
Self-Stabilizing Algorithms for Computing Maximal Distance-2 Independent Sets and

Minimal Dominating Sets in Networks

Djamila Bouhata , Souheila Bouam , Hamouma Moumen* , Badreddine Benreguia , Chafik Arar

LAMIE Laboratory, Department of Computer Science, University of Batna 2, Batna 05078, Algeria

Corresponding Author Email: hamouma.moumen@univ-batna2.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290219 ABSTRACT

Received: 29 May 2023

Revised: 4 September 2023

Accepted: 11 October 2023

Available online: 25 April 2024

This study devises self-stabilizing algorithms that leverage the expression distance-2

paradigm to compute (i) a maximal distance-2 independent set, wherein selected nodes

maintain a separation exceeding two edges, ensuring non-adjacency; and (ii) a minimal

dominating set, wherein each external node has at least one node as a neighbor in the

dominating set. The efficacy and convergence of the algorithms are established through

rigorous proofs within the framework of the expression model. Extensive simulation tests

validate the algorithms' proficiency in selecting a minimal subset of nodes across expansive

network topologies. These algorithms find practical applications in network operations,

particularly in ad hoc and wireless sensor networks for the selection of cluster heads that

facilitate critical services. Moreover, the self-stabilizing property of the algorithms

guarantees the robust reconfiguration of cluster heads post-failure, thereby preserving

network functionality amidst disruptions.

Keywords:

self-stabilizing algorithm, expression model,

maximal independent set, minimal

dominating set, distributed system, network

1. INTRODUCTION

Self-stabilization emerges as a pivotal fault tolerance

paradigm within distributed systems and networks, facilitating

convergence to a correct global state from an unspecified

initial configuration. Such a self-stabilizing algorithm,

operational without the necessity for external intervention, is

capable of amending the distributed system's global state

within a determinate timeframe. The literature is replete with

a spectrum of self-stabilizing algorithms derived from graph

theory. These algorithms address an assortment of

computational problems including leader election, node

coloring, and the provision of solutions to domination and

independent set issues, as well as the construction of spanning

trees. The practical significance of these algorithms is

accentuated in their application to network architectures such

as sensor and ad-hoc networks, where they are instrumental in

defining cluster heads [1-3].

Let G=(V, E) be a graph where V represents the node set

and E is the edge set. The present work employs several

variants of independent and dominating sets, which are

frequently referenced throughout subsequent sections. The

definitions of these terms are as follows:

• Independent Set: is defined as a subset of nodes in V,

denominated S, such that no two nodes within S share an

edge.

• Maximal Independent Set (MIS): It is an independent

set, denoted as S, for which no larger set exists that

preserves independence. It is implicit that within MIS,

the distance between any node pair in S exceeds one.

• Maximal Distance-2 Independent Set (MD2IS): This

is a particular set of the independent set, S, wherein no

node in S is reached by another node in S only through

at least 3 edges. In MD2IS, there are no two independent

nodes in S that could be reached through two edges.

• Minimal Dominating Set (MDS): is a subset of nodes,

denoted as S, where every node in the graph is either

included in S or is adjacent to at least one node of S. The

dominating set is considered minimal if no smaller

subset of S can satisfy the conditions of being a

dominating set.

Figure 1 serves as an illustrative guide for conceptualizing

the Maximal Independent Set, Maximal Distance-2

Independent Set, and Minimal Dominating Set. In this figure,

nodes delineated in green represent members of the respective

set. It is noteworthy that, as depicted in Figure 1(a), the MIS

showcases a pairwise node distance of at least two edges. In

contrast, Figure 1(b) reveals that within the MD2IS, the inter-

node distance is strictly greater than two edges. In the case of

MDS, any node not inside the MDS (represented with black)

is at least adjacent to one member of the MDS, thereby

satisfying the domination property.

Historically, the pursuit of solutions for the MDS and MIS

conundrums has been vigorous within the realm of self-

stabilization research. Traditional approaches predominantly

employ the distance-one model, which permits interactions

solely between immediate neighboring nodes. In a novel

departure, the distance-2 model for self-stabilization-

introduced by Turau [4] extends this interaction to nodes

within a two-hop radius. This study seeks to highlight the

capacity of the distance-2 model to underpin the development

of novel self-stabilizing algorithms. The abstraction inherent

in the distance-2 model paves the way for the forthcoming

design of algorithms targeting both MD2IS and MDS.

Ingénierie des Systèmes d’Information
Vol. 29, No. 2, April, 2024, pp. 581-590

Journal homepage: http://iieta.org/journals/isi

581

https://orcid.org/0000-0001-5723-1019
https://orcid.org/0000-0002-2970-9625
https://orcid.org/0000-0002-1986-7590
https://orcid.org/0000-0002-1181-3950
https://orcid.org/0000-0002-8830-7140
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290219&domain=pdf

However, the application of such algorithms within the

distance-1 paradigm necessitates the utilization of a

transformer. Despite the ease of algorithm design afforded by

the distance-2 model, direct application is untenable; hence,

transformation to the executable distance-1 model is

imperative. The transformer introduced by Turau [4] will be

used in this research.

In practical scenarios, the implementation of MIS, MD2IS,

and MDS finds resonance in ad hoc and wireless sensor

networks. Here, nodes within these sets assume the role of

servers or cluster heads, providing a suite of services to

adjacent nodes, designated as cluster members. These services

encompass but are not limited to routing data, key distribution

for encryption, and management of member identity. Given

the propensity for failures in ad hoc and, particularly, sensor

networks (often attributed to battery limitations) the

indispensability of self-stabilizing algorithms becomes

pronounced. Such algorithms are integral to the restoration of

cluster headsets, thereby ensuring network resilience and

operational continuity.

(a) MIS: Maximal Independent Set

(b) MD2IS: Maximal Distance-2 Independent Set

(c) MDS: Minimal Dominating Set

Figure 1. Three variants of independent and dominating sets

composed of green nodes

1.1 Paper organization

The structure of the paper is methodically divided into seven

sections for clarity and coherence. Section 2 discusses the

prior art and delineates the contributions of the current study.

Section 3 presents the model and the terminological

foundation used in self-stabilization. The algorithms proposed

for identifying the Maximal Independent Set at a distance-2

and then for the computation of the Minimal Dominating Set

using the distance-2 model are introduced in Sections 4 and 5.

In section 6, we illustrate the simulation tests to demonstrate

the efficiency of the proposed algorithms. Lastly, in Section 7,

the conclusion summarizes the main points presented in this

paper.

2. RELATED WORK AND PAPER CONTRIBUTION

Shukla et al. [5] have introduced a self-stabilizing algorithm

to compute the maximal independent set. Their approach is

based on two simple rules: (1) a node v has to enter into the set

S if v has no neighbor within S, (2) and each node inside S has

to exit S if it has a neighbor that belongs to S to preserve

independence. Hedetniemi et al. [6] have presented a self-

stabilizing algorithm to calculate the minimal dominating set.

Subsequently, numerous algorithms have emerged, using

additional domination parameters such as total domination [7,

8], efficient domination [9, 10], connected dominating set [11,

12], influence domination [13, 14], and distance-k domination

[15].

Other algorithms to address specific challenges of

independent sets have appeared, aiming to minimize

algorithmic complexity [16] or to align with distributed

daemon environments [7, 17]. A detailed study of existing

algorithms in the self-stabilization context is provided in the

survey [18], particularly for independent and dominating sets.

Moreover, additional constraints beyond independence are

imposed in certain algorithms for independent sets. For

instance, Neggazi et al. [19] have proposed an algorithm aimed

at identifying a maximal independent set S, wherein each node

u outside of S must have a neighbor v in S, satisfying

degree(v)>degree(u). All the mentioned above algorithms are

developed under the habitual distance-1 model.

Arapoglu and Dagdeviren [2] introduced an algorithm for

Maximal Independent Sets (MIS), using distance-2

information. This algorithm, designed to compute MIS within

a distributed daemon, was specifically designed for wireless

sensor networks to minimize energy consumption. Under the

distance-2 model, nodes allocate 50% of their transmission

power for data transfer within distance-1, while utilizing 100%

of their transmission power for propagating information across

distance-2. Employing the message-passing model, every

node could diffuse information to neighbors within a distance-

2 only when its state changes.

Johnen [20, 21] has introduced a self-stabilizing algorithm

aimed at identifying an independent set S where any two nodes

can only reached through k+1 or more edges. The algorithm

presented in the study by Johnen [21] marks an enhancement

in memory management compared to the study [20]. In a

separate work by Datta et al. [15], an algorithm is proposed to

determine a dominating set S, (not necessarily independent)

where every node outside of S remains reached at a distance of

at most k from S. Despite the bounded complexity of O(n+k)

in rounds for the algorithms, the authors highlight the

possibility of non-convergence under a distributed daemon, as

an enabled node could be overlooked. In the literature on self-

stabilization, a finite round complexity does not guarantee

convergence [15]. Hence, determining the convergence time

remains an unresolved issue [15, 20, 21] to compute the

independence between nodes in the general case of distance

k≥2. In this paper where k=2, we show that our self-stabilizing

algorithm converges during a period of finite time.

582

2.1 Contribution

Using the expression distance-2 model, this paper proposes

two new self-stabilizing algorithms called MD2IS and

MDSD2. The first algorithm MD2IS aims to find the maximal

independent set S where any pair of nodes in S are only linked

through 3 or more edges. The second algorithm MDSD2 seeks

to find the minimal dominating set using the expression model.

The proofs of the correctness and convergence of the proposed

algorithms are formally presented. The main goal is to show

the power of the expression distance-2 model to facilitate the

design of new self-stabilizing algorithms.

The complexity of the proposed algorithms is O(n) to reach

the legitimate configuration, assuming using the expression

model and the central daemon. The conversion of the

algorithms into the distance-one model provides an equivalent

algorithm that converges to the correct configuration in O(nm)

moves under a distributed daemon, where m is the number of

edges. Simulation tests confirm the correctness and

convergence of the proposed algorithms as has been illustrated

in the proofs. Tests provide small-reduced independent

dominating sets, which is considered as a valuable result for

many applications in the case of large-scale networks.

3. MODEL AND TERMINOLOGY

Distributed systems are typically represented as graphs,

denoted as G(V, E). The set V of vertices, called also nodes,

represents the processing units of the distributed system. The

connections between units are represented by the set of links

E, called also edges. Nodes u which shares a link with 𝑣 ∈ 𝑉

is the set of v neighbors defined as 𝑁(𝑣) = {𝑢 ∈ 𝑉: 𝑣𝑢 ∈ 𝐸}.

Two nodes 𝑣, 𝑢 are considered adjacent if 𝑢 ∈ 𝑁(𝑣).

We define the concept of the neighborhood at distance-2,

denoted as 𝑁(𝑣)𝑑𝑖𝑠𝑡2 = 𝑁(𝑣) ∪ {𝑤 ∈ 𝑉: ∃𝑢 ∈ 𝑁(𝑣): 𝑤 ∈
𝑁(𝑢)}. Consequently, all neighbors of v at distance 2 are either

at a distance of 1 or 2 from v.

A subset 𝑆 in 𝑉 is said independent if there are no adjacent

nodes in 𝑆, or there are no pair of nodes in 𝑆 that are linked by

an edge. Similarly, a subset 𝑆 is called distance-k independent

if there are no two nodes in S that are linked by k (or less)

edges. Any pair of nodes in 𝑆 are connected only through k+1

(or more) edges [20]. Thus, we call a set S distance-2

independent, if any two nodes in S are reached only through a

number of edges that is strictly greater than 2. It is worth

noting that in the Maximal Independent Set (MIS), every node

v is either independent if v is inside the MIS, or dominated at

least by an independent node u if v is outside the MIS [4]. In

the literature, the MIS is also known as the independent

dominating set.

Any node 𝑢 outside of the maximal distance-2 independent

set, called MD2IS, is:

-either, u has at least an adjacent node 𝑣 ∈ 𝑀𝐷2𝐼𝑆 , (hence,

u is dominated),

-or u is dominated (at distance-2) by a node 𝑣 ∈
𝑀𝐷2𝐼𝑆 where u could reach v only through 2 edges.

Note that multiple nodes from the MD2IS set could

dominate a node u outside the MD2IS set. Figure 1(b)

illustrates an example of a node u that could be dominated by

a couple of nodes v1 and v2. The distance between u and v1 is

1 and the distance between u and v2 is 2.

Definition 1: In a graph G(V, E), a subset S in V is said a

distance-2 independent set if and only if any two nodes in S

are reached only through a number of edges that is greater or

equal to 3. S is maximal if there is no other set S’ that contains

S such that S’ is a distance-2 independent set.

Definition 2: In a graph G(V, E), a dominating set is a

subset S in V where every node u outside of S has at least an

adjacent node v inside S.

In the self-stabilization context, an algorithm needs to (1)

attain a globally legitimate configuration (2) within a finite

period called convergence. Upon reaching the legitimate

configuration, the algorithm must remain within the legitimate

configuration and cannot move again outside the legitimate

configuration. This condition is referred to, in the literature, as

closure. Consequently, to demonstrate the self-stabilizing

nature of an algorithm, it is necessary to show the closure and

the convergence. The closure aims to illustrate that the reached

legitimate configuration remains legitimate without any risk of

moving again to an illegitimate state. The convergence is the

certainty of achieving a legitimate configuration in a finite

period.

In a self-stabilizing system, each node has a number of rules:

R1, R2, … Ri. For every rule, written generally as

guard→statement, the guard is checked using an infinite loop.

The statement can be executed if the guard is true. If all nodes

execute the same rules i.e. the same code, the distributed

system is known as uniform in contrary to other systems where

some nodes could execute a different code such as semi-

uniform systems wherein one node has a different code.

Generally, local variables are used at the level of each node to

define the node state. The local state can be read and modified

only by the local owner. Adjacent nodes can read the state of

the local node, but cannot write in the local variable of their

neighbor node.

Besides a local variable, the expression model proposes that

every node can use (read/write) a local expression exp to have

a partial view in the neighborhood at distance-1. Since any

other node can read (but not write) the expression exp of its

neighbors, it reaches in fact, information at distance 2. Thus,

the expression model is executed based on information

obtained at distance 2.

The guard consists of Boolean conditions using variables

and/or expressions of the local node or the neighbor nodes.

During the infinite check loop, when a guard is true, its

corresponding rule is known as enabled or privileged. Thus, a

node is enabled or privileged if there is an enabled rule among

its set of rules. The execution of a statement leads to a change

in the local state and consequently, to a new configuration of

the global configuration. This transition through an enabled

node is known in the literature as a move. However, the

execution of a move is only allowed after getting the

permission of a scheduler or a daemon. The algorithm is self-

stabilizing if the sequence of executed moves is finite

(whatever serial or distributed) leading certainly to a

legitimate configuration.

3.1 Daemon notion

Before starting to design a new self-stabilizing algorithm,

an important hypothesis must be assumed whether the

algorithm is executed in a parallel or sequential way. Despite

the parallel execution seems more efficient, it is difficult to

formally show the correctness and the convergence under the

distributed execution compared to the sequential execution.

In this direction, the daemon concept, known also as a

scheduler, comes to provide researchers with an abstract tool

583

to make a suitable hypothesis according to the context in

which is facing.

In a central daemon, it is supposed that privileged nodes are

executed one by one in a sequential order determined by the

daemon which is also referred to as serial daemon. Conversely,

in a distributed daemon, the daemon may select many

privileged nodes to execute a move simultaneously, forming a

round. In the case the daemon allows all privileged nodes to

execute a move simultaneously, this scheduler is said

synchronous.

3.2 Transformers

A commonly employed method, as discussed in the work of

Turau et al. [4, 22], involves the conversion of a self-

stabilizing algorithm A, which operates within specific

assumptions, into a new algorithm AT, that runs under other

assumptions. Despite this transformation, both algorithms are

equivalent and ensure to achieve the same final configuration.

Various types of transformers, such as distance transformers

and daemon transformers, can be found in the literature.

However, the transformation typically introduces additional

time complexity by algorithm AT to reach the final correct

configuration.

In this paper, we adopt the transformer of Turau [4], to

convert the initially proposed algorithm A under the

expression model and a central daemon to obtain a distributed

algorithm AT. The expression distance-2 model provides an

abstraction on the proposed algorithm A which facilitates

proving the correctness and convergence. On the contrary, the

design of new algorithms is complicated under the distance-1

context due to the details presented in this case. However, the

hypotheses, on which the algorithm A is supposed to run, are

either not feasible or not efficient for the execution of A. For

instance, self-stabilizing algorithms cannot use directly

distance-2 in reality and need to use gradually distance-1.

Since distributed execution is more efficient than serial

execution in terms of time of convergence, the transformation

is an imperative necessity for an algorithm developed under

the expression model.

3.3 Our execution model

We assume first that our algorithm is executing with the

expression model and a central scheduler. The transformer is

adopted then to allow our algorithm to function under other

hypotheses.

4. SELF-STABILIZING ALGORITHM MD2IS

Algorithm 1 is a uniform self-stabilizing algorithm designed

to identify the maximal distance-2 independent set MD2IS.

Every node v maintains a local variable state and an expression

exp. The state variable can hold either In or Out as values to

indicate whether node v is inside or outside the set MD2IS.

The exp expression helps to count the number of neighbors

that are inside MD2IS. Once the legitimate configuration is

reached, all nodes are disabled, and the set 𝑆 = {𝑣 ∈

𝑉: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛} is the maximal distance-2 independent set.

During the illegitimate configuration, enabled nodes

execute serial moves until the system converges to the correct

global configuration. After each move, a randomly enabled

node is chosen by the central daemon to execute a new move.

Algorithm 1. Maximal Distance-2 Independent Set – MD2IS

(1) 𝑣 . 𝑒𝑥𝑝: : |{𝑢 ∈ 𝑁(𝑣): 𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛}|
(2) 𝐑𝟏: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ ∀𝑢

∈ 𝑁(𝑣): (𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ 𝑢. 𝑒𝑥𝑝 = 0)
→ 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛

(3) 𝐑𝟐: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∧ ∃𝑢
∈ 𝑁(𝑣): (𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∨ 𝑢. 𝑒𝑥𝑝 > 1)
→ 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡

Each node checks its state and its neighborhood by utilizing

state and exp. The expression exp is specifically employed to

compute the number of neighbors belonging to the set S. The

expression model facilitates the detection of neighbors that are

inside S within a distance of 2. When a node accesses to

expressions of its neighbors, it gets information about the

neighbors located at a distance of 2.

In the MD2IS algorithm, the first rule R1 allows the local

node to move from outside to inside S, however R2 moves

nodes from inside to outside S. Given a node v outside of S, R1

examines the states and the expressions of neighbor nodes. If

the state of all neighbors is Out and the expression of all

neighbors is equal to 0, then v moves from outside to inside S.

When a node v is inside S, R2 checks if there exists at least a

neighbor u with either u.state = In or u.exp>1 (u is dominated

at least by two nodes: v and another node), thus v needs to

move from inside to outside S due to the existence of a

neighbor u within a distance of 2 inside S.

The execution of R1 guarantees that the independence

property within distance 2 remains respected after moving a

new node v from outside to inside S. However, if a given node

v violated the independency condition, the execution of R2

removes v from S to outside.

Figure 2. Convergence to the final legitimate MD2IS

configuration

Figure 2 illustrates how algorithm MD2IS reaches the

legitimate configuration after it starts from a random initial

configuration. Black nodes are outside S while green nodes

denoted elements inside S. If nodes are surrounded with red

circles, the system is in an illegitimate configuration. Nodes

surrounded in red color represent privileged nodes that are

capable of executing a move. Using a central daemon, at each

step, the daemon selects only one privileged node to carry out

a move. The MD2IS set is achieved after five moves according

to the sequence of rules: R2, R2, R2, R1, R1. Once no node

(surrounded with red color) exists, the graph is considered in

the final legitimate configuration. Note that, certain moves,

such as the transition from configuration c to configuration d,

may activate additional nodes in subsequent configurations.

584

4.1 Closure

Lemma 1 The set S={v∈V, v.state=In} is maximal distance-

2 independent when there is no activate node.

Proof When the system reaches the final legitimate

configuration, all the nodes are inactivated. Thus, no node can

execute R2 because the guard of R2 is false. Hence, for each

node v in S, all neighbors u of v: (u.state=Out ∧ u.exp ≤ 1).

Thus, all neighbor nodes u are outside of S, and within a

distance of 2 from v, there is no node inside S because u.exp≤1,

(When u.exp=1, only v is in S since u has only v as a neighbor

in S).

We prove the maximality by contradiction assuming that S

is not yet maximal. Suppose in the legitimate configuration

where all the nodes are inactivated, we add into the set S a node

v (with v.state=Out) and S remains independent. However,

since R1 is inactivated, v has at least one neighbor in S within

distance 2. This is a contradiction to the distance-2

independence property.

4.2 Convergence

Lemma 2 When node v executes R1, then:

v becomes independent and remains independent because

every neighbor node within distance-2 remains outside of S

and cannot be activated.

Proof Suppose a node v has executed R1. Thus, all neighbor

nodes u within a distance of 2 from v are outside of S.

Consequently, none of u nodes could enable R1 because there

is at least node v in S as a neighbor of u within a distance of 2.

Therefore, v remains in S, and all neighbors within a distance

of 2 still be outside of S.

Lemma 3 Any node in V will be activated at most twice by

R2 followed by R1. Consequently, MD2IS terminates at most

after 2n moves.

Proof As demonstrated by Lemma 2, once every node

executes R1, it remains stationary and cannot move again. This

implies that, in the worst-case scenario, each node could be

activated solely by R2 followed by R1. Hence, n nodes need a

maximum of 2n moves to reach the legitimate configuration.

Theorem 1 MD2IS is a self-stabilizing algorithm that

computes the Maximal Distance-2 Independent Set in a linear

time complexity of O(n) moves, using the expression model

under the central daemon.

Proof The proof is followed by Lemma 1 and Lemma 3.

Although the distance-2 model simplifies the creation of

new self-stabilizing algorithms, the developed algorithm

cannot be applied directly. Instead, it must be converted into

an executable distance-1 model. This transformer suggests

converting any self-stabilizing algorithm A operating under a

central daemon, to an equivalent algorithm AT that executes

under a distributed daemon. The latter algorithm is more

efficient in real contexts. The transformer converts also the

theoretical distance-2 model to a real applicable distance-1

model.

Theorem 2 Using a distributed daemon with a distance-1

model, MD2ISD reaches the legitimate configuration of the

Maximal Distance-2 Independent Set in O(nm) moves.

Proof The proof is followed from Theorem 18 of the paper

of Turau [4], where m represents the number of edges.

5. SELF-STABILIZING ALGORITHM MDSD2

In the literature, Hedetniemi et al. [6] have introduced an

algorithm for MDS based on using In and Out states. To

converge to the legitimate configuration, nodes move from In

to Out or from Out to In until reaching stabilization. The

authors use also a pointer for nodes out of S to determine nodes

that have exactly one neighbor inside S. For nodes having

more than a neighbor in S, the pointer is null. Figure 3

illustrates this additional process of pointing (node out S points

its unique neighbor in S) in moves 2 and 3. This section aims

to show how the expression model could simplify designing a

new algorithm in the self-stabilization context. The expression

model has the power to make abstraction on distance-2 in

contrast to the habitual distance-1 model. It allows masking

details like the above-mentioned process of pointing which is

considered as an additional complication in proposing new

algorithms. Using the expression distance-2 model, we

propose an algorithm called MDSD2 to compute the minimal

dominating set.

Figure 3. Convergence to the MDS using Hedetniemi

algorithm [7]

Figure 4. Convergence to the MDS using expression

distance-2 model

In Algorithm 2, each node v includes a local variable state

and an expression exp. The state value can be either "In" or

"Out", indicating whether a node is inside the dominating set.

Once the system reaches a legitimate state, the set S={vV:

v.state=In} represents the dominating set. For the local

expression exp, it calculates the number of neighbors in S of

the current node. It helps to determine whether every node

outside of S is dominated. Rule R1 guarantees that every node

outside S must be dominated, otherwise, it moves any node

outside of S that is not dominated from Out to In. In contrast,

R2 aims to minimize the set S as small as possible. If a given

585

node v inside S exits S so that S remains a dominating set, then

R2 forces v to leave S. Note that before a node v decides to exit

S, exp is used to ensure that all neighbors 𝑢 ∈ 𝑁𝑉−𝑆(𝑣)

maintain the domination condition after v's departure. If it is

determined that after v switches from In to Out, at least one

neighbor 𝑤 ∈ 𝑁𝑉−𝑆(𝑣) would become undominated, and v

cannot exit S. Figure 4 illustrates an example of the algorithm's

execution converging to the minimal dominating set within 3

moves.

Algorithm 2. Minimal Dominating Set - MDSD2

(1) 𝑣 . 𝑒𝑥𝑝 ∶ |{𝑢 ∈ 𝑁(𝑣): 𝑢. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛}|
(2) 𝐑𝟏: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡 ∧ 𝑣. 𝑒𝑥𝑝 < 1 → 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛
(3) 𝐑𝟐: 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛 ∧ 𝑣. 𝑒𝑥𝑝 ≥ 1 ∧ ∀𝑢 ∈ 𝑁𝑉−𝑆(𝑣): 𝑢. 𝑒𝑥𝑝

> 1 → 𝑣. 𝑠𝑡𝑎𝑡𝑒 = 𝑂𝑢𝑡

5.1 Closure

Lemma 4 The set S is a minimal dominating set when all

nodes are inactivated.

Proof We demonstrate that (a) S is a dominating set and (b)

S is minimal.

(a) Given that R1 is inactivated, it follows that for any node

v outside of S, the local expression v.exp≥1. Consequently,

every node v outside of S is dominated. Thus, S is a dominating

set.

(b) We show that S is minimal by contradiction. Let's

assume that all system nodes are inactive, and there exists a

dominating set S0 which is a subset of S such that S0=S−{v}.

Consequently, |NS0(v)| ≥ 1 (since S0 is a dominating set),

implying that |NS(v)|≥1 due to NS0(v)=NS(v). Since none of the

S nodes is activated (R2 is not enabled for v) and v.exp ≥ 1,

there exists a node u neighbor of v outside of S such that u.exp

≤ 1, leading to |NS(u)|≤1. Also, since v is a neighbor of u and

S0=S−{v} thus |NS0(u)|=|NS(u)|−1. Hence |NS0(u)|<1 due to

|NS(u)|≤1. This is a contradiction because every node outside

of S0 must be dominated.

5.2 Convergence and Complexity Analysis

Lemma 5 For every node w outside of S which is dominated

(w.exp≥ 1), the value w.exp remains greater than or equal to

1 and cannot decrease below 1.

Proof Consider a node w outside of S with u.exp≥1. The

value of u.exp may decrease if and only if any neighbor node

v moves from inside to outside S. According to rule R2, when

node v switches from inside to outside S, all neighbors u of v

that are outside S have u.exp>1. Let’s denote S2 as the new set

of nodes with state=In after v is removed from S, therefore,

|NS2(u)|=|NS(u)−1|. Consequently, |NS(u)−1|≥1 implies

|NS2(u)|≥1, ensuring that u.exp remains ≥1 through recurrence.

Lemma 6 Once a node exits set S, it cannot return to S

thereafter.

Proof As any node exits S has exp ≥1, R1 cannot be

executed. Lemma 5 indicates that Rule R1 cannot be triggered

again.

Lemma 7 Using the expression distance-2 model with the

central daemon, if each node executes R1 followed by R2,

algorithm 2 terminates in the worst case by executing 2n

moves.

Proof The proof is evident according to Lemma 5 and

Lemma 6.

Theorem 3 Using a central daemon and under the

expression model, the self-stabilizing algorithm MDSD2

reaches the minimal dominating set in O(n) moves.

Proof According to Lemma 4 and Lemma 7, the proof is

adopted.

In the following theorem, we employ the transformer of

Turau [4] that provides an alternative self-stabilizing

algorithm MDSD2D which executes under a distributed

daemon with the habitual distance-one model.

Theorem 4 Using a distributed daemon and under the

distance-1 model, the self-stabilizing algorithm MDSD2D

computes the minimal dominating set and converges to the

legitimate configuration within O(nm) moves.

Proof The proof is adopted according to Theorem 18 of

Turau [4], where m is the number of edges in the graph.

6. SIMULATION RESULTS

In this section, the simulation tests are presented to evaluate

the proposed algorithms MD2IS and MDSD2. Evaluations are

performed according to two metrics: (1) cardinality (the

number of elements) of the independent and/or dominating set,

(2) and convergence (the number of moves) to reach the

legitimate configuration. A self-stabilizing algorithm is more

preferment if it has a smaller cardinality and converges sooner

to the legitimate configuration. The convergence metric

reflects the communication complexity between nodes in the

network.

The algorithms MD2IS and MDSD2 have been written in

Java using an expression model. For MIS [7] and MDS [6], the

implementation of Kuszner [23] has been reutilized. The

graphs have been generated randomly with different densities

and sizes using the Erdos-Renyi model [24], called also

random networks. To control the number of edges, a parameter

of density is changed from 0 to 1. The more the density

parameter grows, the more the number of edges increases.

When the density parameter equals 1, the graph is fully

connected. The generated graphs varied from 500 nodes to

20000 nodes. For each size of graphs, we have carried out from

5 to 10 executions. The average value has been considered

after the algorithm converges to the legitimate configuration.

Figure 5 illustrates the size variation of MD2IS and MIS

according to graph density. MD2IS produces smaller

independent sets compared to those generated by MIS. The

density of the graphs significantly influences the size of the

obtained sets. As shown in Figure 5, when the graph density

increases, the size of the independent sets tends to decrease.

For instance, the number of nodes of the MD2IS set

approaches 1 as the density exceeds 0.5. It is worth noting that

the MD2IS set includes only one node for the fully connected

graphs (density=1).

Figure 6 depicts the size variation of MD2IS and MIS sets

according to the number of nodes of the overall graph. The

586

curves demonstrate that the maximal independent set (MIS)

grows proportionally with graph size. Conversely, the

cardinality of MD2IS decreases as graph size increases. For

instance, in graphs comprising 10000 nodes, the MIS

cardinality exceeds 100, while the MD2IS cardinality remains

below 10 nodes.

Figure 5. Number of nodes inside MD2IS and MIS according to graph density

Figure 6. Number of nodes inside independent sets according to the overall size of the graphs

587

Figure 7. Number of nodes inside MDSD2 according to graph density

Figure 8. The convergence in computing MDS according to graph density (for graphs with 500 nodes)

Additional simulation results are presented in Table 1. The

experiments utilize arbitrary graphs with a low density to be

closer to modeling the real existing networks. The generated

graphs on which simulations are executed can contain from

1000 nodes up to 20000 nodes. To measure the size of

MD2IS/MIS and the number of moves to converge to

MD2IS/MIS, average values are considered after executing 5

tests. The number of moves to reach the legitimate

configuration is proportional to the size of the graphs.

According to Lemma 3, MDSIS is achieved after 2n moves in

the worst case, This upper bound is confirmed by the

conducted tests even though our results show that n/2 is

sufficient to compute MD2IS.

Figure 7 shows the size of the dominating set for the two

algorithms of expression model MDSD2 and the distance-1

model MDS of Hedetniemi [6]. Although the two algorithms

provide approximately the same size, recall that we aim to

show that our proposed algorithm using the expression

588

distance-2 model has been designed in a straightforward way

regarding the distance-1 algorithm which is written using

complicated rules based on pointers [6].

Figure 8 illustrates that both MDS algorithms converge to

the legitimate configuration in a limited duration of time. Note

that the time of convergence is calculated with the number of

moves for the distance-1 model, while for the expression

distance-2 model, the number of expressions is considered.

Table1. Size of MD2IS and convergence (in moves) for graphs with a density of 0.001

Graph Size MD2IS Cardinality MIS Cardinality MD2IS Convergence MIS Convergence

1000 601.8(60.18%) 687.8(68.78%) 400.2 415.6

1500 703.6(46.91%) 926.4(61.76%) 652.8 636.6

2000 758.2(37.91%) 1099.4(54.97%) 910.8 845.4

2500 794.4(31.78%) 1248.2(49.93%) 1229.2 1078.4

3000 786.6(26.22%) 1385.0(46.17%) 1570.8 1327.4

3500 776.4(22.18%) 1522.4(43.50%) 1877.2 1624.6

4000 762.2(19.06%) 1614.4(40.36%) 2202.8 1887.4

4500 748.8(16.64%) 1720.4(38.23%) 2483.6 2206.0

5000 724.2(14.48%) 1801.0(36.02%) 2785.8 2454.8

5500 711.0(12.93%) 1887.0(34.31%) 3048.4 2749.2

6000 692.2(11.54%) 1964.4(32.74%) 3335.6 3061.6

6500 662.8(10.20%) 2020.8(31.09%) 3551.6 3324.6

7000 642.6(9.18%) 2111.8(30.17%) 3825.2 3691,4

7500 633.8(8.45%) 2149.8(28.66%) 4098.8 3927.2

8000 604.6(7.56%) 2216.6(27.71%) 4333.4 4229.2

8500 601.8(7.08%) 2269.2(26.70%) 4586.4 4542.8

9000 577.6(6.42%) 2320.4(25.78%) 4836.0 4830.8

9500 552.8(5.82%) 2364.6(24.89%) 5097.2 5152.4

10000 548.4(5.48%) 2415.2(24.15%) 5350.8 5379.2

10500 527.4(5.02%) 2476.2(23.58%) 5645.0 5728.4

11000 501.6(4.56%) 2507.4(22.79%) 5817.6 6063.2

11500 498.2(4.33%) 2560.4(22.26%) 6091.0 6303.6

12000 481.2(4.01%) 2602.2(21.69%) 6300.6 6622.0

12500 477.8(3.82%) 2635.2(21.08%) 6555.8 6923.8

13000 454.6(3.50%) 2665.6(20.50%) 6790.0 7195.0

13500 448.0(3.32%) 2705.0(20.04%) 7057.6 7496.6

14000 435.2(3.11%) 2747.8(19.63%) 7251.6 7758.6

14500 427.4(2.95%) 2785.0(19.21%) 7512.0 8045.0

15000 416.2(2.77%) 2793.0(18.62%) 7798.4 8234.0

15500 408.2(2.63%) 2839.4(18.32%) 7988.8 8579.8

16000 398.8(2.49%) 2867.4(17.92%) 8293.6 8857.8

16500 392.0(2.38%) 2886.6(17.49%) 8496.2 9177.6

17000 383.4(2.26%) 2934.2(17.26%) 8798.4 9433.6

17500 380.2(2.17%) 2962.6(16.93%) 9043.4 9704.0

18000 367.6(2.04%) 2976.6(16.54%) 9249.4 9972.0

18500 361.0(1.95%) 3017.8(16.31%) 9481.0 10284.0

19000 355.2(1.87%) 3036.6(15.98%) 9748.6 10535.8

19500 353.0(1.81%) 3054.8(15.67%) 9998.8 10785.0

20000 340.4(1.70%) 3080.2(15.40%) 10207.8 11032.4

7. CONCLUSION

Two new self-stabilizing algorithms have been presented to

compute the maximal distance-2 independent set and the

minimal dominating set, called MD2IS and MDSD2,

respectively. The algorithms were proposed very smoothly

through the expression distance-2 model. Thus, in this paper,

we illustrated the ability of the expression model of Turau to

simplify the design of new algorithms in the self-stabilizing

paradigm. However, the introduced algorithms under the

expression model cannot be applied directly and need to be

converted into the real executable distance-1 model.

The expression model of Turau allows to design of new

algorithms with a certain level of abstraction that hides

unuseful algorithmic details. Under this abstraction, the

correctness and convergence proofs become evident to be

formulated. The proposed algorithms reach the legitimate

configuration in O(n) moves with the expression model and

under a serial execution. In the habitual distance-one model,

the algorithms achieve the legitimate configuration in O(nm)

moves under distributed execution.

Simulation results illustrate also the efficiency of the

proposed algorithms. Our algorithms provide results similar to

the existing algorithms for some cases such as the cardinality

of minimal dominating set. In other cases, comparison cannot

be considered due to the differentiation of criteria. For

example, MIS and MD2IS provide different sets by definition

which makes the comparison of cardinality insignificant in this

case.

The obtained results reveal a reduced number of nodes for

MD2IS set which is considered an important result in our

study. The reduced number of MD2IS can be employed

efficiently for a lot of real cases such as sensor wireless

networks to select cluster heads. Thus, the use of MD2IS

seems promising due to its self-stabilizing nature that allows

the network to continue to operate even in the presence of

faults with an efficient consumption of energy for nodes and

cluster heads. In future works, we hope to study self-

589

stabilization with a more general distance-k and to test the

efficiency of our algorithms for real applications.

REFERENCES

[1] Arapoglu, O., Akram, V.K., Dagdeviren, O. (2019). An

energy-efficient, self-stabilizing and distributed

algorithm for maximal independent set construction in

wireless sensor networks. Computer Standards &

Interfaces, 62: 32-42.

https://doi.org/10.1016/j.csi.2018.07.004

[2] Arapoglu, O., Dagdeviren, O. (2019). An asynchronous

self-stabilizing maximal independent set algorithm in

wireless sensor networks using two-hop information. In

2019 International Symposium on Networks, Computers

and Communications (ISNCC), Istanbul, Turkey, pp. 1-

5. https://doi.org/10.1109/ISNCC.2019.8909189

[3] Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.

(2005). A self-stabilizing link-cluster algorithm in

mobile ad hoc networks. In 8th International Symposium

on Parallel Architectures, Algorithms and Networks

(ISPAN'05), Las Vegas, NV, USA, pp. 6.

https://doi.org/10.1109/ISPAN.2005.12

[4] Turau, V. (2012). Efficient transformation of distance-2

self-stabilizing algorithms. Journal of Parallel and

Distributed Computing, 72(4): 603-612.

https://doi.org/10.1016/j.jpdc.2011.12.008

[5] Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S. (1995).

Observations on self-stabilizing graph algorithms for

anonymous networks. In Proceedings of the second

workshop on self-stabilizing systems, 7: 1-15.

https://doi.org/10.1109/ALLERTON.2016.7852307

[6] Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P.,

Srimani, P.K. (2003). Self-stabilizing algorithms for

minimal dominating sets and maximal independent sets.

Computers & Mathematics with Applications, 46(5-6):

805-811. https://doi.org/10.1016/S0898-1221(03)90143-

X

[7] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani,

P.K. (2003). Self-stabilizing protocols for maximal

matching and maximal independent sets for ad hoc

networks. In Proceedings International Parallel and

Distributed Processing Symposium, Nice, France, pp. 14.

https://doi.org/10.1109/IPDPS.2003.1213302

[8] Belhoul, Y., Yahiaoui, S., Kheddouci, H. (2014).

Efficient self-stabilizing algorithms for minimal total k-

dominating sets in graphs. Information Processing

Letters, 114(7): 339-343.

https://doi.org/10.1016/j.ipl.2014.02.002

[9] Turau, V. (2013). Self-stabilizing algorithms for efficient

sets of graphs and trees. Information Processing Letters,

113(19-21): 771-776.

https://doi.org/10.1016/j.ipl.2013.07.008

[10] Hedetniemi, S.M., Hedetniemi, S.T., Jiang, H., Kennedy,

K.E., McRae, A.A. (2012). A self-stabilizing algorithm

for optimally efficient sets in graphs. Information

Processing Letters, 112(16): 621-623.

https://doi.org/10.1016/j.ipl.2012.02.014

[11] Bessaoud, K., Bui, A., Pilard, L. (2013). Self-stabilizing

algorithm for low weight connected dominating set. In

2013 IEEE/ACM 17th International Symposium on

Distributed Simulation and Real Time Applications,

Delft, Netherlands, pp. 231-238.

https://doi.org/10.1109/DS-RT.2013.33

[12] Ding, Y., Wang, J.Z., Srimani, P.K. (2016). A linear time

self-stabilizing algorithm for minimal weakly connected

dominating sets. International Journal of Parallel

Programming, 44(1): 151-162.

https://doi.org/10.1007/s10766-014-0335-4

[13] Wang, G., Wang, H., Tao, X., Zhang, J. (2013). A self-

stabilizing algorithm for finding a minimal positive

influence dominating set in social networks. In

Conferences in Research and Practice in Information

Technology (CRPIT), 137: 93-100.

[14] Ding, Y., Wang, J.Z., Srimani, P.K. (2014). Self-

stabilizing selection of influential users in social

networks. In 2014 IEEE 17th International Conference

on Computational Science and Engineering, Chengdu,

China, pp. 1558-1565.

https://doi.org/10.1109/CSE.2014.288

[15] Datta, A.K., Devismes, S., Larmore, L.L. (2019). A silent

self-stabilizing algorithm for the generalized minimal k-

dominating set problem. Theoretical Computer Science,

753: 35-63. https://doi.org/10.1016/j.tcs.2018.06.040

[16] Turau, V. (2007). Linear self-stabilizing algorithms for

the independent and dominating set problems using an

unfair distributed scheduler. Information Processing

Letters, 103(3): 88-93.

https://doi.org/10.1016/j.ipl.2007.02.013

[17] Ikeda, M., Kamei, S., Kakugawa, H. (2002). A space-

optimal self-stabilizing algorithm for the maximal

independent set problem. In the Third International

Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT), pp. 70-74.

[18] Guellati, N., Kheddouci, H. (2010). A survey on self-

stabilizing algorithms for independence, domination,

coloring, and matching in graphs. Journal of Parallel and

Distributed Computing, 70(4): 406-415.

https://doi.org/10.1016/j.jpdc.2009.11.006

[19] Neggazi, B., Guellati, N., Haddad, M., Kheddouci, H.

(2015). Efficient self-stabilizing algorithm for

independent strong dominating sets in arbitrary graphs.

International Journal of Foundations of Computer

Science, 26(6): 751-768.

https://doi.org/10.1142/S0129054115500422

[20] Johnen, C. (2014). Fast, silent self-stabilizing distance-k

independent dominating set construction. Information

Processing Letters, 114(10): 551-555.

https://doi.org/10.1016/j.ipl.2014.04.013

[21] Johnen, C. (2015). Memory efficient self-stabilizing

distance-k independent dominating set construction. In

Networked Systems: Third International Conference,

NETYS 2015, Agadir, Morocco, pp. 354-366.

https://doi.org/10.1007/978-3-319-26850-7_24

[22] Goddard, W., Srimani, P.K. (2013). Daemon conversions

in distributed self-stabilizing algorithms. In International

Workshop on Algorithms and Computation, pp. 146-157.

https://doi.org/10.1007/978-3-642-36065-7_15

[23] Kuszner, L. (2005). Tools to develop and test self-

stabilizing algorithms.

http://kaims.eti.pg.gda.pl/kuszner/selfstab/main.html.

[24] Barabási, A.L., Albert, R. (1999). Emergence of scaling

in random networks. Science, 286(5439): 509-512.

https://doi.org/10.1126/science.286.5439.509

590

