent sets compared to those generated by MIS. The 

density of the graphs significantly influences the size of the 

obtained sets. As shown in Figure 5, when the graph density 

increases, the size of the independent sets tends to decrease. 

For instance, the number of nodes of the MD2IS set 

approaches 1 as the density exceeds 0.5. It is worth noting that 

the MD2IS set includes only one node for the fully connected 

graphs (density=1). 

Figure 6 depicts the size variation of MD2IS and MIS sets 

according to the number of nodes of the overall graph. The 
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curves demonstrate that the maximal independent set (MIS) 

grows proportionally with graph size. Conversely, the 

cardinality of MD2IS decreases as graph size increases. For 

instance, in graphs comprising 10000 nodes, the MIS 

cardinality exceeds 100, while the MD2IS cardinality remains 

below 10 nodes. 

 

 
 

Figure 5. Number of nodes inside MD2IS and MIS according to graph density  

 

 
 

Figure 6. Number of nodes inside independent sets according to the overall size of the graphs 
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Figure 7. Number of nodes inside MDSD2 according to graph density 

 

 
 

Figure 8. The convergence in computing MDS according to graph density (for graphs with 500 nodes) 

 

Additional simulation results are presented in Table 1. The 

experiments utilize arbitrary graphs with a low density to be 

closer to modeling the real existing networks. The generated 

graphs on which simulations are executed can contain from 

1000 nodes up to 20000 nodes. To measure the size of 

MD2IS/MIS and the number of moves to converge to 

MD2IS/MIS, average values are considered after executing 5 

tests. The number of moves to reach the legitimate 

configuration is proportional to the size of the graphs. 

According to Lemma 3, MDSIS is achieved after 2n moves in 

the worst case, This upper bound is confirmed by the 

conducted tests even though our results show that n/2 is 

sufficient to compute MD2IS. 

Figure 7 shows the size of the dominating set for the two 

algorithms of expression model MDSD2 and the distance-1 

model MDS of Hedetniemi [6]. Although the two algorithms 

provide approximately the same size, recall that we aim to 

show that our proposed algorithm using the expression 
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distance-2 model has been designed in a straightforward way 

regarding the distance-1 algorithm which is written using 

complicated rules based on pointers [6]. 

Figure 8 illustrates that both MDS algorithms converge to 

the legitimate configuration in a limited duration of time. Note 

that the time of convergence is calculated with the number of 

moves for the distance-1 model, while for the expression 

distance-2 model, the number of expressions is considered. 

 

Table1. Size of MD2IS and convergence (in moves) for graphs with a density of 0.001 

 
Graph Size MD2IS Cardinality MIS Cardinality MD2IS Convergence MIS Convergence 

1000 601.8(60.18%) 687.8(68.78%) 400.2 415.6 

1500 703.6(46.91%) 926.4(61.76%) 652.8 636.6 

2000 758.2(37.91%) 1099.4(54.97%) 910.8 845.4 

2500 794.4(31.78%) 1248.2(49.93%) 1229.2 1078.4 

3000 786.6(26.22%) 1385.0(46.17%) 1570.8 1327.4 

3500 776.4(22.18%) 1522.4(43.50%) 1877.2 1624.6 

4000 762.2(19.06%) 1614.4(40.36%) 2202.8 1887.4 

4500 748.8(16.64%) 1720.4(38.23%) 2483.6 2206.0 

5000 724.2(14.48%) 1801.0(36.02%) 2785.8 2454.8 

5500 711.0(12.93%) 1887.0(34.31%) 3048.4 2749.2 

6000 692.2(11.54%) 1964.4(32.74%) 3335.6 3061.6 

6500 662.8(10.20%) 2020.8(31.09%) 3551.6 3324.6 

7000 642.6(9.18%) 2111.8(30.17%) 3825.2 3691,4 

7500 633.8(8.45%) 2149.8(28.66%) 4098.8 3927.2 

8000 604.6(7.56%) 2216.6(27.71%) 4333.4 4229.2 

8500 601.8(7.08%) 2269.2(26.70%) 4586.4 4542.8 

9000 577.6(6.42%) 2320.4(25.78%) 4836.0 4830.8 

9500 552.8(5.82%) 2364.6(24.89%) 5097.2 5152.4 

10000 548.4(5.48%) 2415.2(24.15%) 5350.8 5379.2 

10500 527.4(5.02%) 2476.2(23.58%) 5645.0 5728.4 

11000 501.6(4.56%) 2507.4(22.79%) 5817.6 6063.2 

11500 498.2(4.33%) 2560.4(22.26%) 6091.0 6303.6 

12000 481.2(4.01%) 2602.2(21.69%) 6300.6 6622.0 

12500 477.8(3.82%) 2635.2(21.08%) 6555.8 6923.8 

13000 454.6(3.50%) 2665.6(20.50%) 6790.0 7195.0 

13500 448.0(3.32%) 2705.0(20.04%) 7057.6 7496.6 

14000 435.2(3.11%) 2747.8(19.63%) 7251.6 7758.6 

14500 427.4(2.95%) 2785.0(19.21%) 7512.0 8045.0 

15000 416.2(2.77%) 2793.0(18.62%) 7798.4 8234.0 

15500 408.2(2.63%) 2839.4(18.32%) 7988.8 8579.8 

16000 398.8(2.49%) 2867.4(17.92%) 8293.6 8857.8 

16500 392.0(2.38%) 2886.6(17.49%) 8496.2 9177.6 

17000 383.4(2.26%) 2934.2(17.26%) 8798.4 9433.6 

17500 380.2(2.17%) 2962.6(16.93%) 9043.4 9704.0 

18000 367.6(2.04%) 2976.6(16.54%) 9249.4 9972.0 

18500 361.0(1.95%) 3017.8(16.31%) 9481.0 10284.0 

19000 355.2(1.87%) 3036.6(15.98%) 9748.6 10535.8 

19500 353.0(1.81%) 3054.8(15.67%) 9998.8 10785.0 

20000 340.4(1.70%) 3080.2(15.40%) 10207.8 11032.4 

 

 

7. CONCLUSION 

 

Two new self-stabilizing algorithms have been presented to 

compute the maximal distance-2 independent set and the 

minimal dominating set, called MD2IS and MDSD2, 

respectively.  The algorithms were proposed very smoothly 

through the expression distance-2 model. Thus, in this paper, 

we illustrated the ability of the expression model of Turau to 

simplify the design of new algorithms in the self-stabilizing 

paradigm. However, the introduced algorithms under the 

expression model cannot be applied directly and need to be 

converted into the real executable distance-1 model. 

The expression model of Turau allows to design of new 

algorithms with a certain level of abstraction that hides 

unuseful algorithmic details. Under this abstraction, the 

correctness and convergence proofs become evident to be 

formulated. The proposed algorithms reach the legitimate 

configuration in O(n) moves with the expression model and 

under a serial execution. In the habitual distance-one model, 

the algorithms achieve the legitimate configuration in O(nm) 

moves under distributed execution. 

Simulation results illustrate also the efficiency of the 

proposed algorithms. Our algorithms provide results similar to 

the existing algorithms for some cases such as the cardinality 

of minimal dominating set. In other cases, comparison cannot 

be considered due to the differentiation of criteria. For 

example, MIS and MD2IS provide different sets by definition 

which makes the comparison of cardinality insignificant in this 

case.  

The obtained results reveal a reduced number of nodes for 

MD2IS set which is considered an important result in our 

study. The reduced number of MD2IS can be employed 

efficiently for a lot of real cases such as sensor wireless 

networks to select cluster heads. Thus, the use of MD2IS 

seems promising due to its self-stabilizing nature that allows 

the network to continue to operate even in the presence of 

faults with an efficient consumption of energy for nodes and 

cluster heads. In future works, we hope to study self-
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stabilization with a more general distance-k and to test the 

efficiency of our algorithms for real applications. 
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