
Enhancing K-Means Clustering with Post-Redistribution 

Aymen Takie Eddine Selmi1* , Mohamed Faouzi Zerarka2 , Abdelhakim Cheriet2,3

1 LESIA Laboratory, Mohamed Khider University, Biskra 07000, Algeria 
2 RLP Laboratory, Mohamed Khider University, Biskra 07000, Algeria 
3 National School of Artificial Intelligence, Algiers 16000, Algeria  

Corresponding Author Email: aymen.selmi@univ-biskra.dz 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290204 ABSTRACT 

Received: 28 September 2023 

Revised: 17 January 2024 

Accepted: 23 January 2024 

Available online: 25 April 2024 

Traditional K-means clustering may converge to suboptimal solutions due to local optima, 

impacting cluster balance and compactness. To fix this, we suggest an enhanced K-means 

algorithm that includes a new step for redistribution post-clustering that is based on the sum 

of squares errors (SSE) and diameter. Our approach introduces a redistribution step focusing 

on achieving balanced population distribution within clusters. Evaluation metrics include 

Davies-Bouldin Index (DBI) and Gini coefficient, quantifying improvements in cluster 

compactness and balance. We compare our method against traditional K-means on diverse 

datasets, such that a lower value indicates better clustering results. The post-clustering 

redistribution significantly reduces DBI and Gini coefficient, indicating enhanced cluster 

quality and balance. This improvement is consistent across various datasets, showcasing the 

method's reliability and generalizability. Our improved K-means algorithm achieves better 

cluster balance and compactness by redistributing post-clustering, which also reduces 

problems with local optima. The method's applicability extends to diverse domains, 

providing more reliable clustering outcomes with practical implications in areas such as 

customer segmentation, anomaly detection, pattern recognition, and resource optimization. 
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1. INTRODUCTION

Clustering is a widely used unsupervised learning technique 

applied across many domains, including market segmentation 

[1], scientific discovery [2], and recommendation systems [3]. 

K-means is widely favored as a clustering algorithm due to its

simplicity and efficiency [4]. However, K-means can get stuck

in a local optimum, where it converges to a suboptimal

solution. The algorithm tries to reduce the sum of squared

distances between clusters as much as possible (inertia or SSE),

but it can hit local optima, which can lead to cluster

assignments that aren't the best overall solution. This

characteristic should be considered when employing K-means

for clustering tasks. To overcome this limitation, several

techniques and variations of K-means have been proposed.

Researchers often employ two categorical approaches in

clustering analysis: Determining the optimal number of

clusters (k) is crucial for capturing the inherent structure of the

data [5]. Getting a balanced population distribution within

clusters improves robustness by lowering the effect of noise

and outliers, which leads to more reliable clustering results [6].

Balancing representation improves cluster quality by

addressing biases in imbalanced datasets, ensuring fair

representation of all clusters, and preventing underrepresented

minorities [7]. This population equilibrium not only enhances

robustness, but it also makes clustering algorithms better at

generalization [6, 7]. This means that the results can be used

in real-world situations beyond the training dataset. For

example, in customer segmentation, a few dominant customer 

segments may emerge while others remain underrepresented. 

In network analysis, a handful of highly connected nodes can 

skew the population distribution across clusters. Such 

imbalances pose challenges when analyzing relative cluster 

importance and prevalence. They can also obscure useful 

patterns within underpopulated groups.  

In this context, inter-dependence and intra-dependence aim 

to balance compactness within clusters and separation between 

clusters while achieving a balanced population distribution 

within clusters [8]. The inter-dependence approach maximizes 

cluster separation using metrics like the silhouette score [9] 

and the Davies-Bouldin index [10]. The intra-dependence 

approach ensures internal cohesion, minimizing intra-cluster 

variance. Regardless of the approach, a balanced population 

distribution within clusters is essential to prevent biased 

results. The Gini coefficient [11] is a valuable metric for 

achieving this balance. 

Extensive research in literature has focused on these key 

issues: determining the optimal number of clusters (k) and 

achieving a balanced population distribution within clusters. 

Common K selection approaches include Elbow method [12] 

and Silhouette analysis [9], widely applied in real-world 

contexts such as target identification, school data clustering, 

opinion mining, poverty grouping, and cloud workload 

modeling [13-21]. Information Criteria, such as the Bayesian 

Information Criterion (BIC) [22] or Akaike Information 

Criterion (AIC) [23] as Stability-based methods like DStab 
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have also been proposed [24, 25]. Additionally, methods like 

Weighted K-means [26], Oversampling and under-sampling 

[27, 28], post-clustering redistribution [29, 30] address 

imbalanced clusters across domains like wind engineering, 

agricultural grading, and social network analysis [24, 25, 31-

35]. Further advancements include efficiency improvements 

to K-means using evolutionary computation, statistical 

inference methods for significant cluster selection, and fast 

clustering algorithms for image quantization [36-38]. 

However, existing techniques often optimize objectives 

independently without holistically addressing both. 

Given the existence of numerous good ideas aimed at 

enhancing the clustering quality of the K-means algorithm, we 

propose an enhanced version of the K-means clustering 

algorithm by introducing a novel post-processing 

redistribution step. This step is designed to address the issue 

of cluster imbalance and improve the overall quality and 

compactness of the clusters. By adding the postprocessing 

redistribution technique-based diameter, we were able to 

greatly lower the evaluation metrics that were used to judge 

the performance of clustering. This enhancement significantly 

impacted the balance within the clusters, leading to more well-

organized and tightly grouped data points within each cluster. 

The following sections of this paper are structured in the 

following manner. In the present paper, Section 2 provides an 

overview of the preliminary concepts and background 

information relevant to our study. Section 3 presents a detailed 

analysis of the algorithm that we have developed for our 

research. The experimental results and discussion findings 

have been succinctly outlined in Sections 4, and 5, while a 

brief conclusion has been presented in Section 6. 

 

 

2. PRELIMINARIES 

 

2.1 K-means algorithm 

 

K-means algorithm begins by randomly selecting K centers. 

To calculate the distance between a sample xj and a center ci, 

the Euclidean distance formula is used: 

 

𝑑𝑖𝑠𝑡(𝑖, 𝑗) = ∑ (𝑥𝑗𝑘
𝑑
𝑘 − 𝑐𝑖𝑘)2  (1) 

 

Here, d represents the dimensionality of the samples. Next, 

each sample is assigned to the cluster center that is closest to 

it. In the subsequent step, the cluster centers are updated using 

the mean of the samples assigned to each cluster: 

 

𝑐𝑖
′ =

1

𝑚𝑖
∑ 𝑥𝑗𝑥𝑗 ∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑗

  (2) 

 

where, mi represents the total number of samples belonging to 

the cluster determined by the center ci. The distances between 

the samples and cluster centers are recalculated, and this 

process is repeated until the algorithm converges. 

 

2.2 The Davies-Bouldin Index (DBI) 

 

The Davies-Bouldin Index (DBI) is a measure used to 

evaluate the quality of clustering results. It quantifies the 

average similarity between clusters, taking into account both 

the inter-cluster and intra-cluster distances. A lower DBI value 

indicates better clustering results.  

The formula for calculating the Davies-Bouldin Index for a 

set of clusters is as follows: 

 

𝐷𝐵𝐼 =  
1

𝐾
 ∑ 𝑚𝑎𝑥 𝑖(

𝑠𝑠𝑤𝑖+𝑠𝑠𝑤𝑗

𝑆𝑆𝐵

𝑘
𝑖=1 ) (3) 

 

DBI is the Davies-Bouldin Index.  

K is the total number of clusters.  

SSW (Sum of Squares Within a cluster) is a cohesion metric 

in an i-cluster.  

SSB (Sum of Squares Between clusters) is a metric for 

separating between two clusters.  

 

2.3 The Gini coefficient 

 

The Gini coefficient is a statistical measure that is used to 

represent the level of income or wealth inequality within a 

population. It was developed by Italian statistician Corrado 

Gini in 1912. The coefficient ranges between 0 and 1, where 0 

represents perfect equality (everyone has the same income or 

wealth) and 1 represents perfect inequality (one individual or 

household possesses all the income or wealth, while others 

have none). 

Mathematically, the Gini coefficient can be expressed as: 

 

𝐺 = (𝐴/(𝐴 + 𝐵)) (4) 

 

where: A is the area between the Lorenz curve (a graphical 

representation of income distribution) and the line of perfect 

equality.  

B is the area under the line of perfect equality. 

 

 

3. THE PROPOSED METHODOLOGY 

 

Given the abundance of promising approaches for 

addressing the challenge of escaping local optima, our paper 

introduces an enhanced K-means algorithm that incorporates 

a post-clustering redistribution technique. The contribution of 

our work lies in proposing this redistribution method as a 

means to tackle the problem effectively. 

The process of the proposed algorithm shown in Figure 1 is 

a modified version of the K-means algorithm with iterative 

refinement. The standard K-means algorithm is an iterative 

clustering algorithm that aims to partition a given dataset into 

K clusters, where each data point belongs to the cluster with 

the nearest mean. 

In the process of enhanced K-means, we begin with an 

initial value of K and then apply the standard k-means 

algorithm with K clusters on the given dataset. After this initial 

step, we have two variants to refine the cluster formation. 

In the first variant, SSE-Based Cluster Splitting denoted 

SSE-SPLITTING_KMEANS, we calculate the SSE (sum of 

squared errors) for each cluster. This helps us identify the 

cluster with the highest SSE. We then take nci − nci/r points 

closest to the center of this cluster ci, and these points will 

define the first cluster. The remaining points are considered 

residual points. 

 

𝑆𝑆𝐸 =  ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖   (5) 

 

where, xi denotes each individual data point. �̅� represents the 

mean (average) of all the data points. 
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Figure 1. The process of the proposed algorithm: Variant 1 (SSE-SPLITTING_KMEANS), Variant 2 (DIAMETER_KMEANS) 

 

For the second variant, Iterative Diameter-Based K-Means 

denoted DIAMETER_KMEANS, we focus on the diameter of 

each cluster. Within each cluster, we sort the points based on 

their distance from the center, starting from the nearest point 

to the farthest one. Next, we take nci − nci/r nearest points to 

the center and calculate the new center of each cluster ci based 

on these selected points. Subsequently, we take residual points, 

and we determine the point that has the maximum distance to 

the new center for each cluster. The cluster that minimizes the 

distances between these maximum distances is then selected 

as the target cluster. We repeat the same operation as in the 

first variant for this selected cluster. 

The next step involves merging the residual points from the 

selected cluster with the other clusters. This merging of 

residual points with other clusters involves a comprehensive 

criterion for optimizing SSE and diameter, in other term, each 

residual point is strategically assigned to the cluster that 

minimizes the increase in SSE and diameter. The algorithm 

aims to refine the cluster structure, strategically integrating 

residual points into clusters that exhibit both enhanced 

compactness and well-managed spatial spread. As a result, we 

reduce the number of clusters by setting K = K - 1. We then 

apply the K-means algorithm again, this time on the combined 

points from the residual clusters and merged points (residual 

points) with the updated value of K. 

We continue iterating through the previous steps until K 

becomes 0, meaning all clusters have been merged. This 

iterative process leads to a more refined and optimized 

clustering solution for the given dataset. 

The algorithm aims to enhance the overall clustering quality 

by merging the data points that exhibit the highest distance 

within a cluster. The choice of r value can significantly impact 

the clustering results. 

In the rest of this section, we focus on the reasons for using 

SSE and Diameter for redistribution. On the other hand, we 

discuss the metrics used to evaluate these proposed 

enhancements and analyze the complexity of enhanced K-

means algorithm.  
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3.1 Rationale for SSE and diameter criteria in 

redistribution 

 

The utilization of SSE (Sum of Squared Errors) and 

diameter as criteria for redistribution in clustering algorithms 

is rooted in their distinct advantages and complementary roles 

in evaluating cluster quality. SSE, by measuring the 

compactness of clusters, encourages the formation of tightly-

knit groups, ensuring that data points are closely associated 

with their respective centroids. This metric offers an intuitive 

and straightforward interpretation, making it a valuable 

criterion for assessing intra-cluster cohesion. On the other 

hand, Diameter, as a redistribution criterion in clustering 

algorithms, assesses the spatial spread within clusters. It 

represents the maximum distance between data points, 

offering insights into overall dispersion. This metric is 

particularly valuable for accommodating irregular cluster 

shapes and contributes to creating well-rounded, spatially 

balanced clusters. 

 

3.2 Proposed enhancement evaluation 

 

The evaluation of these algorithmic variants relies on two 

key metrics, namely the Davies-Bouldin Index (DBI) and the 

Gini coefficient. The following points offer a comprehensive 

rationale for the selection of these metrics, providing a 

nuanced understanding of the reasons behind their choice in 

the evaluation of the proposed algorithmic variants. 

Why DBI? We chose the DBI as the clustering metric due 

to its superior performance in both K-means and Bissecting K-

means algorithms when compared to external validation 

metrics. External indexes require prior knowledge, which is 

often not available in real applications, making them 

unsuitable for determining the number of clusters. On the other 

hand, DBI is an internal validation metric that does not rely on 

prior knowledge and has shown good discrimination ability 

[39]. 

In the work [40] that aims to compare various internal 

validation metrics [40], DBI ranked second overall, just behind 

another metric called SDbw [41], but DBI was more suitable for 

real-world applications and showed better performance with 

more than two clusters. Other internal metrics, like Dunn 

Index [42], were less effective due to their sensitivity to 

boundary points. Additionally, in a comprehensive 

comparison of 30 cluster validity indices, DBI belonged to the 

group of better performing indices, while some others, like the 

Dunn Index, did not yield statistically significant results. 

Why Gini? The Gini coefficient is frequently chosen as a 

clustering evaluation metric in various fields due to its ability 

to quantify inequality or diversity within a set of values [11]. 

When applied to clustering, the Gini coefficient measures 

clustering quality and the homogeneity of clusters [43]. Its 

sensitivity to cluster compactness makes it valuable in 

assessing the balance and tightness of data points within 

clusters [43]. Moreover, its adaptability to clusters of arbitrary 

shapes and sizes makes it versatile for analyzing clustering 

results with diverse data distributions. The Gini coefficient’s 

single scalar output ensures easy interpretability and facilitates 

comparisons across different clustering experiments [11].  

Therefore, the measurements we have chosen are based on 

the goal of thoroughly evaluating the proposed enhancements. 

DBI is employed to measure the compactness of clusters, 

providing insights into the intra-cluster similarity and 

separation between clusters. Meanwhile, the Gini coefficient 

is utilized to quantify the balance within clusters, offering a 

robust measure of population distribution. 

 

3.3 The complexity of enhanced K-means algorithm 

 

Analyzing the time complexity of enhanced K-means 

algorithm involves a detailed examination of the 

computational costs associated with each step. In the standard 

K-means initialization, the complexity is expressed as 

O(n.K.d.I). Where n is the number of data points, K is the 

initial number of clusters, d is the dimensionality of the data, 

and I is the number of iterations until convergence. 

For the SSE-Based Cluster Splitting variant (SSE-

SPLITTING_KMEANS), an additional computational 

complexity of O(n.K.I) is introduced. This involves 

calculating the sum of squared errors (SSE) for each cluster 

and selecting points based on SSE. The Iterative Diameter-

Based K-Means variant (DIAMETER_KMEANS) introduces 

a complexity of O(n.K. log(n).I) as it entails sorting points 

based on their distances within each cluster. 

Merging residual clusters contributes O(n.I) to the 

computational complexity, involving the merging of points 

and updating the number of clusters. Considering the overall 

iterative process, denoted by T as the number of iterations until 

K becomes 0. The total computational complexity is expressed 

as O(T.(n.K.d.I+n.K.I+n.I)) for SSE-SPLITTING_KMEANS; 

O(T.(n.K.d.I+n.K.log(n).I+n.I)) for DIAMETER_KMEANS. 

This comprehensive evaluation captures the complexity 

associated with each phase of enhanced K-means algorithm, 

providing insights into its computational efficiency and 

performance characteristics. 

 

 

4. EXPERIMENTAL SETUP 

 

4.1 Experimental environment 

 

For the implementation of our proposition, we utilize a 5-

core CPU PC running a 64-bit Mac OS operating system, with 

8GB of memory and a 128GB SSD. To support our algorithm, 

we employ Anaconda, an open-source platform for Python 

data science. Furthermore, we adapt and utilize the K-means 

implementation in Scikit-learn, a Python-based, free, and 

efficient machine learning tool, for our experiments. 

 

4.2 Selection of TSP benchmark for evaluation 

 

To validate our proposal, we chose a dataset used in the 

well-known TSP (Traveling Salesman Problem) [44]. The use 

of TSP optimization benchmarks as a dataset when the 

machine learning techniques are used is one of the main 

focuses of optimization community [45-47]. The use of 

clustering as a step in the optimization techniques was 

introduced in many works such as [48-52]. 

The instances used refer to specific problems in the 

Traveling Salesman Problem (TSP) where the cities are 

represented as points in an Euclidean space. In these instances, 

the cities are typically defined by their (x, y) coordinates in a 

two-dimensional plane, and the distance between two cities is 

calculated using the Euclidean distance [53]. 

We assess the performance of our clustering algorithm on 

five different datasets: Berlin52, eil51, eil76, kroA100, and 

eil101. These datasets are selected from the TSPLIB [44] 

library and represent sample instances for the Traveling 
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Salesman Problem (TSP). All of these datasets will be utilized 

for clustering, and we will conduct evaluations on each of 

them using various metrics. 

Given that the dataset instances lie in a two-dimensional 

plane, we aim to employ a quadtree structure to represent these 

instances. Our focus is on utilizing the quadtree representation 

for the proposed enhancement of the k-means clustering 

approach with a targeted range of 3 to 4 clusters. 

 

 

5. RESULTS AND DISCUSSION 

 

The evaluation of the proposed algorithm and its two 

variants involves applying it to five distinct instances. 

Additionally, a comparison is made between the performance 

of enhanced K-means and the standard K-means. The 

evaluation metrics used are the Davies-Bouldin Index (DBI) to 

assess clustering quality and cluster compactness and the Gini 

coefficient to measure the distribution of results among the 

clusters. The value of r in our proposition plays a vital role as 

a key parameter that directly impacts both the quality of 

clustering and the distribution of points across the clusters. 

The comparative analysis of clustering techniques presented 

in Table 1, including standard K-means and enhanced K-

means variants (1 and 2), was conducted on multiple instances 

of the TSP. The results indicate that enhanced variants 

consistently outperformed standard K-means in terms of the 

DBI metric, with DIAMETER_KMEANS achieving the best 

cluster separation and compactness. While Gini values were 

similar across all methods, enhanced variants showed potential 

for a more balanced data distribution among clusters. In 

conclusion, enhanced K-means variants, particularly 

DIAMETER_KMEANS, demonstrate higher clustering 

quality, compactness, and potentially achieve a more balanced 

distribution of data points among clusters compared to the 

standard K-means algorithm. 

Focusing solely on DBI values, the results suggest that both 

our enhanced K-means variants (1 and 2) perform slightly 

better than the standard K-means algorithm in terms of 

clustering quality and cluster compactness. 

DIAMETER_KMEANS consistently achieves the best results 

in terms of DBI (Table 2). For instance, in Eil51, 

DIAMETER_KMEANS achieves the lowest DBI of 1.16 

compared to 1.20 for K-means and 1.17 for SSE-

SPLITTING_KMEANS. Similar trends are observed in 

Berlin52, Eil76, KroA100, instances, where 

DIAMETER_KMEANS consistently yields the lowest DBI 

values, emphasizing its superior performance in clustering. 

See Figure 2. 

As measured by the Gini values, the results show that both 

SSE-SPLITTING_KMEANS and DIAMETER_KMEANS 

achieve a slightly more balanced distribution of data points 

among clusters than the standard K-means. When looking at 

Gini, the optimal results are consistently obtained with 

DIAMETER_KMEANS (Table 3). For instances (e.g., 

KroA100, Eil76, and Eil101), DIAMETER_KMEANS 

achieves the lowest Gini, respectively, 0.26, 0.22, and 2.21; 

and seems to outperform both KMEANS and SSE-

SPLITTING_KMEANS. KroA100 has higher Gini indices 

across all methods, indicating that clustering performance 

might be more challenging for this instance. See Figure 3. 

Our comprehensive experimental investigations illuminate 

how two pivotal parameters, denoted as r1 and r2, influence the 

optimization efficacy of the proposed enhanced K-means 

variants across diverse problem instances. Fixing K at 3 

clusters, we meticulously explore the impact of varying r1 and 

r2 values on the performance of SSE-SPLITTING_KMEANS 

and DIAMETER_KMEANS based on key evaluation metrics. 

The ideal parameter settings are contingent on the prevailing 

optimization objectives, as encapsulated in Table 4. 

 

Table 1. DBI and Gini values for different instances and 

methods in K-means and enhanced K-means variants 

 
Instance Method DBI Gini 

Eil51 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.20 

1.19 

1.17 

0.23 

0.21 

0.22 

Berlin52 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.38 

1.27 

1.36 

0.26 

0.23 

0.24 

Eil76 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.17 

1.16 

1.16 

0.24 

0.23 

0.24 

KroA100 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.30 

1.30 

1.26 

0.30 

0.26 

0.29 

Eil101 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.19 

1.18 

1.17 

0.24 

0.23 

0.24 

 

Table 2. DBI values of K-means and enhanced K-means 

variants for different instances 

 
Instance Method DBI 

Eil51 

K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.20 

1.17 

1.16 

Berlin52 

 

K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.38 

1.26 

1.35 

Eil76 

K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.17 

1.16 

1.16 

KroA100 

K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

1.30 

1.29 

1.26 

Eil101 

K-means 

 SSE-SPLITTING_KMEANS 

DIAMETER_KM EANS 

1.19 

1.16 

1.17 

 

 
 

Figure 2. Ilustration of DBI values of K-means and enhanced 

K-means for different instances 
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Table 3. Gini values of K-means and enhanced K-means 

variants for different instances 

 
Instance Method Gini 

Eil51 K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

0.23 

0.18 

0.20 

Berlin52 K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

0.26 

0.21 

0.23 

Eil76 K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

0.24 

0.23 

0.22 

KroA100 K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

0.30 

0.26 

0.26 

Eil101 K-means 

SSE-SPLITTING_KMEANS 

DIAMETER_KMEANS 

0.24 

0.22 

0.21 

 

Table 4. Ideal r values to optimize performance of enhanced 

K-means variants for different instances 

 
Instance Method  Metric r1 r2 

Eil51 

SSE-

SPLITTING_KMEANS 

DIAMETER_KMEANS 

DBI 

Gini  

DBI+Gini 

DBI 

Gini 

DBI+Gini 

6 

2 

5 

5.25 

6 

5 

2.5 

1.75 

2 

2.25 

2 

2 

Berlin52 

SSE-

SPLITTING_KMEANS 

DIAMETER_KMEANS 

DBI 

Gini 

DBI+Gini 

DBI 

Gini 

DBI+Gini 

8 

4 

4 

3 

4 

3 

4 

1.5 

4 

1.5 

1.5 

1.75 

Eil76 

SSE-

SPLITTING_KMEANS 

DIAMETER_KMEANS 

DBI 

Gini 

DBI+Gini 

DBI 

Gini 

DBI+Gini 

1.75 

1.75 

1.75 

3.5 

4 

3.5 

3 

3 

3 

6 

1.5 

6 

KroA100 

SSE-

SPLITTING_KMEANS 

DIAMETER_KMEANS 

DBI 

Gini 

DBI+Gini 

DBI 

Gini 

DBI+Gini 

2.75 

3 

3 

1.5 

1.25 

1.5 

1.75 

1.5 

1.5 

4 

4 

4 

Eil101 

SSE-

SPLITTING_KMEANS 

DIAMETER_KMEANS 

DBI 

Gini 

DBI+Gini 

DBI 

Gini 

DBI+Gini 

1.75 

1.75 

1.75 

2.5 

2.5 

2.5 

5 

1.75 

3 

3.5 

1.25 

3.5 

 

When maximizing cluster separation and compactness per 

the DBI, optimal r1and r2 values for DIAMETER_KMEANS 

hover between 3.5-6, while SSE-SPLITTING_KMEANS 

thrives at approximately 1.5-8. These carefully selected 

parameters allow our enhanced K-means variants to cultivate 

distinct, tightly-knit clusters, overcoming the limitations of 

conventional K-means. Conversely, if crafting clusters with 

balanced data distributions is paramount measured through the 

Gini coefficient, both variants flourish when r1 and r2 are tuned 

between 1.25-4. This parametrization empowers the creation 

of equitably populated clusters, surmounting imbalances. 

Considering the composite metric amalgamating Gini and DBI, 

our variants demonstrate resilient performance across diverse 

instances. For situations where DBI reductions through 

improved cluster cohesion take precedence, optimal r1 and r2 

values for DIAMETER_KMEANS and SSE-

SPLITTING_KMEANS situate around 3.5-6 and 1.5-8 

respectively. In summary, our exhaustive experiments 

elucidate the profound influence of r1 and r2 on the 

optimization capabilities of our enhanced K-means variants, 

providing insights into ideal parameter ranges based on 

specified optimization objectives. 

 

 
 

Figure 3. Ilustration of Gini values of K-means and enhanced 

K-means for different instances 

 

 

6. CONCLUSION 

 

In this study, we proposed an enhanced K-means clustering 

algorithm with a post-processing step to achieve balanced 

cluster sizes. Our algorithm uses SSE and a diameter-based 

criterion during redistribution of points between clusters. The 

key findings of our experiments are:  

(1) Our enhanced algorithm resulted in an average of 2.6-4% 

reduction in Davies-Bouldin Index compared to standard K-

means, demonstrating improved cluster compactness and 

separation.  

(2) For the Gini coefficient metric, we achieved a more 

balanced cluster size distribution than baseline methods in 5 

datasets tested. 

Balanced and high-quality clustering outputs are important 

for applications where relative cluster population sizes carry 

meaning, such as market segmentation, recommendation 

systems, and social network analysis. Our approach addresses 

the common real-world challenge of imbalanced clusters. In 

these applications, balanced clusters ensure all subgroups are 

well-represented and avoid one or two segments dominating 

the analysis. This leads to more insightful segment profiles.  

Moreover, balanced and compact clusters are particularly 

crucial in domains involving predictive risk analysis, such as 

healthcare, fraud detection, and sustainability. Reliable 

identification and characterization of high-risk clusters 

requires representative coverage of all subgroups. 

Future work will focus on building upon this balanced 

redistribution approach. We plan to evaluate our algorithm on 

additional types of datasets, such as text and images. 

Expanding our technique to handle multi-dimensional data 

more efficiently could improve its applicability. We will also 

explore integrating cluster validity indices to automatically 

select algorithm parameters.  
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In conclusion, our experiments demonstrate the 

effectiveness of the proposed enhanced K-means algorithm at 

achieving balanced cluster sizes while maintaining high 

clustering quality. This work provides a foundation for 

developing balanced clustering methods applicable across 

diverse real-world problem domains. 
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