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Climate change threatens agriculture; as a result, adaptation measures are required to 

withstand agricultural produce, reduce susceptibility, and improve the farm system's 

flexibility to climate change. Meteorological parameters like temperature and relative 

humidity play an essential role in the condition of disease occurrence in plants. We studied 

ARIMA, Prophet, and Long Short-Term Memory (LSTM) with stochastic gradient descent 

with momentum, RMSprop, and Adam optimizers to forecast the temperature and relative 

humidity. The work proposes a hybrid regression prediction model of Bilinear LSTM with 

Gaussian Bayesian optimization (BLSTM_bayOpt) for predicting disease in tomato plants 

based on weather parameters. From the six prediction models in this study, the performance 

of BLSTM_bayOpt in prediction with RMSE of 1.1573 and 5.5509, MAPE is 0.0556 and 

0.0927, R2 is 0.9324 and 0.9475 for temperature and relative humidity, respectively. The 

proposed hybrid BLSTM_bayOpt model improved by 40.67%, with an MSE score for 

relative humidity prediction. 

Keywords: 

Bayesian optimization, long short-term 

memory, prediction, relative humidity, 

temperature, tomato plant disease 

1. INTRODUCTION

In terms of total area and tomato production, India 

contributes approximately 19.0 and 11.1%, respectively, to the 

global total. Tomatoes account for 8% and 12% of total 

vegetable cultivation area and production in India, 

respectively [1]. Predicting disease and timely management 

can help reduce the loss in yield and help farmers produce 

better. Weather factors such as “temperature, rainfall, leaf 

wetness duration, and relative humidity” are driving factors in 

plant disease forecasting. Hourly or daily data is essential for 

weather-driven models to detect infection conditions and track 

disease cycles [2]. Weather forecasting is a critical area of 

study in everyday life. Weather for the future is essential to 

forecast because agriculture and many industries rely heavily 

on weather conditions. Weather forecasting is required for 

future planning in agriculture, industry, and other fields such 

as defence, mountaineering, shipping, aerospace navigation, 

etc. [3-6]. Weather forecasting involves the application of 

scientific principles and advanced technology to predict the 

atmospheric conditions at a particular place and time in the 

future. These forecasts rely on the dynamic nature of various 

factors such as temperature (both high and low), relative 

humidity, and precipitation, among others, as they constantly 

fluctuate over time [7]. For developing a forecasting model, a 

time series for each parameter can be formed statistically [8]. 

Various approaches have been developed for weather 

forecasting and statistical analysis in the past decades. 

Regression models are still widely used approaches for 

predicting future events or values in these models [9, 10]. 

The time-series weather data consists of various parameters 

viz temperature, humidity, dewpoint, rainfall, and wind speed 

information on an hourly, daily, and weekly format. Numerous 

profound learning architectures have been designed to 

diversify data series in different fields [11]. The various 

models are linear regression, support vector regression, 

random forest regression, “Auto-Regressive Integrated 

Moving Average” (ARIMA), “Seasonal Autoregressive 

Integrated Moving Average” (SARIMA), Prophet, 

Convolutional Neural Networks (CNN), Recurrent Neural 

Networks Recurrent (RNN), Long Short-term Memory 

(LSTM) to name a few that can be applied to a time-series data. 

In predicting plant disease, time-series weather data analysis 

must be done for weather parameters like temperature and 

relative humidity that cause favorable environmental 

conditions for the disease triangle [12]. The hybrid model 

might give a better forecast result in the weather prediction 

that can predict disease occurrence in plants in advance. The 

hybrid model can use post-processing techniques like model 

output statistics to improve the prediction handling errors with 

optimization methods [13, 14]. The prediction of tomato plant 

leaves disease occurring at a particular temperature and 

relative humidity is discussed in this work.
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1.1 Disease triangle 

 

The plant disease triangle offers a lens through which we 

understand that the occurrence of a plant disease arises from 

the intricate interplay between a pathogen, a host, and the 

environment, highlighting the dynamic and multifaceted 

nature of these interactions [15, 16]. Plant disease prediction 

systems can aid farmers in averting diseases by providing early 

detection and alerting them when their crops are susceptible to 

infection. It is critical to have a mechanism for anticipating 

plant diseases. 

 

  
 

Figure 1. The dynamics of plant disease through disease 

triangle 

 

The approach anticipates the potential for plant infections 

triggered by environmental conditions that facilitate 

germination [17]. Factors such as temperature, relative 

humidity, absolute humidity, and rainfall are pivotal in 

fostering an environment favorable for plant diseases. These 

non-living elements profoundly influence the variation in pest 

populations [18]. The disease triangle, as depicted in Figure 1, 

results in disease in plants. 

Under these circumstances, plant infection occurs only 

when there is a conducive environmental condition for the 

pathogen to thrive and the host plant to be susceptible [19]. A 

low-level disease in most plants is common, but sporadic 

epidemics can unacceptably decrease cultivation quality or 

yield. Genetic resistance in the host plant can sometimes 

prevent plant disease epidemics. Farmers often have to depend 

on the prudential use of crop guards in terms of chemical 

substances to prevent conditions from getting severe enough 

to have an economic impact on quality and yield without 

genetic resistance [20]. 

This work emphasizes deep learning techniques to predict 

tomato plant disease (TPD) in the Pune region. 

Our contribution is as follows: 

(1) A hybrid Bilinear Long Short-term Memory (BLSTM) 

model with Bayesian optimization for temperature and relative 

humidity prediction. 

(2) ARIMA, Prophet, and LSTM models with stochastic 

gradient descent with momentum (SGDM), RMSprop, and 

Adam optimizers models have been used on the dataset to 

forecast the temperature and relative humidity. 

(3) A comparative analysis of different deep learning 

models is discussed. 

(4) Prediction of temperature and relative humidity helps in 

predicting.  

The paper is arranged as follows. Section 2 provides related 

work on prediction models and plant disease prediction. The 

proposed method is presented in Section 3. The results and 

discussion of the study are in Section 4. The conclusion and 

suggestions for future work are in Section 5. 

 

 

2. RELATED WORKS 

 

In predicting the power load for the American Electric 

power dataset, Jin et al. [13] used a decomposition model. The 

performance of the model was improved with the Bayesian 

optimization. The BLSTM-GRU model was used to predict 

rainfall in Simtokha, Bhutan, which increased 41.1% 

performance in MSE value compared to the LSTM model [21]. 

After Bayesian optimization, the season-wise prediction of 

photovoltaic power was improved with the LSTM-attention 

embedding [22]. In predicting air temperature for the Bandung 

region, the Prophet model performed well with an RMSE of 

1.03 compared to the RMSE of 1.23 for the LSTM model [23]. 

A Spatio-temporal recurrent neural network was used by Xu 

et al. [24] to predict wheat crop disease severity. The 

prediction of leaf wetness duration also causes disease in 

plants. In the study of Wang et al. [25], they collected the 

greenhouse data of tomato plants from Almeria, Spain, and 

Beijing, China that predicted relative humidity, dew 

temperature, transpiration, radiation, and a combination of all 

these factors. A neural network simulator was used for the 

prediction of parameters. The relative humidity was predicted 

with 73% and 83% accuracy in Spain and China's greenhouse 

data, respectively. The overall performance was 82% and 98% 

for the Spain and China datasets, respectively. For seasonally 

repeated patterns, statistical regression models like Prophet are 

used [26]. In Myintkyina, Malaysia, Temperature prediction 

was done by Oo and Sabai [27] with the Prophet model that 

gave the RMSE value of 5.7573. 

The Pusa Ruby variety of tomato plants was considered to 

study the occurrence of early blight in the plants by the study 

of Gupta et al. [1]. The disease intensity was evaluated with 

the temperature and relative humidity values. They achieved 

the performance of the stepwise regression model with an 

RMSE of 6.129 for the prediction of disease intensity. Dar et 

al. [28] used a stepwise regression model to predict late blight 

in potato plants for the four potato varieties. The parameters of 

temperature, relative humidity, rainfall, and windspeed were 

considered for disease prediction. Table 1 shows the 

comparative study of a prediction model for disease 

occurrence. 

Farmers can have more tools for disease control strategies 

if weather forecast data is used for disease warnings. With the 

help of forecast data, farmers can be able to use a pre-infection 

treatment like the use of protective fungicides and cultural 

practices. In terms of suppressing fungicide resistance and cost 

efficiency, pre-infection therapies demonstrate greater 

effectiveness in plants compared to post-infection treatments. 

The advantages of utilizing weather prediction data are evident 

in predicting plant diseases. However, there is a scarcity of 

research focused on utilizing weather prediction models for 

managing pests and diseases [2]. Better disease management 

can be availed through a weather-driven disease prediction 

model, and weather prediction data would be a tremendous 

facilitator in the application. 

The methodology to predict the occurrence of TPD based 

on the prediction of meteorological parameters like 

temperature and relative humidity using the deep learning 

approach is discussed in the next section. 
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Table 1. Comparative study of a prediction model for the occurrence of disease 

 
Ref Main Idea Performance Dataset Limitations 

[24] 
Prediction of the wheat crop 

disease 

The RMSE was improved to 

0.0740 

Weather data of Longnan City, 

China 

Fine-tuning of models can be done 

for performance improvement 

[25] 
Evaluation of leaf wetness 

duration 

Relative humidity prediction is 

73% in Spain and 83% in China 

Greenhouse data from 

Almeria, Spain, and Beijing, 

China 

Experiments were performed on 

greenhouse data 

[1] 
Prediction of the intensity of early 

blight disease in tomato 

The disease intensity RMSE 

value is 6.129 

Weather data of Jammu 

province, India 

Only one class of Pusa Ruby was 

considered for the study 

[27] 
Temperature Forecasting in 

Myintkyina 
RMSE is 5.7573 

Temperature data of 

Myintkyina 
High computational cost 

[28] 

Prediction of temperature and 

relative humidity for disease in 

Sorghum 

Validation of disease at two 

different locations shows good 

performance. 

Weather parameters of 

Ludhiana, India 

Models can be explored for other 

zones for the prediction of disease 

[29] 
Prediction of late blight disease in 

potato 

RMSE of 0.58 for Kufri Jyoti 

variety 

Weather parameters of 

Kashmir, India 

The study was carried out for hilly 

regions only 

 

 

3. PROPOSED METHODOLOGY 

 

The workflow for the proposed study in predicting TPD is 

shown in Figure 2. A historic time-series dataset of 

environmental parameters is selected for the Pune region [30]. 

The dataset is pre-processed and divided into training and 

testing datasets before applying a deep-learning regression 

model. The performance of the deep learning model is 

evaluated, and the prediction of the occurrence of disease in 

tomato plants is made. 

 

 
 

Figure 2. Workflow of the proposed work in the TPD 

prediction 

 

3.1 Dataset 

 

By leveraging time-series data, the analysis facilitates 

continuous tracking of weather patterns at varying daily, 

hourly, or weekly intervals. The investigation utilizes a 

comprehensive weather dataset sourced from the Pune region 

in Maharashtra state, India, covering observations from 

January 1, 2009, to January 1, 2020 [30]. Figure 3, depicts the 

geographical area of Pune in Maharashtra, India, this specific 

region was selected as the focal point for the research. The 

dataset encompasses diverse meteorological variables 

including maximum and minimum temperatures, humidity, 

rainfall, dewpoint, wind speed, and wind direction. 

According to the principles outlined in the disease triangle, 

conducive weather conditions play a pivotal role in nurturing 

pathogens, thereby contributing to plant diseases. Particularly 

in the case of tomato plants, the relative humidity emerges as 

a crucial factor in influencing favorable conditions for disease 

development [31]. The calculation of relative humidity, as 

described in Eq. (1), involves determining the ratio between 

saturated vapor pressure and actual vapor pressure. 

 

 
 

Figure 3. Geographical positioning of the Pune region in 

Maharashtra, India, for the weather dataset collection 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
𝐸

𝐸𝑠

𝑋100 (1) 

 

where, 

 
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐸)

= 6.11𝑋10Λ( 
7.5𝑋𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡

237.7 + 𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡
) 

 

and 

 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐸𝑠)

= 6.11𝑋10Λ( 
7.5𝑋𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

237.7 + 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
) 

 

Prior to commencing the analysis, the dataset underwent a 

pre-processing stage aimed at detecting and handling any 

missing data entries. The weather forecasting analysis 

specifically focused on essential weather parameters such as 

temperature, dewpoint, pressure, relative humidity, and 

absolute humidity. To facilitate the analysis, the dataset was 

divided into separate training and testing sets, with an 80% 

portion allocated for training and the remaining 20% for 

testing. 

 

3.2 Deep learning models 

 

Artificial Intelligence-based algorithms are used for 

complex regression models. Regression was used to detect the 
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complex correlation between input and output variables [32]. 

In our study, we leverage various advanced models-Auto-

Regressive Integrated Moving Average (ARIMA), Facebook 

Prophet, Long Short-Term Memory (LSTM) employing three 

different optimizers, and Bilinear LSTM using Bayesian 

optimization-to forecast both temperature and relative 

humidity. As these parameters are crucial in the occurrence of 

TPD, the forecast will help get a solution for managing plants 

in those weather conditions. ARIMA models were selected 

due to their effectiveness in modeling linear dependencies in 

time-series data. Its ability to capture trends, seasonality, and 

stationarity in the context of plant disease progression was a 

primary consideration [33]. The prophet model can handle 

seasonal data with irregularities by capturing varied patterns 

that traditional statistical models might not fully [34]. LSTM 

was employed for its capacity to model complex temporal 

relationships and nonlinear dependencies within the data [35]. 

the integration of Bayesian optimization was pivotal in fine-

tuning hyperparameters for these models, optimizing their 

performance, and overcoming challenges related to parameter 

tuning, thereby enhancing their predictive accuracy [36]. 

 

3.2.1 ARIMA 

A famous time series prediction method introduced by Box 

and Jenkins is ARIMA. The main formulas of ARIMA are as 

follows: Prediction of future values can be made with the 

combination of auto-regression and moving average 

algorithms in ARIMA. ARIMA models can handle stationary 

and non-stationary time series. Data autocorrelation patterns 

are essential in ARIMA. ARIMA's methodology differs 

because it uses an interactive approach to identify a possible 

model [37]. ARIMA (p, d, q) captures the model's essential 

elements: “autoregressive, integrated, and moving average.” 

“The time series is linearly dependent on its preceding values 

and a stochastic term, as per the autoregressive (AR) process. 

The model of order p forecasts the variable when there is a 

correlation between the time series value and its predecessors” 

[38, 39]. 

 

𝑌𝑡 = 𝑐 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 + 𝜖𝑡 (2) 

 

The integration process (I) is employed to achieve 

stationarity in time series by assessing the differences between 

observations made at various points in time (d). In utilizing a 

Moving Average (MA) model applied to past observations, 

this approach considers the relationship between observations 

and residual error terms (q) [39]. 

 

𝑌𝑡 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ +  𝜃𝑞𝜖𝑡−𝑞 (3) 

 

where, “𝑌𝑡  represents the stationary variable. 'c' denotes the 

constant term, while the 𝛼𝑝  and 𝜃𝑞  terms stand for 

autocorrelation coefficients ranging from lag 1 to N. 

Additionally, 𝜖𝑡  is the stochastic term”. ARIMA has three 

parameters: “autoregressive order (p), differencing degree (d), 

and moving average order (q).” The ARIMA (p, d, q) model is 

written as follows: 

 

∆𝑌𝑡 = 𝑐 + 𝛼1∆𝑌𝑡−1 + ⋯ + 𝛼𝑝∆𝑌𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1

+ 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞  
(4) 

 

Augmented Dickey and Fuller test is performed to identify 

the time series data into a stationary or not category [38]. 

Variance-stabilizing transformations and differencing are used 

for the time series plots showing variance growth. To 

determine the amount of linear dependence between 

observations in a time series separated by a lag p, 

Autocorrelation Function (ACF) is used. The number of 

autoregressive terms q is determined by the Partial 

Autocorrelation Function (PACF). Inverse Autocorrelation 

function (IACF) can identify preliminary autoregressive order 

p, order of differencing d, and moving average order q along 

with over differencing. The order of difference frequency 

changing from non-stationary to stationary time series is 

represented by the parameter d [39]. Estimate relevant models 

based on the ACF and PACF series, adjusting the level of AR 

and MA. In ACF and PACF graphs, the spikes and curves help 

us identify (p, q). Once the optimum model has been picked, 

forecasting uses the model's parameters (p, d, q). Assessing the 

performance of the newly built forecasting model involves 

utilizing statistically significant measures like the Akaike 

information criterion (AIC), Bayesian information criterion 

(BIC), and mean square error (MSE). This evaluation process 

aids in determining the effectiveness and accuracy of the 

model [38, 40]. 

 

3.2.2 Prophet 

Prophet is a forecasting model created by Facebook 

Research, the company's R&D division dedicated to 

developing innovative solutions. Forecast plays a significant 

role in a big organization. The organization considers 

forecasting a crucial tool for planning capacity and efficiently 

dividing limited resources and goal setting. High-quality 

forecasts are challenging for machines or analysts [41]. The 

prophet model utilizes a decomposable time series framework, 

comprising three key elements-trend, seasonality, and 

holidays-as components in its prediction of the output variable 

y(t) [26, 29]: 

 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀(𝑡) (5) 

 

where, g(t) represents the trend that can be linear or non-linear, 

s(t) represents the seasonality changes, h(t) represents the 

holiday information, ε(t) is the error term; this approach is 

beneficial in many ways. 

The seasonal component s(t) offers a versatile 

representation of cyclical variations arising from weekly and 

yearly patterns. On the other hand, the h(t) component captures 

anticipated annual irregularities, accounting for atypical 

occurrences such as days with irregular schedules. The error 

term “ε(t) denotes information not expressed in the model.” It 

is commonly modelled as normally distributed noise. 
 

3.2.3 LSTM 

The LSTM proposed by Hochreiter and Schmidhuber is a 

computing unit in a Recurrent Neural Network (RNN) 

structure [42]. The LSTM computes data through three gates: 

a forget gate deals with the removal of data, an input gate deals 

with the number of cell states stored, and an output gate deals 

with the cell states to be taken forward [43]. Within the gate 

mechanism, various terms are employed: σ denotes the 

sigmoid activation function, tanh represents the hyperbolic 

tangent activation function, ℎ𝑡−1  signifies the output of the 

hidden state at time t-1, 𝑥𝑡 denotes the input at time t, and �̃�𝑡 

indicates the intermediary cell state [23]. Figure 4 shows the 

LSTM model architecture. Several network models are trained 

at the same time. The best model is one with a minimum 

amount of error, which can be achieved when each gate 

function reaches maximum epochs or target error. 
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Figure 4. LSTM model architecture 

 

The following information is passed through the forget gate, 

information gate, intermediate cell state, new cell state, output 

gate, and output for the hidden state is shown in Eq. (6) to Eq. 

(11): 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑓) (6) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑖) (7) 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑐) (8) 

 

𝑐𝑡 = (𝑖𝑡 ∗ �̃�𝑡 + 𝑓𝑡 ∗ 𝑐𝑡−1) (9) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏0) (10) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡) (11) 

 

where, 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑎𝑛𝑑 𝑊𝑜  are weights and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐  𝑎𝑛𝑑 𝑏𝑜 

are bias of the forget gate, input gate, output gate, and cell state. 

The LSTM model is trained with three optimizers sgdm, 

RMSprop, and Adam. Adam is a stochastic gradient descent 

replacement optimization algorithm for deep learning model 

training. Optimum features of the AdaGrad and RMSProp 

algorithms are integrated for optimization to deal with sparse 

gradients on noisy problems. The LSTM layer is further 

connected to a fully connected layer, followed by a dropout 

layer, a fully connected layer, and the regression layer for 

temperature and relative humidity prediction. The dropout 

layer reduces the overfitting problem [44]. 

 

3.2.4 BLSTM-Bayesian optimization 

The proposed hybrid model is Bilinear LSTM(BLSTM) 

with Gaussian Bayesian optimization. The BLSTM model was 

proposed by Graves and Schmidhuber [45]. In BLSTM, there 

are two models instead of conventional LSTM The initial 

model learns from the input sequence provided, while the 

subsequent model learns from the reverse sequence of the 

input. After learning the relevant information of each piece in 

a sequence, current connections are utilized by BLSTM to 

model the global dependencies amongst their responses 

internally. It maintains long-term dependence by using 

specifically designed memory cells [46]. BLSTM is based on 

the multiplicative interaction of input and LSTM memory [47]. 

 

ℎ𝑡−1 = [ℎ𝑡−1,1
𝑇 , ℎ𝑡−1,2

𝑇 , … , ℎ𝑡−1,𝑟
𝑇 ]

𝑇
 (12) 

 

𝐻𝑡−1
𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑

= [ℎ𝑡−1,1, ℎ𝑡−1,2, … , ℎ𝑡−1,𝑟]
𝑇
 (13) 

 

𝑚𝑡 = 𝑔(𝐻𝑡−1
𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑

𝑥𝑡) (14) 

 

where, 𝑔(∙)  is the non-linear activation function. ℎ𝑡−1  is a 

long vector, is reshaped before multiplying it with the input. 

The matching vector 𝑚𝑡 is fed to the fully connected layer and 

then the dropout layer to avoid overfitting. Gaussian Bayesian 

optimization is applied to minimize the loss function, and 

further, the model is fitted for temperature and relative 

humidity prediction. 

Bayesian optimization improves model performance by 

selecting the best hyperparameters, resulting in a one-of-a-

kind optimal model adaptable to each appliance's unique 

settings and seasonal variations [48]. Behind the Bayesian 

optimization, the main idea is to start the prior distribution 

model and then use the data obtained to continuously optimize 

the guessing model to make it respect the actual distribution. 

Using the information from the previous sampling point to 

make it respect the actual distribution can improve the result 

to maximize the global optimum [49]. The proposed BLSTM 

model is shown in Figure 5. 

 

 
 

Figure 5. BLSTM model architecture 

 

3.3 Performance evaluation 

 

The performance parameters can be evaluated and 

compared for the different regression models to select the best-

performing model. The performance parameter [22] of “Mean 

Absolute Error (MAE),” “Mean Square Error (MSE),” “Root 

Mean Square Error (RMSE),” “Coefficient of determination 

(R2),” and “Mean Absolute Percentage Error (MAPE)” are 

evaluated for the proposed models for the prediction of 

temperature and relative humidity as shown in Eq. (15) to Eq. 

(19). “MAE is a regression loss function which is the mean of 

the absolute differences between the true and predicted values; 

deviations from the true value in either direction are treated the 

same way.” “MSE is a risk function that measures the average 

squared difference between the estimated and actual values.” 

RMSE is a popular metric for assessing the accuracy of a 

model's prediction. “RMSE calculates the differences or 

residuals between the actual and predicted values.” When 

predicting the outcome of a given event, the coefficient of 

determination is a statistical measurement investigating how 

differences in another variable can explain differences in one 
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variable. “MAPE is a measure of prediction accuracy of a 

forecasting method in statistics.” 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�|

𝑁

𝑖=1

 (15) 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�)2

𝑁

𝑖=1

 (16) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂� )2

𝑁

𝑖=1

 (17) 

 

𝑅2 = 1 −
∑(𝑦𝑖 − �̂� )2

∑(𝑦𝑖 − �̅�)2
 (18) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖 − �̂�

𝑦𝑖
|

𝑁

𝑖=1

 (19) 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max(𝑡𝑎𝑟𝑔𝑒𝑡) − min (𝑡𝑎𝑔𝑒𝑡)
 (20) 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − [
(1 − 𝑅2)𝑋(𝑁 − 1)

(𝑁 − 𝑝 − 1)
] (21) 

where, 𝑦𝑖  is the actual value 

�̂� is the predicted value of 𝑦𝑖  

�̅� is the mean value of 𝑦𝑖  

N is the number of observations. 

max(target) is maximum value of target variable 

min(target) is minimum value of target variable 

p is the number of independent variables in the model 

 

3.4 Tomato plant disease 
 

The Optimal conditions for TPD are illustrated in Figure 6, 

categorizing them as viral, fungal, or bacterial. Environmental 

factors, including temperature and relative humidity, play 

crucial roles in the manifestation of eight distinct leaf diseases 

in tomato plants. Disease occurrence in tomato plants is 

contingent upon maximum and minimum temperatures, 

dewpoint, relative humidity, and rainfall. For instance, fungal 

infections in tomato plants thrive within temperature ranges of 

22-38°C and relative humidity levels of 55-90% [50-55]. 

Conversely, bacterial infections in tomato plants flourish in 

temperatures ranging from 24-32°C, coupled with relative 

humidity levels exceeding 80% [56]. The mosaic virus is 

known to affect tomato plants within temperature ranges of 21-

31°C and a relative humidity of 55-70% [57]. Meanwhile, the 

yellow leaf curl virus manifests when the whitefly population 

exists between 19-29°C with a relative humidity ranging from 

73-88% [58]. 

 
 

Figure 6. Prime environmental settings fostering TPD development 
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The proposed methodology is applied on the meteorological 

dataset of Pune region to predict the temperature and relative 

humidity as theses parameters are very essential to predict the 

occurrence of disease in plants. The performance parameters 

are evaluated to study the performance of the proposed model 

to predict temperature and relative humidity. The results of the 

prediction are discussed in the following section. 

 

 

4. RESULTS AND DISCUSSION 

 

The dataset is found to be clean and has no missing values 

when checked at the time of preprocessing. Visualizing the 

fluctuation of parametric values across 11 years of 

meteorological data illustrates the seasonal patterns within the 

range [30]. The temperature in degrees Celsius and relative 

humidity are assessed for the weather forecast. Figure 7 

depicts the monthly average temperature in Pune from January 

2009 to January 2020. The monthly average relative humidity 

of Pune for January 2009 to January 2020 is shown in Figure 

8. As relative humidity is affected by temperature, outlier 

temperatures have an effect on relative humidity values. 

A boxplot helps reveal overall patterns hidden in a dataset 

and displays a large dataset’s characteristics [59]. Figure 9 

displays the boxplot representing the temperature values. 

Within this plot, certain outlier temperature values exert an 

influence on the corresponding relative humidity values. 

Additionally, Figure 10 portrays the boxplot illustrating the 

relative humidity values. 

The average monthly range of temperature values in Pune 

from January 1 2009 to January 1 2020 is shown in Figure 11. 

The average monthly temperature is high from March to May 

every year, which is summer. The average monthly relative 

humidity for the same period is shown in Figure 12. The 

relative humidity is higher during the rainy season of June to 

September every year. 

 

 
 

Figure 7. Temperature readings displaying seasonal variation 

from 2009 to 2020 

 

 
 

Figure 8. Relative humidity readings displaying seasonal 

variation from 2009 to 2020 

 
 

Figure 9. Boxplot for temperature values 

 

 
 

Figure 10. Boxplot for the relative humidity values 

 

 
 

Figure 11. Average temperature in Pune 

 

As per the disease triangle, the most favorable 

environmental conditions responsible for the TPD are majorly 

dependent on weather parameters viz temperature and relative 

humidity as shown in Figure 6. So, the temperature and 

relative humidity are predicted of the prediction of occurrence 

of TPD. The proposed work V/s other existing works in 

prediction work is shown in Table 2. The prediction of 

financial data [39] used ARIMA and LSTM models. In their 

work, the LSTM model outperformed the ARIMA model. 

Yang et al. [22] predicted photovoltaic power with LSTM and 

BLSTM models achieving RMSE of 1.195 and 1.135, 
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respectively. A stepwise regression model was used by Gupta 

et al. [1] to predict the intensity of tomato early blight disease. 

They achieved the RMSE of 6.129 and R2 of 0.832. A stepwise 

regression model with temperature, rainfall, relative humidity, 

and wind speed was considered to predict potato blight disease 

[28]. The four varieties of potatoes were chosen for the study. 

The Kufri Jyoti variety performs best prediction with an 

RMSE of 0.58 and R2 of 0.82. Bhardwaj et al. [27] used the 

M1, M2, and M3 models to predict the temperature and 

relative humidity in the Ludhiana region. The M1 model 

performed better than the M2 model regarding RMSE and R2 

in temperature prediction. The M3 model achieved R2 of 0.12 

and RMSE of 12.09 in the prediction of relative humidity. 

Temperature Forecasting in Myintkyina was done using the 

Prophet model by Oo and Sabai [26], getting an RMSE of 

5.7573. Air temperature forecasting was done by Toharudin et 

al. [23] using the LSTM model with Adam and RMSProp 

optimizer and Prophet model. The RMSE of the Prophet 

model is 1.03, making it a better performer in prediction. 

In the proposed work, temperature and relative humidity are 

predicted using ARIMA, Prophet, LSTM with sgdm optimizer 

(LSTM_sgdm), LSTM with RMSprop optimizer 

(LSTM_rmsprop), LSTM with Adam optimizer 

(LSTM_adam), and Bilinear LSTM with Bayesian 

Optimization (BLSTM_bayOpt). The RMSE values of the 

Prophet model in the temperature and relative humidity 

prediction are high in both cases. ARIMA model predicts 

temperature with an RMSE of 1.9737 and relative humidity 

with an RMSE of 6.7238. The RMSE of the LSTM_sgdm 

model, LSTM_rmsprop, and LSTM_adam in temperature 

prediction is 1.9034, 0.6102, and 0.2270, respectively, and the 

R2 is 0.9948, 0.9830, and 0.9976 respectively. The RMSE 

value of these models in predicting relative humidity is 

10.8579, 7.6060, and 7.2065, respectively, with R2 as 0.8260, 

0.9146, and 0.9233, respectively. In the case of the 

BLSTM_bayOpt model, the performance in predicting 

relative humidity is improved compared to other proposed 

work models with an RMSE of 5.5509 and R2 of 0.9475. As 

temperature and relative humidity are both critical in 

predicting disease in a tomato plant, the BLSTM_bayOpt 

model is performing better amongst the other models in 

predicting both weather parameters. 

The dataset was found to be consistent and complete. The 

outlier was considered and the data was validated based on 

consistency and completeness. The performance of MAE, 

MSE, and MAPE for predicting temperature and relative 

humidity is shown in Table 3 for the ARIMA, Prophet, 

LSTM_sgdm, LSTM_rmsprop, LSTM_adam, and 

BLSTM_bayOpt models. The Prophet model is not showing 

excellent results in predicting temperature and relative 

humidity both. The performance of the BLSTM_bayOpt is 

seen to be improved for the prediction of relative humidity. 

Overall, the model prediction temperature and relative 

humidity are beneficial in predicting the occurrence of disease 

in the tomato plant. 

Figure 13 illustrates correlation plots for temperature using 

six different prediction models. The correlation between the 

actual test values and the predicted temperature values is 

depicted in the Figure 13 (a) for the ARIMA model, Figure 13 

(b) for the Prophet model, Figure 13 (c) for the LSTM_sgdm 

model, Figure 13 (d) for LSTM_rmsprop model, Figure 13 (e) 

for LSTM_adam model, and Figure 13 (f) for BLSTM_bayOpt 

model. The scatter plot for ARIMA shows no correlation in 

the prediction of temperature. The scatter plot for Prophet, 

LSTM_sgdm, LSTM_rmsprop, LSTM_adam, and 

BLSTM_bayOpt models shows positive correlation in 

prediction of temperature. 

Figure 14 showcases correlation plots demonstrating the 

relationship between actual test values and predicted 

temperature values for relative humidity using six distinct 

prediction models. Each sub-figure corresponds to a specific 

model: 14 (a) ARIMA, 14 (b) Prophet, 14 (c) LSTM_sgdm, 14 

(d) LSTM_rmsprop, 14 (e) LSTM_adam, and 14 (f) 

BLSTM_bayOpt. The scatter plot for ARIMA shows no 

correlation in the prediction of relative humidity. The scatter 

plot for Prophet, LSTM_sgdm, LSTM_rmsprop, LSTM_adam, 

and BLSTM_bayOpt models shows a positive correlation in 

the prediction of relative humidity. 

 

 
 

Figure 12. Average relative humidity in Pune 

 

Table 2. Proposed work V/s other existing works in 

prediction work 

 
Ref Model Prediction RMSE R2 

[39] 
ARIMA 

Financial data 
5.999 -- 

LSTM 0.936 -- 

[22] 
LSTM Photovoltaic 

power 

1.195 0.837 

BLSTM 1.135 0.879 

[1] 
Stepwise 

regression 

Temperature and 

relative humidity 
6.129 0.832 

[27] 

M1 temperature 8.56 0.56 

M2 temperature 9.56 0.45 

M3 Relative humidity 12.09 0.12 

[26] Prophet temperature 5.7573 -- 

[23] 

LSTM_adam 

temperature 

1.23 -- 

LSTM_rmsprop 1.45 -- 

Prophet 1.03 -- 

[28] 
Stepwise 

regression 

Temperature, 

rainfall, relative 

humidity and 

windspeed 

0.58 0.82 

Proposed 

work 

ARIMA 

Temperature 

1.9737 -0.004 

Prophet 4.2417 0.2196 

LSTM_sgdm 1.9034 0.9948 

LSTM_rmsprop 0.6102 0.9830 

LSTM_adam 0.2270 0.9976 

BLSTM_bayOpt 1.1573 0.9324 

ARIMA 

Relative humidity 

6.7238 0.7314 

Prophet 21.8952 0.4658 

LSTM_sgdm 10.8579 0.8260 

LSTM_rmsprop 7.6060 0.9146 

LSTM_adam 7.2065 0.9233 

BLSTM_bayOpt 5.5509 0.9475 
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Table 3. Performance parameters for prediction of temperature and relative humidity 

 

Model 
RMSE NRMSE MAE MAPE R2 Adjusted R2 

Temperature 

ARIMA 1.9738 0.1481 1.3667 0.0514 -0.004 -0.0041 

Prophet 4.2417 0.3182 3.1504 15.7016 0.2197 0.2196 

LSTM_sgdm 1.9034 0.1428 1.4424 7.3362 0.9948 0.9948 

LSTM_rmsprop 0.6102 0.0458 0.3673 2.1962 0.9830 0.9830 

LSTM_adam 0.2270 0.0170 0.1740 0.7840 0.9976 0.9976 

LSTM_bayOpt 1.1573 0.0868 1.4556 0.0556 0.9324 0.93239 

 Relative Humidity 

ARIMA 6.7239 0.0900 5.1714 0.1063 0.7314 0.73138 

Prophet 21.8952 0.29307 14.6847 38.7652 0.4659 0.46581 

LSTM_sgdm 10.8579 0.1453 5.8540 15.1169 0.8260 0.82596 

LSTM_rmsprop 7.6060 0.1018 1.0877 2.0360 0.9146 0.9146 

LSTM_adam 7.2065 0.0965 1.0234 1.9271 0.9233 0.92333 

LSTM_bayOpt 5.5509 0.0743 1.7013 0.0927 0.9475 0.9475 

 

Table 4. ANOVA analysis of performance parameters evaluated for prediction 

 
Source of Variation SS Df MS F P-Value F Crit Significance  

Parameters 277.7525 1 277.7525 11.0403 0.0061 4.7472 ** 

Model 1040.334 5 208.0668 8.2703 0.0013 3.1058 ** 

parameters X Model 245.5888 5 49.1177 1.9523 0.1588 3.1058 NS 

Within 301.8968 12 25.1580     

Total 1865.572 23      
*** p<0.001, **p<0.01, *p<0.05; NS, p≥0.05 

 

Statisticians created an analysis of variance (ANOVA) to 

analyze the results of experimental designs using statistical 

tests [60]. ANOVA was selected as the preferred statistical 

method due to its versatility in handling comparisons across 

multiple groups. It not only identifies significant differences 

between these groups but also offers insights into the extent or 

size of these differences. By analyzing the variance between 

groups in relation to the variance within groups, ANOVA 

efficiently detects distinctions among multiple sets of data. It 

is worth noting that ANOVA assumes normal distribution and 

equal variances within each group, aligning with established 

statistical assumptions. Additionally, its widespread use and 

acceptance within the scientific community facilitate clearer 

communication and interpretation of research findings. The 

ANOVA analysis is employed to assess the performance 

metrics of the proposed models, encompassing ARIMA, 

Prophet, LSTM_sgdm, LSTM_rmsprop, LSTM_adam, and 

BLSTM_bayOpt in predicting temperature and relative 

humidity. These results are presented in Tables 4, showcasing 

parameters such as Sum of Squares (SS), degrees of freedom 

(df), mean squares (MS), p-value, F value, and F critical value. 

The p-value, in conjunction with comparison to the F critical 

value, is utilized to ascertain statistical significance. Notably, 

a p-value falling between 0.0001 to 0.001 denotes extreme 

statistical significance, while a range of 0.001 to 0.01 indicates 

high statistical significance. A p-value within the range of 0.01 

to 0.05 signifies statistical significance. In the study by 

Bhardwaj et al. [27, 61], a finding is considered statistically 

significant if the p-value is less than or equal to 0.05, and there 

is no statistical significance when the p-value is greater than 

0.05. The p-value is 0.0061 for the performance parameters, 

and the p-value is 0.0013 for the different models showing 

statistical significance in the performance parameters and the 

models. 

Based on the prediction of temperature and relative 

humidity with the proposed models, the disease occurrence in 

the tomato plant is shown in Figure 15. The possible 

occurrence of disease for 30 days is shown here. The vertical 

axis shows the category of disease. The number 1 belongs to 

the healthy class or no disease, the number 2 belongs to early 

blight, and the number 3 belongs to late blight disease in 

tomato plants during this period. During this tenure, the most 

occurring disease in the tomato plant is early blight and late 

blight. Early blight occurs from 14°C to 38°C and a relative 

humidity of 54% to 93%. Late blight occurs from 10°C to 

22°C and relative humidity of more than 90%. It is seen that 

around the 7th day, the disease occurs, which is predicted by 

most of the models. A remedial precaution can be taken on the 

6th day by applying the relevant pesticide or herbicide to avoid 

the occurrence of the disease. 

 

  
(a) ARIMA model (b) Prophet model 
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(c) LSTM_sgdm (d) LSTM_RMSprop 

  
(e) LSTM_Adam (f) BLSTM_bayOpt 

 

Figure 13. Scatter plot of the True and predicted temperature for the proposed work 

 

  
(a) ARIMA model (b) Prophet model 

  

(c) LSTM_sgdm (d) LSTM_RMSprop 
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(e) LSTM_Adam (f) BLSTM_bayOpt 

 

Figure 14. Scatter plot of the True and predicted Relative Humidity for the proposed work 

 

 
 

Figure 15. Prediction of occurrence of TPD 

 

ARIMA models might struggle to capture complex seasonal 

patterns in the data, especially when the seasonality is not 

easily defined or changes over time [62]. The prophet model 

might not offer the same level of flexibility as more complex 

models in capturing intricate relationships present in the data 

[63]. LSTMs can be sensitive to the choice of hyperparameters 

and may require extensive tuning for optimal performance 

[64]. The performance of Bayesian optimization models can 

be sensitive to the choice of hyperparameters [65]. 

The implications of the above constraints is that there can 

be a small variation in the accuracy of the data. So future 

researchers need to keep that tolerance factor in mind 

regarding accuracy. 

 

 

5. CONCLUSION 

 

Temperature and relative humidity are significant reasons 

behind the occurrence of disease in plants. Accurate 

temperature and relative humidity prediction help effectively 

take a management step toward disease occurrence in tomato 

plants. The proposed hybrid BLSTM_bayOpt model better 

predicts the meteorological factors for the Pune region of 

Maharashtra, India. The RMSE of the proposed model is 

1.1573 and 5.5509, MAPE is 0.0556 and 0.0927, R2 is 0.9324 

and 0.9475 for temperature and relative humidity, respectively. 

The proposed model can predict future diseases in plants with 

a high accuracy rate. The performance parameters show 

statistical significance with the prediction models. The 

prediction model can be deployed on a mobile phone to predict 

the weather parameters in future work. Based on that, the 

possible occurrence of the disease in the tomato plant can be 

known to the farmers and stakeholders can in advance, and 

they can do the management step of applying the required 

pesticide to reduce the loss in the yield due to disease. 

Implementing our model in precision agriculture can empower 

farmers to make informed decisions about irrigation 

scheduling, disease prevention measures, and crop protection 

strategies for other crops as well. This integration of advanced 

predictive models into agricultural systems represents a 

tangible opportunity to revolutionize traditional farming 

practices, enabling more efficient resource utilization and 

sustainable agricultural production. This will involve the 

potential integration of our model into existing agricultural 

systems, emphasizing its role in enhancing crop health 

monitoring, disease prevention, and ultimately improving 

agricultural productivity. 
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