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Land use and land cover (LULC) changes driven by rapid urbanization and land use 

policies can result in changes in carbon stocks. The study conducted in the region of 

Central Aceh (TCAR) aims to 1) identify the pattern of LULC change in TCAR 2001-

2019 and make predictions of its changes in 2039 using the CA-Markov simulation, and 

2) quantify changes in carbon stocks in the region in 2001-2019 and their predicted

changes in 2039. This study uses Landsat 5 (2001), Landsat 7 (2009) and Landsat 8 OLI

/TIRS (2019) satellite imagery, which is classified into six LULC categories using the

supervised classification method. The 2001-2019 LULC map from the classification

results was then tested for accuracy. The CA-Markov model was used to predict LULC

changes and to obtain carbon stock values related to changes in LULC patterns. This

study provides a new understanding of changes in LULC and their impact on carbon

stocks, where LULC changes result in a decrease in carbon stocks, and will continue to

decrease in 2039, along with the continued decline in forest area. These findings can be

valuable information for policymakers in determining the appropriate spatial

configuration in the future, which places more emphasis on increasing nature and

environmental conservation, to mitigate climate change, a healthy environment, and

provide comfort for the community.
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1. INTRODUCTION

Eighty percent of the carbon (C) in forest ecosystems is 

thought to be found over the ground and forty percent beneath 

[1]. The importance of forests in preventing climate change is 

acknowledged by the international community. It uses the 

reducing emissions from deforestation and forest degradation 

(REDD) concept, which entails decreasing emissions from 

deforestation and forest degradation, conserving forest carbon 

stocks, sustainable forest management, and raising forest 

carbon stocks in developing countries [2]. One ton of carbon 

stored in trees results in the removal of 3.67 Mg of carbon 

dioxide from the atmosphere [3]. REDD is emerging as a 

primary policy to reduce emissions related to land use. The 

mechanisms of REDD are instrumental in reducing emissions 

from deforestation and forest degradation [4]. The 

agroforestry system is one of the possible REDD strategies [5]. 

Aceh's ability to supply carbon is pretty substantial. In 2012, 

this province's forest cover was 3,929,420 acres, or sixty-eight 

percent of the total of Aceh's land area. Given the forest cover 

size, a lot of carbon is produced [6]. Due to Aceh's shrinking 

forest acreage, it is imperative to establish a suitable REDD 

plan to maintain this carbon stock. Around 3,004,352 ha of 

forest were present in 2018; by the end of 2019, that number 

had dropped to 2,989,212 ha. According to 

SK.580/MENLHK/SETJEN/SET.1/12/2018, the Aceh 

Province conserves about 3,557,928 ha of forest and water. 

The transformation of land use and land cover (LULC) has 

been linked to a reduction in carbon storage, according to 

several earlier studies, both locally [7, 8] and globally [1, 9]. 

Depending on the variety and density of plants in the area, 

different amounts of carbon can be stored on different types of 

land. Carbon stocks can be estimated using satellite 

photography technology in conjunction with measurements of 

carbon storage in distinct LULC types [10]. 

Understanding the LULC transformation and its 

involvement in changes in the supply of carbon stocks is 

essential for developing effective spatial planning strategies 

and mitigating climate change [1, 8]. Getting a basic 

understanding of the carbon content related to the various 

LULC categories is the first step in achieving this goal [1]. 

However, knowledge regarding the direct impact of LULC on 

carbon storage has not been widely quantified in tropical 

climates [9, 11]. In addition, there are still few studies that 

examine the effects of changes in LULC on carbon stocks in 

the future, using simulation modeling techniques [12]. 

International Journal of Design & Nature and Ecodynamics 
Vol. 19, No. 2, April, 2024, pp. 465-475 

Journal homepage: http://iieta.org/journals/ijdne 

465

https://orcid.org/0000-0001-9343-4980
https://orcid.org/0000-0003-3169-8328
https://orcid.org/0000-0001-8332-6142
https://orcid.org/0009-0001-0670-6675
https://orcid.org/0009-0007-9053-6042
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijdne.190212&domain=pdf


Many regional and environmental planning studies use 

remote sensing (RS) technology as a significant data source. 

By using this technology, LULC can be classified into several 

categories and determine the effects of changes that take place 

in addition to being a monitoring tool [11, 13, 14]. These RS 

data can be used to create LULC maps that can be used to track 

the patterns of change, including their spatial and 

compositional arrangements. Forest cover changes that were 

discovered using RS can be utilized to determine how much 

carbon is stored there [2, 8]. Future LULC changes have been 

predicted using prediction methods of the CA-Markov model 

in a large number of cases [15]. 

In addition, to provide information on the transformation of 

LULC and carbon stocks in 2040, this study also offers options 

for environmentally friendly spatial planning. The study 

location is The Central Aceh Region (TCAR), which is made 

up of the Bener Meriah Regency and The Central Aceh 

Regency, was selected due to its distinctive regional landscape 

configuration, which includes mountains, forests, lakes, and 

watersheds. 

 

 
2. MATERIALS AND METHODS 

 
2.1 Research location 

 
This study was conducted in TCAR, which consists of The 

Central Aceh Regency and the Bener Meriah Regency, Aceh, 

as shown in Figure 1. This region has an area of 57,956 km2, 

with a population of 376,810 people (2020). The average air 

temperature is 21.38℃, with an altitude of 100 m to over 2,100 

m above sea level. The average humidity is 89.92% [16]. 

This region is mainly located in the Gayo Highland, Central 

Aceh Regency, Aceh, Indonesia (Figure 1), which is situated 

astronomically between 4°10'30'' – 05°7'40'' N and 95°13'02'' 

– 95°22'36'' E, with a population of 72,646 people (2020) 

(Central Aceh Regency in Figures, 2021). This region has an 

area of 16,024 ha, while the average altitude of urban areas is 

about 1,200 meters above sea level. The boundaries of the area 

surrounding this region are as follows: 

a. in the north, it is bordered by the Bireuen Regency and 

the North Aceh Regency; 

b. in the south, it is bordered by the Southwest Aceh 

Regency, the Nagan Raya Regency, and the West Aceh 

Regency; 

c. in the west, it is bordered by the Pidie Regency; and 

d. in the east, it is bordered by the Gayo Lues Regency. 

 
2.2 Data analysis 

 
Using Landsat 5 (2001), Landsat 7 (2009), and Landsat 8 

OLI/TIRS (2019) satellite imagery from 

http://earthexplorer.usgs.gov/, LULC in the region is 

classified into six categories [17], based on landscape 

conditions, which include: 1) forest, 2) grassland, 3) water 

body, 4) agriculture land, 5) built-up area, and 6) bareland, 

using ArcGIS®10.1. The following equation was used to tested 

the accuracy of LULC maps using reference point [18, 19] 

(Table 1). 

 

Overall accuracy = 
𝑁𝐴𝐴 + 𝑁𝐵𝐵 + 𝑁𝐶𝐶

𝑁
 × 100% (1) 

 

Kappa = 
𝑁 ∑ 𝑁𝑗𝑗

𝑘
𝑗=1 −∑ 𝑁𝑗𝑅𝑁𝑃𝑗

𝑘
𝑗=1

𝑁2− ∑ 𝑁𝑗𝑅𝑁𝑃𝑗
𝑘
𝑗=1

 (2) 

 
where, N = total points; k = the number of classes, R = test 

classes, and P = the classified class. 

 

 
 

Figure 1. Research location [16] 
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Table 1. An example of the confusion matrix 

 

Test Data 

 A B C Ʃ User’s accuracy (%) 

Classified A NAA NAB NAC ƩAR NAA / ƩAR × 100% 

Data B NBA NBB NAC ƩBR NBB/ ƩBR × 100% 

 
C NCA NCB NCC ƩCR NCC / ƩCR × 100% 

Ʃ ƩPA ƩPB ƩPC N  

 Producer’s NAA/ƩPA NAA/ƩPA NAA/ƩPA   

 Accuracy (PA) × 100% × 100% × 100% × 100%   

 

LULC classification is carried out in a supervised manner, 

using maximum likelihood. Using stratified random sampling, 

the LULC maps resulting from the classification were tested 

for accuracy using the ERRMAT module in TerrSet 2020, 

according to reference points. The calculation of overall 

accuracy and kappa coefficient is seen in Table 1 [20]. 

The next step is to predict LULC for 2033. This process was 

carried out using TerrSet 2020, which has a CA-Markov 

simulation [21, 22]. This CA-Markov simulation combines 

two methods, namely Markov chain (MC) and Cellular 

automata (CA). MC is an empirical/stochastic model that is 

determined based on the probability of an event occurring and 

is determined by previous events, which can be used to predict 

subsequent events [23, 24]. CA is a dynamic model that 

integrates space and time dimensions, which can be 

incorporated into GIS [22, 25]. This model produces a 

transition from the initial time to the target time using 

probability values. The Markov chain can be described as a 

transition probability matrix as follows [26]:  

 

Pij = [

𝑝11 𝑝12
… 𝑝1𝑘

𝑝21 𝑝22
… 𝑝2𝑘

…
𝑝𝑘1

…
𝑝𝑘2

…
…

…
𝑝𝑘𝑘

] (3) 

 

Pij from state i to state j, for all indices should fulfill these 

rules: 

0 ≤ Pij ≤ 1 (i,j = 1,2,3,…,n) 

 
∑ 𝑷𝒊𝒋𝒏

𝒊=𝟏  = 1 (i,j = 1,2,3,…,n) 

 
Based on the transition probability matrix, and Bayes 

probability theorem, MC could be defined as (…8): 

 
P(n) = P(n-1)Pij 

 
where, 

P(n) = condition’s probability in a time  

P(n-1) = probability in the preceding conditions 

Pij = transformation probability of land cover into another. 

The average forest carbon stock data is the carbon stock 

utilized for forest land cover (including degraded forest). For 

plantations and agricultural land cover with regular planting 

and harvesting cycles, time-averaged C stock data is employed 

[27, 28]. Table 2 provides references on the carbon stocks in 

the above-ground biomass employed in the RAN-GRK. It is 

urged to create local emission factors for the sub-national level 

(province and regency) that are more accurate and accurately 

reflect the situation in the relevant province or regency. 

Additionally, a higher layer is required for carbon trading that 

bases payments on the effectiveness of emissions reductions 

(result-based payment).

 
Table 2. Recommended aboveground emission factors (carbon stocks) for emission inventory from land use change on a national 

scale 

 
LULC C (Mg.ha-1) Source 

Secondary forest 169 

World Agroforestry Centre (2011) for high-density secondary forests; Rahayu et al. [29]; IPCC (2006) for 

tropical Asia; Saatchi et al. [30]; World Agroforestry Centre (2011) for low-density secondary forests, 

Asmara et al. [31] with the value of 250, 203, 180, 158, 150 and 74 t/ha, respectively. 

Plantation forest 64 World Agroforestry Centre (2011) mineral soil 70 t/ha, peat soil 60 t/ha. 

Bushland 30 
IPCC (2006); Istomo et al. [32]; Jepsen [33]; World Agroforestry Centre (2011) respectively 35, 30, 20 

and 27 t/ha. 

Grassland 4 Rahayu et al. [29]  

Waterbody 0 Assumption 

Agriculture land 30 Rahayu et al. [29] 

Built-up area 4 World Agroforestry Centre (2011) 

Bareland 2.5 Assumption 
Source: Study [34] 

 
There are two methods for determining emissions: 1) 

calculating changes in carbon stocks (stock difference) and 2) 

calculating increases and declines in carbon stocks (gain and 

loss). The stock difference approach calculates the variation in 

carbon stocks across time, such as one cycle of plantation 

crops or plantation woods. The US EPA (2012) also employed 

this technique. Lands that do not vary in use or cover at a given 

time are thought to be non-emitting (zero emission), while 

lands that do change in use or cover emit carbon. By deducting 

the carbon stock of the following land cover from the carbon 

stock of the initial land cover, this carbon emission is 

computed. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Accuracy assessment 
 

From the calculation of the accuracy test carried out using 

the method described above, it was found that the overall 
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accuracy for LULC in 2001, 2009, and 2019 was 95.30%, 

93.70%, and 92.40%, respectively. Meanwhile, the kappa 

coefficient values are 0.91, 0.88, and 0.86, respectively, which 

means it is in the very good category [35], and can be used for 

subsequent modeling, which uses CA-Markov. There are 

1,000 sample points determined by stratified random sampling, 

which can be seen in Table 3. For the water body category, 

there is no misinterpretation. A minor misunderstanding 

appears in the built-up area category. Meanwhile, 

misunderstanding often occurs in the forest category, with 

errors in 2001, 2009, and 2019 at 2.30%, 3.48%, and 3.55%, 

respectively. 
 

3.2 LULC changes 
 

Table 3 shows that the LULC in Aceh Tengah Regency is 

divided into six categories; forest, grassland, water body, 

agriculture land, built-up area, and bareland (Figure 2). The 

largest LULC area in 2001 was forest, with a land area of 

418,363.76, or 65.19% of the total LULC area. After forest 

comes grassland, with an area of 98,695.58 or 15.38%, and 

then comes agriculture land, with an area of 68,567.64 or 

10.68% of the total area. The bareland category comes in 

fourth with an area of 45,190.23 or 7.04%, and then comes the 

water body category with an area of 5,731.31, or 0.89% of the 

total area. The smallest LULC is built-up area with an area of 

5,236.23 or 0.82% of the entire area. 

In 2009, LULC experienced an increase and decrease in 

area, as previous research [36, 37]. It is indicated by the 

increase in agriculture land, built-up area, and water body, as 

well as the decrease in forest, grassland, and bareland. Table 

4 shows several changes in LULC that occurred from 2001 to 

2009.

 

Table 3. Confusion matrix of LULC 

 

Classified 

Data 

Reference Data 

Forest Grassland Waterbody Agriculture 
Built-Up 

Area 
Bareland Total 

User's 

Accuracy (%) 

(a) 2001         

Forest 637 7 0 8 0 0 652 97.70 

Grassland 16 144 0 5 0 0 165 87.27 

Waterbody 0 0 11 0 0 0 11 100.00 

Agriculture 4 1 0 85 0 1 91 93.41 

Built-up Area 0 0 0 0 7 1 8 87.50 

Bareland 0 1 0 3 0 69 73 94.52 

Total 657 153 11 101 7 71 1.000  

Producer's accuracy (%) 96.96 94.12 100.00 84.16 100 97.18   

Overall accuracy (%) = 95.30; K coefficient = 0.91 

(b) 2009         

Forest 638 8 0 15 0 0 661 96.52 

Grassland 13 111 0 5 0 0 129 86.05 

Water Body 0 0 11 0 0 0 11 100.00 

Agriculture 5 8 0 136 1 2 152 89.47 

Built-up Area 0 0 0 0 10 0 10 100.00 

Bareland 4 2 0 0 0 31 37 83.78 

Total 660 129 11 156 11 33 1.000  

Producer's accuracy (%) 96.67 86.05 100.00 87.18 90.91 93.94   

Overall accuracy (%) = 93.70; K coefficient = 0.88 

(c) 2019         

Forest 624 5 0 18 0 0 647 96.45 

Grassland 1 84 0 8 0 5 98 85.71 

Water Body 0 0 11 0 0 0 11 100.00 

Agriculture 23 6 0 172 1 1 203 84.73 

Built-up Area 0 0 0 2 9 0 11 81.82 

Bareland 4 1 0 1 0 24 30 80.00 

Total 652 96 11 201 10 30 1.000  

Producer's accuracy (%) 95.71 87.50 100 85.57 90.00 80.00   

Overall accuracy (%) = 92.40; K coefficient = 0.86 

 

In 2009, the forest category experienced a slight decrease 

from 65.19% to 65.18% of the total area. Grassland also 

experienced a decrease in area, from 15.38% to 12.39%. 

Bareland area experienced a decrease from 7.04% to 3.93%. 

Meanwhile, the LULC categories of water body, agriculture 

land, and built-up area experienced an increase in area. In 

2001, the water body category had an area of 0.89%; in 2009, 

the area increased to 0.90%. Agriculture land experienced a 

significant increase in area, from 10.68% to 16,63%. Built-up 

area also increased from 0.82% to 0.98%. 

Several changes in the LULC area also occurred from 2009 

to 2019. In 2019, the forest category experienced a slight 

decrease in area, from 65.18% to 63.74% of the total area. 

Grassland also experienced a decrease in area, from 12.39% 

to 11.07%, water body from 0.90% to 0.88%, and bareland 

from 3.93% to 2.83%. Meanwhile, agriculture land and built-

up area experienced an increase in area. Agriculture land 

experienced a significant increase in area, from 16.63% to 

20.38%. Built-up area increased from 0.98% to 1.10%. 

In 2039, LULC is expected to experience an increase and 

decrease in area. It is estimated based on the pattern of the rise 

and protection of LULC from 2001 to 2019. Several LULC 

categories, namely agriculture land, and built-up area are 

expected to continue to increase. Meanwhile, the forest, 

grassland, water body, and bareland categories are expected to 

decrease. The estimated LULC area in 2039 can be seen in 

Figure 3. 

Table 5 shows the estimated changes in LULC for 2039. 
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The forest category is expected to experience a slight decrease 

in area, from 63.74% to 62.43% of the total area. Grassland is 

also estimated to experience a decrease in area, from 11.07% 

to 9.51% of the total area. The water body is also expected to 

experience a slight decrease, from 0.88% to 0.85%. Bareland 

is expected to decrease from 2.83% to 2.56%. Meanwhile, 

agriculture land and built-up area are estimated to increase in 

area. Agriculture land is expected to increase from 20.38% to 

23.42%, while built-up area is also estimated to increase from 

1.10% to 1.23%. Several studies also show the same condition, 

where forests are decreasing, built-up land is increasing, and 

agricultural land is increasing, which also has an impact on the 

loss of carbon stock [9, 11, 12, 17, 38]. 

 

 
(a) LULC 2001                                                                          (b) LULC 2009 

 
(c) LULC 2019                                                                         (d) Prediction LULC 2039 

 
 

Figure 2. (a) LULC 2001, (b) LULC 2009 [16], (c) LULC 2019 [16], and (d) prediction LULC 2039 
 

 
 

Figure 3. Estimated changes in LULC area 
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Table 4. LULC area in 2001, 2009, and 2019 

 

Category 

Area (ha) Area Difference (ha) 

2001 2009 2019 
2001-2009 2009-2019 

Luas % Luas % 

Forest 418,363.76 418,321.46 409,050.74 - 42.30 - 0.01 - 9,270.72 - 2.27 

Grassland 98,695.58 79,500.88 71,014.09 -19,194.71 -24.14 -  8,486.79 - 11.95 

Waterbody 5,731.31 5,758.17 5,649.25 26.86 0.47 -108.92 - 1.93 

Agriculture land 68,567.64 106,720.34 130,817.33 38,152.70 35.75 24,096.99 18.42 

Built-up area 5,236.23 6,290.13 7,079.27 1,053.89 16.75 789.14 11.15 

Bareland 45,190.23 25,193.79 18,174.08 -19,996.44 -79.37 -7,019.71 -38.62 

Total 641,784.76 641,784.76 641,784.76     

 
Table 5. LULC area in 2019 and 2039 

 

LULC 
Area (ha) 

2019 Percentage 2039 Percentage 

Forest 409.050,741 63.74% 400.676,213 62.43% 

Grassland 71.014,086 11.07% 61.050,131 9.51% 

Waterbody 5.649,250 0.88% 5.438,446 0.85% 

Agriculture land 130.817,330 20.38% 150.305,261 23.42% 

Built-up area 7.079,272 1.10% 7.905,021 1.23% 

Bareland 18.174,082 2.83% 16.409,688 2.56% 

Total 641.784,761 100.00% 641.784,760 100.00% 

 
Figure 4 shows the change in the area of each LULC 

category from 2001 to 2019. The orange bar in Figure 3 

represents a decrease in the area of LULC from 2001 to 2019, 

while the purple bar represents an increase. The decrease in 

area is indicated in by negative value. Grassland and bareland 

experienced a substantial decrease in area, while waterbody 

and forest experienced only a slight decrease. Many 

grasslands and bareland were converted into agricultural and 

built-up area from 2001 to 2019. It resulted in these two 

categories continuing to decline from 2001 to 2019. The 

decrease in the area also occurred in forest and waterbody, 

albeit not too significantly, at only -9,313.019 and -82.064. 

From Table 5, it can also be concluded that the estimated most 

significant LULC change from 2019 to 2039 is that there will 

be a decrease in the LULC categories of the forest, grassland, 

water body, and bareland, at -8,374.528 ha, -9,963.956 ha, -

210.804 ha, and -1,764.393 ha respectively. This change in 

LULC is marked by the increase in agriculture land and built-

up area, at 19,487.931 ha and 825.749 ha, respectively. Figure 

5 shows the estimates in a bar graph. 

The purple bar in Figure 5 represents an increase in the 

LULC area, while the orange bar represents a decrease. The 

decrease in area is indicated by negative value. Similar to the 

change in LULC area from 2009 to 2019, grassland and forest 

are expected to continue to experience a considerable decrease 

in area, while bareland and water body are expected to 

experience a slight decrease as they are expected to be 

converted into agriculture land and built-up area. 

 

 
 

Figure 4. LULC changes in area 2001-2019 (ha) 
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Figure 5. Estimated LULC changes in area 2019-2039 (ha) 

 

The decrease in bareland, grassland, and other categories 

was caused by a large number of land clearings of 

unproductive land to be converted into land use that could 

meet human needs, which is marked by the increase of 

agriculture land and built-up area areas. Other grounds also 

consist of constructing various infrastructure and facilities in 

the study area to support multiple activities properly and 

smoothly. 

Between 2001 and 2019, there were significant changes in 

LULC, and more are predicted in 2039. It is crucial to satisfy 

the requirement for space to meet the many human needs and 

development needs, given the growing rate of population 

growth and economic expansion that occurs every year. It 

implies that there would be an ongoing rise in the need for 

agricultural land and urban space for development and 

agriculture to suit human requirements. The LULC 

modification must, however, be implemented with care to 

avoid having a detrimental influence on the area's environment 

and must continue to adhere to the established regulations and 

spatial plans. The ecosystem must thus be maintained and 

preserved, and uncontrolled land alterations must be avoided, 

for LULC improvements to be suitable and sustainable. 

 
3.3 Carbon stock changes 

 
Calculating carbon stock is very important in improving 

environmental quality and mitigating climate change [12]. 

This change in LULC results in changes in carbon stocks in 

each LULC category [39], and also influences changes in land 

surface temperature [40, 41]. Table 6 shows the total carbon 

stocks stored in TCAR in 2001, 2009, and 2019 and the 

predicted carbon stocks in 2039. The highest carbon stocks are 

found in the forest LULC category, followed by agriculture 

land, grassland, bareland, and built-up area. In contrast, the 

water body category provides no carbon stock. The total 

carbon stock was at its peak in 2009, at 74,304,085.05 Mg, 

before it continued to decrease (Figure 6). 

 

Table 6. Carbon stock changes 
 

LULC 

Carbon (Mg) 

Year Prediction Result 

2001 2009 2019 2039 

Forest 70,703,475.44 70,696,326.34 69,129,575.31 67,714,280.00 

Grassland 394,782.33 318,003.50 284,056.34 244,200.52 

Waterbody - - - - 

Agriculture land 2,057,029.22 3,201,610.23 3,924,519.90 4,509,157.82 

Built-up area 20,944.94 25,160.51 28,317.09 31,620.08 

Bareland 112,975.58 62,984.48 45,435.20 41,024.22 

Total 73,289,207.51 74,304,085.05 73,411,903.84 72,540,282.65 

 

Tabulated data shows that there is an increase as well as a 

decrease in carbon stocks from 2001 to 2039. In 2009, there 

was an increase of 1,014,877.54 Mg (1.38%) from 2001. The 

increase occurred in agriculture land category at 1,144,581.01 

Mg (64.24%), followed by built-up area. Meanwhile, the other 

land categories experienced a decrease. The largest decrease 

in carbon stock in 2009 occurred in the grassland category at 

76.778,83 Mg (19.44%), followed by bareland and forest. 

LULC can, directly and indirectly, affect carbon uptake and 

loss in conjunction with changes in carbon stocks [42].  

In 2019, there was a decrease in carbon stocks of 

892.181.21 Mg (1.2%) from 2009. The decline occurred in 

forest, grassland, and bareland. The most significant decrease 

occurred in forest at 1,566,751.03 Mg (2.21%), followed by 

grassland and bareland. Meanwhile, the most significant 

increase was in agriculture, at 722,909.67 Mg (22.57%), 

followed by built-up area at 3,156.58 Mg (12.54%). The 

carbon stock in each type of LULC category is influenced by 

tree biomass, soil biomass, undergrowth, and root factors. Soil 

also plays an essential role in maintaining the balance of 

carbon storage (vegetation, climatic conditions, and soil 

physical chemistry). 

The prediction of changes in carbon stocks in 2039 shows a 

decrease from 2019, totaling 907,621.19 Mg (1.23%). This 

-15,000 -10,000 -5,000  -  5,000  10,000  15,000  20,000  25,000
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amount is more significant than the previous year. The largest 

decrease occurs in forest, at 1,415,295.31 Mg (2.04%), 

followed by grassland and bareland. Meanwhile, there is an 

increase in carbon stocks in agriculture land and built-up area. 

There is an increase of 584,637.92 Mg (14.89%) in agriculture 

land and 3,302.99 Mg (11.66%) in built-up area.  

Carbon stocks in the forest category tend to be larger yearly 

than in the other land categories. In 2001, the forest's carbon 

stocks were 70,703,475.44 Mg. In 2009, it decreased to 

70,696,326.34 Mg. In 2019, it decreased again to 

69,129.575.31 Mg, and in 2039 to 67,714,280.00 Mg. 

Meanwhile, the number of carbon stocks in grassland was 

394,782.33 Mg in 2001. In 2009, it decreased to 318.003.50 

Mg. In 2019 it decreased again to 284,056.34 Mg, and in 2039 

to 244,200.52 Mg. The number of carbon stocks in bareland 

was 112,975.58 Mg in 2001. In 2009, it decreased to 

62,984.48 Mg. In 2019 it decreased again to 45,435.20 Mg, 

and in 2039 to 41,024.22 Mg. Increased LULC triggered 

carbon stock loss for the grassland and bareland categories. 

Agricultural land is one category that can absorb and emit CO2 

[43]. 

Meanwhile, there is an increase in carbon stocks in 

agriculture land and built-up area. The number of carbon 

stocks in agriculture land was 2,057,029.22 Mg in 2001. In 

2009, it increased to 3,201,610.23 Mg. In 2019, it increased 

again to 3,924,519.90 Mg, and in 2039 to 4,509,157.82 Mg. 

The number of carbon stocks in built-up area was 20,944.94 

Mg in 2001. In 2009, it increased to 25,160.51 Mg. In 2019, it 

increased again to 28,317.09 Mg, and in 2039 to 31,620.08 Mg. 

This occurs due to the positive impact of plants with existing 

species diversity on the availability of organic carbon. The 

presence of plants can alter carbon uptake into the soil and the 

release of carbon. The conversion of mixed forest to another 

LULC category can reduce the carbon stock in the soil by 

about 0.39 mg ha/year, depending on the category of LULC. 

Changes from the category of agricultural land to grasslands 

will increase the soil carbon stock. Otherwise, the soil carbon 

stock will decrease if the land cover changes to agricultural 

land (0.84-1.74 Mg ha/year) [44]. 

The tabulated data shows that the same LULC categories 

that experienced a decrease will continue to experience a 

reduction. In contrast, the same classes that experienced an 

increase will continue to experience an increase [45]. The 

categories that continue to experience a decrease in carbon 

stocks are forest, grassland, and bareland [1, 2]. On the other 

hand, agriculture land, and built-up area continue to 

experience an increase in carbon stocks yearly. This change 

very much depends on the transformation of the area of each 

LULC category. Increased emissions and species, density, and 

the number of plants have different carbon stocks, so each land 

category has other carbon stocks [46]. LULC change 

influences regional and global climate change through carbon 

emissions. Thus, public policy must focus more on nature 

conservation and improving environmental quality to mitigate 

climate change [12]. However, other facts state that changes 

in LULC are not the only factor that influences changes in 

carbon storage and climate, but LULC is the main factor 

compared to other environmental factors [47-49].  

So, assessing the effect of changes in LULC on the carbon 

budget is very necessary for efforts to balance regional carbon 

budgets and the impact of human activities on the environment 

[48]. Apart from climate change, LULC also causes 

significant disruption to the carbon budget [50]. 

The continuing decrease of forest, grassland, and bareland 

areas reduces carbon stocks in each land category [11]. 

Several reasons, such as local climate, site conditions, source 

rock, and vegetation type, will affect the variation of carbon 

stock in the soil. Carbon accumulation and loss patterns were 

determined according to location, soil type, tree species, and 

plantation land management system. Changes in land cover 

have a significant effect on the total carbon stock in an 

ecosystem. Changing land cover from either forest to 

plantations or agricultural land will reduce the total available 

carbon.  

 

 
 

Figure 6. LULC category and the valuation of carbon stocks 
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4. CONCLUSIONS 

 

Forests category has decreased, although not significantly, 

in the area of -9,313,019 ha. Meanwhile, according to Table 4, 

water bodies increased in 2009 and decreased in 2019. The 

total decrease in the area of water bodies was -82,064 ha. In 

2039, LULC is expected to experience an increase and 

decrease in area. Several LULCs, such as agriculture land and 

built-up area, are expected to increase and decrease in forest, 

grassland, waterbody, and bareland. The changes in carbon 

stocks in 2039 show a reduction from 2019 of 907,621.19 Mg 

(1.23%). This amount is more significant than the previous 

year. The most considerable reduction occurred in forest cover, 

which was 1,415,295.31 Mg (2.04%), followed by grassland 

and bareland. 

The loss of carbon stock that occurs is very significant, so 

important steps are needed in efforts to mitigate climate 

change, one of which is creating public policies that encourage 

the preservation of natural resources and the environment, and 

the carbon budget can be more controlled to control global 

temperature increases. It is necessary to monitor and evaluate 

the growth of the built-up area in the study area, which 

decreases carbon stocks. The monitoring and evaluation 

results become a reference in preparing spatial patterns and 

regional spatial structures. Areas that need to be conserved, 

such as forests, must be protected areas that cannot be 

disturbed by their use so that carbon stocks do not decrease 

with the growth of the built-up area. 

Regarding conditions in TCAR, where currently there is a 

significant increase in temperature, a strategy is needed for 

regulating land use, by prioritizing strong protection of forests, 

reforestation of forests, and carrying out strict monitoring, so 

that forest conservation areas are maintained. By doing this, it 

is hoped that carbon stocks will be maintained, and efforts to 

achieve the SDGs will have greater opportunities. 
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