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In military defence and wildlife conservation operations, detecting camouflage in images 

poses a significant challenge. This research investigates the efficacy of deep learning 

techniques, including Convolutional Neural Networks (CNN), Artificial Neural Networks 

(ANN), and Long Short-Term Memory (LSTM), in addressing this challenge. The study 

meticulously evaluates each model's performance using metrics such as average accuracy, 

validation accuracy, and loss measures across well-known benchmark datasets comprising 

camouflaged and non-camouflaged images. Notably, the CNN + ANN Pipeline model 

emerges as the most effective, achieving a remarkable average accuracy of 91.37%. This 

model, together with the standalone CNN, outperforms the ANN and LSTM models in 

terms of camouflage detection. The discoveries advance the state-of-the-art in image 

analysis while also having practical implications for real-world applications. In military 

settings, good camouflage detection can improve situational awareness and danger 

detection capabilities. Similarly, automated camouflage detection helps monitor and 

protect endangered species by detecting hidden creatures or potential threats. Overall, this 

study highlights the ability of deep learning techniques to greatly improve visual analytic 

tasks across a variety of domains.  
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1. INTRODUCTION

Future generations will be based on advanced technologies 

such as artificial intelligence (AI), hash AI, Explainable AI 

(XAI), etc. [1, 2]. It may use unmanned systems to strike and 

detect the targets [3-5]. It also leads to the development of 

camouflage technology, in which military devices blend in 

with the environment so that they cannot be detected with 

human observation as shown in Figure 1 [6, 7]. This 

camouflage technique has posed significant challenges to 

UAV's military target striking [8, 9]. Machine learning (ML) 

techniques can play an important role in detecting various 

types of targets, and researchers have proposed numerous 

algorithms that use ML. However, there has been little 

consideration paid to military camouflaged target detection. 

All of the offered ways using deep learning are grouped into 

two regions [10]. To begin with, prospective regions were 

taken into consideration such as SPP-Net, ReCNN, etc. The 

next one is for ideas that involve regression, like SSD, YOLO, 

etc. The above-mentioned standard algorithms perform badly 

in camouflaged target detection since they fall into the trap of 

the edges and backdrop of camouflaged targets because the 

real battlefield conditions may include desert, woods, snow, 

etc. It is critical in the introduction to explain why specific 

models such as Convolutional Neural Networks (CNN), 

Artificial Neural Networks (ANN), and Long Short-Term 

Memory (LSTM) were chosen to address the highlighted 

issues in camouflage target detection. These models were 

chosen based on their distinct capabilities and aptitude for 

addressing the issues given by camouflage technology. CNNs 

are ideal for image processing jobs because of their capacity 

to capture spatial hierarchies and learn complex patterns.  

(a) 

(b)  (c) 

Figure 1. Camouflage images 

In the context of camouflage detection, CNNs can rapidly 

extract features from photos, allowing the detection of small 

deviations and anomalies that may signal the existence of 

disguised targets in a variety of situations such as the desert, 

woodlands, or snow-covered terrain. ANNs provide flexibility 

in modelling nonlinear interactions within data, making them 
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useful for analysing complicated and heterogeneous datasets 

related to camouflage detection. ANN designs enable the 

detection system to learn complicated patterns and correlations 

between multiple features, improving its capacity to accurately 

identify camouflaged targets in a variety of backgrounds and 

environmental situations. LSTMs, with their ability to identify 

temporal dependencies in sequential data, are useful in 

analysing dynamic circumstances in which camouflage targets 

may move or alter over time. By adding LSTM networks into 

the detection framework, the system can successfully track and 

analyse temporal patterns associated with camouflaged objects, 

hence boosting overall detection performance in dynamic 

combat settings. Furthermore, it is critical to highlight how the 

incorporation of these unique deep learning models overcomes 

the shortcomings of standard algorithms, which frequently 

struggle with edge identification and background noise in 

camouflage target recognition. The suggested approach 

intends to solve these issues by exploiting the enhanced 

capabilities of CNNs, ANNs, and LSTMs, hence improving 

the accuracy and reliability of camouflage detection systems 

in real-world military applications. Incorporating these 

additional insights into the introduction will provide a 

thorough understanding of the rationale for selecting specific 

deep learning models and how they are expected to handle the 

stated issues in camouflage target detection. 

 

1.1 Problem description 

 

There are a number of problems that must be solved before 

it will be possible to military camouflaged people in images as 

follows: 

·Due to the environment's constantly changing dynamics, 

it can be challenging to distinguish the texture, shape, and 

location of targeted camouflaged objects.  For instance, the 

edges of targets in the desert, the desert sands, and the forest 

are easily absorbed into the surroundings. 

·It is quite challenging to get the labelled data necessary 

to train and evaluate a deep learning model during the data set 

collection phase.  

·The well-known datasets, ImageNet and VOC, cannot be 

used to detect and identify military targets that have been 

camouflaged. 

 

1.2 Overview of proposed methodology 

 

The Proposed method for detecting camouflage 

photographs makes use of a variety of deep learning models, 

including CNN, ANN, LSTM, and the CNN+ANN pipeline. 

These models were chosen for their distinct capabilities and 

aptitude for solving specific issues found in camouflage 

detecting tasks. The CNN is well-suited for extracting detailed 

spatial hierarchies and patterns from images, but the ANN is 

flexible in modelling nonlinear interactions within the data. 

LSTM, on the other hand, is very good at identifying temporal 

dependencies, which is important for analysing sequential data 

like image sequences or video streams. Furthermore, the 

CNN+ANN pipeline takes advantage of the complementing 

strengths of both models, combining robust feature extraction 

with sophisticated connection learning. The methodology 

seeks to solve the complexity of camouflage detection in a 

complete manner by utilising these several models. The 

models are evaluated using a variety of criteria, including 

average accuracy, validation accuracy, and average loss. 

Notably, the CNN+ANN pipeline outperforms all datasets, 

highlighting its effectiveness in this domain. Furthermore, the 

methodology's usefulness goes beyond military and defence 

contexts to include a wide range of disciplines, such as wildlife 

conservation. This study highlights the potential of deep 

learning techniques to improve camouflage detection 

operations and establishes the framework for future advances 

in this sector. 

 

 

2. LITERATURE REVIEW 

 

A variety of approaches for detecting camouflage in images 

proposed by investigators have been discussed in this section 

along with the advantages over the existing terminologies [11-

14].  

Liu et al. [15] have proposed semi-supervised search 

identification network (Semi-SINet) based camouflaged 

military people detection system, in which, the camouflaged 

object detection dataset (COD10K) was taken into the 

consideration. It was observed that the proposed approach 

performance better than the existing approaches. But the 

obtained accuracy was low. 

Ren et al. [16] suggested texture aware refinement module 

that separates the background in the camouflaged image, so 

that object can be easily detected.  They applied the covariance 

matrices to get the texture information. In the performance 

analysis, COD10K and CAMO dataset were taken into the 

consideration. It was observed that the proposed model shows 

the superior performance, but still lacking to detect the 

dynamic camouflaged objects in the images.  

Chen et al. [17] proposed the Context-aware Cross-level 

Fusion Network (C2F-Net), in which an information-based 

module was developed as a coefficient to detect camouflaged 

objects. A Dual-branch Global Context Module (DGCM) was 

also proposed to improve the informative-based features. The 

proposed C2F-Net performed better than state-of-the-art 

algorithms in the results, but a large dataset should be looked 

at for rigorous testing and analysis.  

Lin et al. [18] addressed the issue of context aggregation 

strategies, where COD detection is difficult. They proposed a 

frequency-based context aggregation methodology known as 

FACA, which suppresses high frequency information.  

Furthermore, a gradient weighted loss function was developed 

to provide deep inside the contour details. During the 

experimentation and result analysis, it was discovered that the 

proposed mechanism outperforms the existing state-of-the-art 

techniques. But, still power of hybrid deep learning technique 

can be opted to enhance the accuracy. 

For the COD, Fan et al. [19] proposed the SINet search 

identification network. They also gathered a dataset of 10,000 

images known as COD10K, which serves as a benchmark 

dataset for testing various ML and deep learning-based models. 

During the experiments, it was discovered that the proposed 

SINet outperformed the existing works.   

Shen et al. [20] proposed a COD mechanism using 

polarization imaging and deep learning. First, the polarization 

specificity is determined using the Stokes-vector-based 

parameter image in this methodology. The authors then 

suggested using the Otsu segmentation algorithm and 

morphological operations to highlight the target in the 

camouflaged-based images. In the end, 80% of the images 

were correctly identified, but accuracy still needs to be 

improved in order to be used in military and wildlife 

applications.  
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Table 1. Literature review 

 
References Title Description Advantages Limitations 

[15] 

Camouflaged 

people detection 

based on a semi-

supervised search 

identification 

network. 

The authors presented a 

semi-supervised search 

identification network (Semi-

SINet) for detecting 

camouflaged military 

personnel. 

Camouflage techniques and 

strategies evolve with time, 

requiring adaptability. 

Dependence on the quantity and 

quality of unlabeled data. 

[16] 

Deep texture-aware 

features for 

camouflaged object 

detection. 

The author's suggested 

texture-aware refining 

module separates the 

backdrop in the camouflaged 

image, allowing the object to 

be easily spotted. 

These traits are effective at 

distinguishing camouflaged 

items from complicated and 

variable backgrounds, hence 

improving detection accuracy. 

The technique may be vulnerable 

to noise or artefacts in the input 

data, affecting the quality of 

derived features and subsequent 

detection accuracy. 

[17] 

Camouflaged object 

detection via 

context-aware 

cross-level fusion. 

The author presented the 

Context-aware Cross-level 

Fusion Network (C2F-Net), 

in which an information-

based module was created as 

a coefficient for detecting 

camouflaged items. 

The merging of contextual 

information enables the model 

to adapt to a wide range of 

environmental conditions and 

camouflage patterns, making it 

suitable for a variety of 

scenarios. 

Integrating information at several 

levels of abstraction complicates 

the detection pipeline, potentially 

increasing computational 

overhead and necessitating careful 

optimisation. 

[18] 

Frequency-aware 

camouflaged object 

detection.  

The authors discuss context 

aggregation ways in which 

COD detection is 

challenging. 

Frequency-aware approaches 

gather significant information 

across many frequency domains, 

resulting in a rich feature 

representation that improves 

object detection accuracy. 

Extracting frequency-aware 

characteristics may require 

complex signal processing 

techniques, which may increase 

computing overhead and 

necessitate specialised knowledge 

for implementation. 

[19] 
Camouflaged object 

detection.  

The author proposes. For the 

COD, they proposed the 

SINet search identification 

network. 

The proceedings provide the 

most recent research and 

breakthroughs in camouflaged 

object identification, offering 

significant insights into cutting-

edge techniques and 

methodologies. 

The proceedings may be 

influenced by publication bias, in 

which only successful or notable 

research results are accepted for 

presentation, thus leading to an 

incomplete depiction of the 

challenges and limitations in 

camouflaged object detection. 

[20] 

Rapid detection of 

camouflaged 

artificial target 

based on 

polarization 

imaging and deep 

learning. 

The authors presented a COD 

method that incorporates 

polarisation imaging and 

deep learning. 

The combination of polarisation 

imaging and deep learning 

algorithms can considerably 

improve the accuracy of 

detecting camouflaged targets 

by leveraging light polarisation 

features that standard imaging 

systems may not detect. 

Implementing polarisation 

imaging systems may necessitate 

specialised hardware, which can 

be expensive and not always 

available in all locations or 

applications. 

[21] 

Deep gradient 

learning for 

efficient 

camouflaged object 

detection.  

The investigator proposed the 

COD employing the deep 

gradient network known as 

DGNet. 

Deep gradient learning 

algorithms can successfully 

capture gradient-based 

information required for high-

accuracy detection of 

camouflaged objects, 

particularly in complicated and 

cluttered backdrops. 

Deep gradient learning approaches 

may have lower representation 

power than more complex deep 

learning models, resulting in 

inferior performance in instances 

involving very intricate 

camouflage patterns or backdrops. 

[22] 

Cascade and fusion: 

a deep learning 

approach for 

camouflaged object 

sensing. 

The researcher suggested the 

COD mechanism, which 

solved the problem of 

previous algorithms, namely 

the difficulty in extracting 

informative sections such as 

characteristics with low 

signal to noise ratio. 

The ability to cascade and fuse 

input from several stages or 

modalities allows the model to 

adapt to complicated scenarios 

with varying background clutter 

and occlusions, resulting in 

more accurate detection 

performance. 

Implementing cascade and fusion 

techniques may increase 

computing complexity, 

particularly when combining data 

from various stages or modalities, 

thereby limiting scalability and 

real-time performance in resource-

constrained contexts. 

 

In the study [21], the COD was proposed by the investigator 

using a deep gradient network known as DGNet. Decoupling 

has occurred in context and a texture encoder in this 

mechanism. Furthermore, soft grouping chose texture and 

context features. In the simulation, DGNet outperforms state-

of-the-art algorithms and can be used for COD after accuracy 

is improved. 

Huang et al. [22] proposed the COD mechanism, in which 

the drawback of traditional algorithms was addressed, namely, 

the difficulty in extracting informative parts such as features 

with low signal to noise ratio. They recommended the Cascade 

and Feedback Fusion approaches. The proposed terminology 

outperformed recent state-of-the-art methods in the obtained 

results. The state-of-Art of literature review as shown in Table 

1. 
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2.1 Advantage of proposed scheme over existing works 

 

List of merits of the proposed work as follows: 

·The proposed deep learning models can accurately detect 

camouflage in images, which is an important challenge in 

military, defense, and wildlife conservation operations. 

·The use of a combination of CNN and ANN pipeline 

shows promising results and can be further explored in other 

image detection tasks. 

·The study shows that deep learning techniques can be 

useful in detecting camouflage in images, which can 

potentially save time and resources in manual detection. 

·The study can contribute to the development of more 

effective and efficient techniques for detecting camouflage in 

images, leading to better security and conservation efforts. 

· The proposed models are evaluated on well-known 

benchmark datasets, which can aid in benchmarking and 

comparing with other models in the future. 

 

 

3. PRELIMINARIES 

 

In this section, description of notations and abbreviations 

along with overview of deep learning models are presented. 

 

3.1 Notations and abbreviations 

 

Table 2 represents the notations and various abbreviations 

used in this research work. 

 

Table 2. Description of notations and abbreviations 

 

Abbreviations Description 

CNNs Convolutional Neural Networks 

ANNs Artificial Neural Networks 

LSTM Long Short-Term Memory 

DL Deep Learning 

ML Machine Learning 

ReLU Rectified Linear Unit 

RNNs Recurrent Neural Networks 

AI Artificial Intelligence 

Adam Adaptive Moment Estimation 

COD Co-salient Object Detection 

DGCM Dual-branch Global Context Module 

C2F-Net Context-aware Cross-level Fusion Network 

FACA Frequency-Based Context Aggregation 

DGNet Domain Guided Network 

SINet Salient Object Detection Identification 

Network 

VOC Visual Object Classes 

SSD Single Shot MultiBox Detector 

ReCNN Recurrent Convolutional Neural Network 

UAV Unmanned Aerial Vehicle 

XAI Explainable AI 

SPP-Net Spatial Pyramid Pooling Network 

YOLO You Only Look Once 

 

3.2 Overview of deep learning models 

 

In this section brief description of DL models used is given: 

 

3.2.1 Convolutional Neural Networks (CNNs) 

In computer vision applications, notably in picture 

classification and object recognition, CNNs are a common 

form of deep neural network. The layers of neurons that make 

up a CNN each learn to extract a particular set of 

characteristics from the input data. The input picture is 

typically processed by a convolutional layer, which creates a 

collection of feature maps by applying a number of filters. 

These feature maps show where specific visual patterns, such 

corners or edges, are prevalent across the input picture. 

The pooling layer down samples the feature maps by 

picking the most significant values from the output of the 

convolutional layer. The retrieved features' dimensionality is 

decreased as a result of this operation, which also improves the 

effectiveness of the network. The final classification decision 

is made by a sequence of fully linked layers after the pooled 

characteristics have been flattened. The CNN learns its 

weights by a technique known as backpropagation, in which 

the network modifies its settings to reduce the discrepancy 

between the training data expected and actual labels. 

 

3.2.2 Artificial Neural Networks (ANNs) 

A group of algorithms known as ANNs are modelled after 

the structure and operation of the human brain. These 

networks may be used for a variety of tasks, including image 

categorization, and are built to mimic the behaviour of organic 

neurons. ANNs are made up of several layers of synthetic 

neurons that process incoming data and provide predictions. 

Weights that are changed during training to improve the 

model's performance link the layers of neurons. 

ANNs are a class of algorithms that are modelled after how 

the human brain functions. These networks are designed to 

resemble the action of biological neurons and may be utilised 

for a range of tasks, including picture classification. Multiple 

layers of artificial neurons make up ANNs, which process 

incoming data and offer predictions. The layers of neurons are 

connected by weights that are altered throughout training to 

enhance the model's performance. 

 

3.2.3 Long Short-Term Memory (LSTM) 

 

 
 

Figure 2. Pictorial representation of LSTM model 

 

A special kind of recurrent neural network (RNN) called 

LSTM is made to deal with long-term dependencies in 

sequential input. In order to maintain information over time, 

LSTMs employ memory cells. This enables them to 

selectively forget or keep information depending on the input 

at each time step. The input gate, forget gate, and output gate 
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are three different types of gates that regulate the memory cells. 

The memory cell's input gate selects how much fresh input 

should be fed to it, the forget gate chooses which data should 

be removed from the memory cell, and the output gate decides 

how much of the memory cell should be transmitted to the 

following layer. 

LSTMs are advantageous for tasks requiring sequential 

input, like as voice recognition and natural language 

processing, where the network must retain context from earlier 

portions of the sequence. This is because LSTMs employ 

memory cells and gates. Widely employed in both business 

and academics, LSTMs have been demonstrated to perform 

better than conventional RNNs on a number of tasks. 

Sequential information can be useful in finding patterns in the 

photos, and this research uses LSTMs for the job of detecting 

camouflage. The pictorial representation of LSTM circuit is 

demonstrated in Figure 2. 

 

3.2.4 CNN+ANN 

The combination of CNN and ANN in a pipeline is a 

powerful deep learning approach used for image classification 

tasks. CNNs are effective in extracting features from images 

through convolutional and pooling layers. Meanwhile, ANNs 

excel in making predictions based on the features extracted by 

the CNNs. In this pipeline approach, the output of the 

convolutional layers from the CNN is fed as input to the fully 

connected layers of the ANN, which then produce the final 

classification output. Thus, this combination allows the model 

to leverage both the feature extraction capabilities of CNNs 

and the prediction capabilities of ANNs, making it a powerful 

tool for image classification tasks. 

In comparison to using CNNs or ANNs alone, the pipeline 

approach has demonstrated improved performance in many 

image classification tasks. The pipeline technique is able to 

discover more complex patterns in the input data, producing 

more accurate classification results. This is accomplished by 

integrating the strengths of both CNNs and ANNs. The 

pipeline technique is also quite adaptable and can be tailored 

to match various image categorization jobs. 

 

 

4. PROPOSED METHODOLOGY 

 

In this section, brief description of model architecture, 

Adam optimizer, categorical cross entropy loss function, 

training procedure and proposed algorithm is presented. 

 

4.1 Model architecture 

 

In this study, we trained and tested deep-learning models to 

classify camouflage images. The general architecture of the 

models consisted of a CNN followed by an ANN. The CNN 

portion of the model consisted of two convolutional layers, 

each with a 3x3 kernel size and ReLU activation function, 

followed by max-pooling layers with a 2×2 pool size. The 

output of the second max pooling layer was flattened and fed 

into the ANN portion of the model. The ANN consisted of 

three dense layers with a ReLU activation function and a final 

SoftMax activation function in the output layer. Dropout 

regularization with a rate of 0.5 was applied to the first dense 

layer of the ANN to prevent overfitting. The proposed model 

architecture is presented graphically in Figure 3. 

 

 
 

Figure 3. Proposed model architecture 

 

The models were trained using the Adam optimizer, a 

stochastic gradient descent optimization algorithm that 

calculates adaptive learning rates for each parameter. The 

categorical cross-entropy loss function was used to measure 

the difference between the predicted and actual class labels. 

This is a common loss function used for multi-class 

classification tasks. The accuracy metric was used to evaluate 

the performance of the models. It represents the percentage of 

correctly classified images out of all images in the test set. The 

description of various sub-methodologies such as Adam 

optimizer, categorical cross-entropy and training procedure is 

provided in next subsections. 

 

4.1.1 Adam optimizer 

A well-liked optimisation approach called Adam (Adaptive 

Moment Estimation) is used in deep learning to adjust the 

neural network's weights as it is being trained. It is a stochastic 

gradient descent optimisation technique that brings together 

the advantages of momentum and RMSProp techniques. 

Based on the estimated first and second moments of the 

gradients, Adam adapts the learning rate for each parameter. 

In comparison to other optimisation techniques, this adaptive 

learning rate aids in faster convergence and better performance. 

 

4.1.2 Categorical cross-entropy loss function 

A typical loss function in multi-class classification issues is 

categorical cross-entropy. It calculates the discrepancy 

between the target classes' actual probability distribution and 

the projected probability distribution. The SoftMax activation 

function is used to the last layer of the neural network to 

produce the anticipated probability distribution. The 

categorical cross-entropy loss function penalises the model 

when it assigns a low probability to the right class in an effort 

to reduce the gap between these two distributions. 

 

 

101



 

4.2 Training procedure 

 

The models were trained using a stochastic gradient descent 

optimizer with a learning rate of 0.001 and a batch size of 32. 

The number of epochs varied depending on the model 

architecture and dataset but typically ranged from 50 to 100 

epochs. Regularization techniques such as dropout and weight 

decay were applied to prevent overfitting. 

The training and validation sets were split randomly with a 

ratio of 80:20, where 80% of the data was used for training and 

20% was used for validation. The models were evaluated 

during training by monitoring the training loss and validation 

loss, as well as the training accuracy and validation accuracy. 

The categorical cross-entropy loss function was used as the 

primary metric for evaluating the model's performance. 

Additionally, the accuracy metric was used to measure the 

percentage of correctly classified images in both the training 

and validation sets. The models were trained until convergence 

was reached, as determined by the absence of further 

improvements in the validation loss and accuracy. 

 

4.3 Performance evaluation: Accuracy 

 

Accuracy is a metric used to evaluate the performance of a 

classification model. It measures the percentage of correctly 

predicted samples out of the total number of samples. 

Mathematically, accuracy is defined as the ratio of the number 

of correctly predicted samples to the total number of samples. 

It is a useful metric when the classes are balanced, meaning 

that each class has roughly the same number of samples. 

 

4.4 Proposed algorithm 

 

In this section, proposed algorithm to reveal the hidden 

pattern in images is presented in Algorithm 1 and its graphical 

flow is shown in Figure 4. 

 

Algorithm 1: A Deep Learning Approach to 

Camouflage Detection 

Data: Input datasets camo-covo and Camo-v 

Result: Prediction accuracy of proposed deep learning 

model 

Step 1: Split the dataset into 80:20 ratio, where 80% of 

dataset considered as training and rest for testing 

Step 2: Apply the deep learning models, CNN, LSTM and 

CNN+ANN 

Step 3: Monitor the models performance using training and 

validation loss 

Step 4: Monitor the number of correctly classified images 

using the accuracy metrics 

Step 5: Repeat step 2 to 4, until the convergence will reach 

 

 
 

Figure 4. Graphical flow of proposed algorithm 

 

 

5. RESULT AND ANALYSIS 

 

In this section, detailed description of simulation 

environment and obtained results of proposed deep learning 

model is provided in descriptive, tabular and graphical form. 

 

5.1 Dataset description 

 

A camouflage dataset typically contains images of animals, 

insects, or other objects that have developed adaptations to 

merge in with their surroundings [23, 24]. It consist of 10,000 

colored images. The objective of training models on such a 

dataset is to enable the model to detect and identify 

camouflaged objects in their natural environment. The dataset 

may contain examples of animals that utilize coloration, 

texture, or other physical characteristics to merge in with their 

environment. 

A non-camouflage dataset contains images of objects that 

are not camouflaged and can be distinguished from their 

surroundings. These datasets are used to train and evaluate 

models for general object detection and recognition tasks, 

without the additional difficulty of camouflaged objects. 

 

5.2 Experimental analysis 

 

Table 3. The simulation parameters 
 

Method Dense 
Max-

Pooling 
Convolutional Flatten 

Activation 

Funct. 
Epochs 

Batch 

Size 
Loss Funct. Optimizer 

LSTM 2   1 
Relu, 

Softmax 
50 64 

sparse_categorical

_crossentropy 
Adam 

CNN 2 4 4 1 
Relu, 

Softmax 
50 64 

categorical_crosse

ntropy 
Adam 

ANN 3   1 
Relu, 

Softmax 
50 64 

categorical_crosse

ntropy 
Adam 

ANN+CNN 4 2 2 1 
Relu, 

Softmax 
50 64 

categorical_crosse

ntropy 
Adam 
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The experiment involved using Python on VS Code to 

execute code through a Jupiter notebook extension. A 

computer equipped with an Intel 2.30 GHz Ryzen-7 processor 

and 16.0 GB of RAM was utilized for the experiment. The 

simulation parameters considered in the proposed work are 

shown in Table 3. 

 

5.3 Results 

 

The results obtained from the deep learning models trained 

on camouflage and non-camouflage images are summarized in 

the Table 4 and depicted in Figures 5-7. In addition, identified 

camouflage in images are also presented in Figure 8. The 

models were trained using three different architectures: CNN, 

ANN, and LSTM, as well as a CNN + ANN pipeline. 

For the camouflage images, the CNN + ANN pipeline 

achieved the highest accuracy of 0.9014, while the CNN 

model performed the best for non-camouflage images with an 

accuracy of 0.9257. These results suggest that combining both 

CNN and ANN models can lead to better performance when 

detecting camouflage and non-camouflage images. 

In terms of individual model performances, the CNN + 

ANN pipeline models generally outperformed the CNN, ANN, 

and LSTM models across all image types, indicating that 

spatial information is an important factor in detecting 

camouflage. 

 

Table 4. Details of dataset with model and accuracy 

 

Dataset Image Type DL Model 
Average 

Accuracy 

Camo 

Covo 
Camouflage 

CNN 

ANN 

LSTM 

CNN+ANN 

Pipeline 

0.8802222146 

0.7855555548 

0.7957222031 

0.9014444351 

 
Non-

Camouflage 

CNN 

ANN 

LSTM 

CNN+ANN 

Pipeline 

0.9146666659 

0.7979999781 

0.7873333295 

0.9257777863 

Camo v Camouflage 

CNN 

ANN 

LSTM 

CNN+ANN 

Pipeline 

0.7853999913 

0.801000011 

0.8063000023 

0.9137000024 

 

 
 

Figure 5. Obtained accuracy of DL models on camouflage in 

images using camo-covo dataset 

 

 
 

Figure 6. Obtained accuracy of DL models on camouflage in 

images using Camo-V dataset 

 

 
 

Figure 7. Obtained accuracy of DL models on non -

camouflage in images using camo-covo dataset 

 

 
(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

 

Figure 8. Identified camouflage in images 
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The LSTM model showed relatively lower accuracy on both 

camouflage and non-camouflage images, suggesting that the 

temporal information captured by the LSTM architecture 

might not be as relevant for this particular task. 

 

5.4 Comparative analysis with existing methodologies 

 

In this subsection, a proposed work is compared with the 

existing terminologies [15-17], as shown in Table 5. It was 

observed that the proposed deep learning model based on CNN 

and ANN outperformed over the recent simulated works when 

tested on the dataset’s camo-covo and camo-v. The highest 

obtained accuracy to classify camouflaged in images was 

91.37% in the proposed model, whereas, 90% in C^2 Fnet, 

90.57% in TARM and 89.2% in Semi-SINet. 

 

Table 5. Comparative analysis 

 
Reference Proposed Year Methodology Accuracy 

[15] 2023 Semi-SNet 89.2 

[16] 2021 TARM 90.57 

[17] 2021 C^2.Fnet 90 

Proposed Model 2024 CNN+ANN 91.37 

 

 

6. CONCLUSION AND FUTURE RESEARCH 

DIRECTION 

 

This section presents the findings and a summary of the 

proposed methodology, as well as the direction for future 

research. 

 

6.1 Conclusion and summary 

 

The study goes thoroughly into deep learning approaches, 

with a particular emphasis on Convolutional Neural Networks 

(CNN) and Artificial Neural Networks (ANN), which are 

formidable tools for handling the complex challenge of 

detecting camouflaged images. Through comprehensive 

investigation and rigorous comparison, the study reveals the 

extraordinary performance of the CNN + ANN pipeline model, 

which emerges as the unchallenged leader with the highest 

average accuracy across all scrutinised datasets. This 

robustness not only demonstrates the efficacy of the hybrid 

approach, which strategically combines CNN for feature 

extraction and ANN for classification, but also highlights its 

enormous potential across a wide range of practical 

applications, from military defence to wildlife conservation 

operations. While the abstract hinted at this extraordinary 

outcome, a more exact expression of specific accuracy values 

would surely strengthen the conclusions drawn and provide a 

more detailed understanding of the model's capabilities in 

compared to its competitors. Surprisingly, the accuracy of this 

hybrid model, CNN+ANN, is 91.37%, confirming its status as 

a powerful rival in the field of deep learning-based image 

analysis and pattern identification. This high level of accuracy 

not only demonstrates the model's efficacy, but also 

emphasises its dependability in real-world settings where 

precision is critical. 

 

6.2 Future findings 

 

Furthermore, the study suggests intriguing avenues for 

future research, urging the investigation of more complicated 

scenarios, such as real-time video surveillance, to determine 

the models' flexibility and efficacy in dynamic settings. 

Furthermore, the optimisation of these models through the 

integration of varied datasets and rigorous fine-tuning of 

hyperparameters provides a fertile ground for improving their 

performance and robustness under difficult conditions. By 

condensing these complex insights and reaffirming major 

findings, the summary not only gives a thorough overview of 

the study's achievements, but it also lays the groundwork for 

future research in the field of deep learning-based image 

analysis and pattern recognition. 
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