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In the context of globalization and information technology advancement, organizations are 

confronted with the dual challenges of efficiently allocating resources and promptly 

addressing internal conflicts. The optimization of organizational structures is identified not 

only as a strategic measure to enhance competitive advantage but also as a necessary 

approach to improve decision-making quality and organizational adaptability. This study 

explores the application of artificial intelligence (AI) technologies in optimizing 

organizational structures, focusing specifically on the intelligent allocation of human 

resources and the intelligent identification and resolution mechanisms for internal conflicts. 

Existing research shows a notable deficiency in resource allocation and conflict resolution, 

particularly lacking consideration of trust network within organizations and analysis of 

adaptability to dynamic changes. Addressing these issues, a model based on the fuzzy 

cerebellar model articulation controller (FCMAC) for the optimization of human resource 

allocation is proposed. This model is capable of dynamically adjusting strategies in 

response to the evolving demands of the organization. Concurrently, an intelligent 

framework for identifying and resolving internal conflicts, which incorporates trust 

network, has been developed. By quantifying trust relationships, the framework aims to 

enhance the accuracy of decision-making and the coordination within the organization. 

Findings suggest that these methodologies significantly improve the efficiency of 

organizational resource allocation and effectively reduce conflict situations, thereby 

enhancing overall work efficiency and performance. This research not only offers a new 

perspective on the role of AI in optimizing organizational decisions but also provides 

practical solutions for management practices, crucial for aiding organizations to adapt to 

rapidly changing external environments and enhance their competitiveness. 
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1. INTRODUCTION

As globalization and the era of information technology 

progress, the optimization of organizational structures has 

been recognized as key to enhancing corporate 

competitiveness and adaptability. The effective allocation of 

human resources and the efficient resolution of internal 

conflicts are deemed essential for maintaining organizational 

flexibility and decision-making efficiency [1-4]. Advances in 

AI technologies, particularly in machine learning and neural 

networks, have offered new perspectives and tools for 

addressing these challenges. The complex nature of current 

organizational decisions necessitates the continual exploration 

and utilization of advanced technologies to optimize existing 

organizational structures and workflows [5-7]. 

The significance of related research lies in the application 

of AI technologies to better understand and predict the efficacy 

of human resources and mechanisms for handling internal 

conflicts within organizations. Neural network models provide 

a novel approach to human resource allocation, capable of 

simulating complex decision processes and optimizing 

resource allocation [8-11]. Additionally, strategies for 

identifying and resolving internal conflicts, which take into 

account trust relationships, are shown to foster a more 

harmonious working environment, thereby enhancing decision 

quality and organizational performance [12, 13]. 

However, existing research often overlooks the factor of 

trust, lacking in-depth analysis of the impacts of interpersonal 

interactions and trust network [14-16]. Moreover, traditional 

methods of human resource allocation are typically static, 

without the capability to adapt to dynamic organizational 

changes [17-20]. Such methods fail to fully exploit the 

potential of AI in learning, prediction, and adaptability, 

leading to deficiencies in resource allocation and conflict 

resolution. 

This study revolves around two core sections. Initially, a 

control strategy for human resource allocation based on the 

FCMAC is explored. This strategy is capable of responding in 

real-time to changes in organizational needs and optimizing 

the allocation of resources. Secondly, a strategy for identifying 

and resolving internal conflicts within organizations, 

considering trust relationships, is investigated. A decision 

model incorporating a comprehensive trust metric is proposed 

to resolve conflicts more accurately. This research holds 
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significant theoretical and practical value for understanding 

and applying AI in the optimization of organizational 

decisions, offering new perspectives and solutions for 

organizational management. Through the findings of this 

study, organizations are expected to operate more efficiently, 

adapt better to changes in the external environment, and 

ultimately enhance overall performance. 

 

 

2. OPTIMIZATION OF HUMAN RESOURCE 

ALLOCATION CONTROL STRATEGIES THROUGH 

AI 

 

In the realm of organizational structure optimization, 

effective human resource allocation is recognized as a pivotal 

factor. Traditional approaches often rely on the experience and 

intuition of human experts, whose knowledge is not always 

readily translatable into algorithms, resulting in a lack of 

flexibility and adaptability in human resource allocation. To 

address this issue, the integration of fuzzy control theory with 

advanced neural network technologies, such as the Cerebellar 

Model Articulation Controller (CMAC), is considered. Herein, 

the FCMAC is employed to learn and simulate efficient human 

resource allocation rules, thereby achieving optimal matching 

between internal tasks and employee skills. Specifically, the 

FCMAC learns the optimal human resource allocation 

strategies from historical data and continues to optimize its 

decision-making process with the input of new data. Utilizing 

expert experience to set initial fuzzy rules and membership 

functions, the FCMAC is capable of further learning and 

adjustment, rendering the control strategy more scientific and 

precise. Through continuous learning, the FCMAC is able to 

automatically improve the performance of human resource 

allocation without the need for constant expert intervention. 

Gaussian basis functions are adopted as fuzzy membership 

functions, their commendable mathematical properties aiding 

the FCMAC in rapidly learning and accurately mapping the 

complex relationships between organizational needs and 

employee skills. 

Within the context of optimizing organizational structures, 

the FCMAC architecture can be redesigned to suit the needs 

of human resource allocation control. Specifically, the gap 

between the demands of various tasks or positions within an 

organization and the existing capabilities of human resources 

is denoted by ΔS. For instance, a task may require a specific 

set of skills, while the existing staff may have deficiencies in 

some of these skills. The workload or energy level of 

employees is represented by TPZ, which may indicate the 

current work pressure of employees, or their professional 

enthusiasm and capacity to undertake additional tasks. The 

rate of change in organizational needs is denoted by ψ, such as 

changes in market demand or project priorities, affecting the 

reallocation of human resources. The input space related to the 

adjusted organizational structure optimization, denoted by I, 

encompasses the aforementioned elements. Conceptual 

memory is represented by Xz, and actual memory by Xo, which 

store and process information related to rules and weights for 

human resource allocation. The membership of input variables 

is indicated by iu=1,2,…20, characterizing the degree of 

membership for each input variable to each membership 

function, aiding in the fuzzification of organizational needs, 

employee capabilities, and other relevant factors. The 

addresses mapped to conceptual memory Xz are denoted by 

xk,k=1,2,…180, while the weights in actual memory are 

denoted by qu,u=1,2,…12. The output variable, represented by 

bv, indicates the actual human resource allocation decisions, 

referring in this document to the proportion of work allocated 

to each employee for different tasks or projects. 

 

 
 

Figure 1. Structure diagram of the FCMAC for human resource allocation control 
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Figure 2. Functional schematic of the FCMAC structure modules 

 

Figure 1 displays the structural diagram of the FCMAC 

oriented towards human resource allocation control. The basic 

modules of the FCMAC structure include five components: a) 

Input variables: which may include factors such as task 

difficulty, project urgency, employee skill levels, work 

experience, workload, etc. b) Variable fuzzification: This 

stage converts specific input variables into values within fuzzy 

sets. The skill levels of employees can be quantified and output 

through membership functions as "junior", "mid-level", 

"senior", and other fuzzy levels. c) Conceptual mapping: In the 

conceptual mapping stage, the fuzzified input variables are 

converted into an address in conceptual memory. In human 

resource allocation, this step can be understood as determining 

which fuzzy rules apply to the given combination of 

employees and tasks. d) Actual mapping: Actual mapping 

converts the results of conceptual mapping into specific 

actions or outputs. In human resource allocation, this means 

determining the specific task allocations for employees based 

on rules and strategies. e) Output variables: These are the 

actual human resource allocation strategies calculated based 

on the proportion factor. This equates to determining the 

proportion of work each employee undertakes on different 

tasks or projects and how these allocations can be dynamically 

adjusted to optimize organizational efficiency. Figure 2 

illustrates the functional schematic of the FCMAC structure 

modules. 

Within this structure, the FCMAC for human resource 

allocation control optimizes the configuration of human 

resources by learning and adjusting fuzzy rules and weights. It 

must process varying employee characteristics, task 

requirements, and organizational goals, finding the optimal 

match among them to achieve the strategic objectives of the 

organization.  

In the network, input variables are first discretized through 

quantification factors to match corresponding fuzzy sets 

[VY,VT,CR,OT,OY], representing different levels of evaluation, 

from "very low (VY)" to "very high (OY)" in terms of skill 

levels. These inputs are further fuzzified through Gaussian 

membership functions to be converted into a form that can be 

processed by fuzzy logic systems. Quantification factors, 

serving as tuning parameters, refine the segmentation of fuzzy 

sets, ensuring input values are mapped to the correct degree of 

membership. Thus, the neural network can more accurately 

process different levels of input variables, effectively 

analyzing employee skills, task urgency, and other variables. 

This approach provides more rational human resource 

allocation strategies for organizational structure optimization, 

aiming to enhance organizational efficiency and adaptability. 

The expression for the Gaussian membership function is as 

follows: 

 

( )
( )
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where, δ is typically positive, and z is used to determine the 

center of the curve. 

In the FCMAC for human resource allocation control, the 

mapping steps are crucial processes that ensure inputs such as 

employee capabilities, task urgency, and individual 

adaptability are effectively transformed into the network's 

output, namely the decisions for human resource allocation. 

The following outlines the mapping steps for the FCMAC in 

human resource allocation control: 

Step 1: Introduction of fuzzy membership vector 

Initially, a vector of fuzzy membership functions is 

introduced into the input space I. The input space I is divided 

into 20 storage units, each corresponding to a fuzzy 

membership degree vector. The configuration of these storage 

units allows the network to identify and locate the storage unit 

address corresponding to the input vector. 

Step 2: Conceptual mapping (I⇒XZ) 

Within the input space I, by applying rule segmentation to 

the fuzzy membership functions, several different states can 

be obtained. Each state corresponds to a pointer, which maps 

the state to multiple storage units in the conceptual memory XZ. 

Through this mapping, a unique storage address can be found 

for each state. 

Step 3: Actual mapping (XZ⇒Xo) 

For the states obtained after conceptual mapping, the 

modulus residue method from scatter code techniques is used 

to determine the storage address. Specifically, the address 

value of the activated state is added to a constant k, then 

divided by a large prime number V, which is less than the 

length l of the hash table. The remainder plus one results in the 

storage address in the actual memory Xo, thereby mapping 

these states into the storage units of Xo. Assuming the storage 

address in actual memory Xo is represented by xf(k), the 

address of the activated unit by xk, the unit after conceptual 
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mapping by k, and the modulus function by Matlab as LPF, 

the expression is given as: 

 

( ) ( ) 1 1,2,...,kxf k x k LPF V k z= + + =    (2) 

 

Step 4: Output mapping (Xo⇒bv) 

The output function of the FCMAC can be defined 

according to actual needs. In the context of human resource 

allocation, the output function will determine the most suitable 

employee allocation plan to optimize the organizational 

structure and enhance efficiency. Assuming the product of the 

membership function mapping is represented by xj, and the 

corresponding weight by μa, the expression for the output 

function is given as: 

 

1

z

v j j

j

b x
=

=  (3) 

 

In practical human resource allocation systems, the 

FCMAC receives a series of predefined discrete signals, 

representing key indicators in the process of organizational 

structure optimization. These input signals are processed 

according to a specific sampling period to accommodate 

dynamically changing organizational needs. The output 

signals of the FCMAC correspond to the actual human 

resource allocation plans. In the optimization process, the ideal 

human resource allocation plan is predefined based on 

organizational goals and employee capabilities. This ideal 

output is considered a set of desired allocation coefficients, 

reflecting the optimal configuration of human resources. 

However, in practice, due to various uncertainties such as 

employees' actual performance and unforeseen events, there 

might be deviations between the actual human resource 

allocation plan and the ideal plan. Thus, the task of the 

FCMAC is to compute a deviation value R by comparing the 

difference between the ideal and actual outputs. This deviation 

value R serves as an execution signal for adjusting and 

optimizing human resource allocation, aiming to minimize the 

gap between ideal and actual outcomes, thereby enhancing 

organizational efficiency and effectiveness. The definition 

formula for the error function is provided as follows: 

 

( ) ( )
2

/ 2vR b s b s= −    (4) 

 

This study opts for the δ learning rule to adjust the weights 

of the output. Assuming the learning rate is represented by 

Y(0,1]. The error is denoted by r, the ideal output by b(s), the 

inertia coefficient by ϕ, and k=xf(u), u=1,2,...,z. The following 

expressions are obtained: 
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( ) ( ) ( ) ( ) ( )( )1 1 2k k k k ks s s s s     = − + + − + −  (6) 

 

In the context of human resource allocation control, the 

FCMAC employs a supervised learning algorithm. After each 

control loop is completed, the control system needs to evaluate 

its effectiveness. In each control cycle, the control system 

obtains a learning signal r(s) by comparing the ideal human 

resource allocation plan b(s) with the actual efficiency of 

human resource allocation bv(s), indicating the deviation 

between them. This deviation signal r(s)=b(s)-bv(s) guides the 

learning process. Furthermore, combined with the fuzzy 

membership ω(s) of each task or employee, the controller 

adjusts the weights of its output, which can be viewed as a 

fuzzy learning process. The fuzzy membership ω(s) is based 

on factors such as employee skill levels, experience, task 

urgency, and importance. The goal of learning is to minimize 

the difference r(s) between the ideal human resource 

allocation plan b(s) and the actual efficiency of human 

resource allocation bv(s), ensuring that the organization's 

human resources are utilized as effectively as possible. 

The control process of the FCMAC unfolds as follows: 

a) At the initial run of the human resource allocation system, 

initial weights are set to q=0, implying that the FCMAC's 

output on the efficiency of human resource allocation, bv(s), 

equals 0. During this initial stage, the actual allocation plan b(s) 

equals the FCMAC's output bv(s), as no allocation has yet been 

made. 

b) Subsequently, key parameters under the current work 

scenario of the organization, ΔS, TPZ, and x, are input into the 

FCMAC. These parameters, after being processed by 

quantification factors, are inputted. Through address mapping, 

z corresponding actual addresses are located in the FCMAC 

memory for storing the membership ωu(s) and weights μk(s). 

Following computation by the FCMAC function, the 

FCMAC's output b(s) is obtained, representing the ideal 

human resource allocation plan. 

c) Upon completion of each control loop, the FCMAC's 

actual output bv(s) is calculated and compared with the ideal 

allocation plan b(s), yielding a deviation r(s) as a learning 

signal. Consequently, the system begins to learn and adjust 

weights, with the ongoing learning of the FCMAC aimed at 

minimizing the value of deviation r(s)=b(s)-bv(s). 

d) The actual efficiency of human resource allocation bv(s) 

is adjusted through a proportion factor so that the required 

adjustment in human resources can be calculated based on 

control needs. By performing a subtraction operation on the 

organization's total human resource demand SRE and the 

obtained human resource allocation Sr, the amount of human 

resources that need further allocation or adjustment within the 

organization, SRE-Sr, can be determined. Further calculations 

can identify the human resources required by different 

departments or tasks, thereby achieving optimized allocation 

of human resources within the organization. 

 

 

3. IDENTIFICATION AND RESOLUTION 

STRATEGIES FOR INTERNAL CONFLICTS 

CONSIDERING TRUST RELATIONSHIPS 

 

3.1 Conflict identification 

 

Against the backdrop of practical needs for organizational 

structure optimization, the resolution of decision preference 

conflicts is imperative, as it directly impacts the quality and 

effectiveness of organizational decision-making. Compared to 

preference conflicts in general group decision-making 

processes, internal organizational decision conflicts are often 

more complex, involving not only individual-level concerns 

but also a multitude of organizational-level factors. Decision-

making within an organization frequently encompasses multi-

level structures, potentially including differences between 

senior managers and ground-level employees. Moreover, 
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decision-makers within an organization usually need to 

maintain cooperative relationships over an extended period, 

making the resolution of conflicts lean towards seeking long-

term and sustainable solutions. 

 

 
 

Figure 3. Visualization process of aggregating internal 

organizational decision-makers' preferences 

 

The main distinction between preference conflicts in 

internal organizational decision-making and other group 

decision-making lies in the involvement of a more complex 

network of stakeholders within the organization. The decision-

making process requires a balance of diverse factors, including 

but not limited to, hierarchical positions, departmental 

interests, organizational culture, and long-term strategic goals. 

Therefore, resolving these preference conflicts necessitates a 

comprehensive consideration of organizational structure, 

communication processes, and decision-making mechanisms. 

It is assumed that the similarity of evaluations between two 

decision-makers, ru and rk, regarding all options, specific 

options, and option attributes is represented by tuk, t(zuk
β), and 

t(juk
α), respectively. The similarity of preferences between 

decision-maker ru and the decision group regarding all options, 

specific options, and option attributes can be represented by tu, 

t(zu
β), and t(ju

α), respectively. This study focuses on defining 

and quantifying the degree of preference conflicts among 

internal organizational decision-makers at the attribute level, 

the option level, and the decision-maker level. Figure 3 

demonstrates the visualization process of aggregating internal 

organizational decision-makers' preferences. 

a) Preference conflict degree at the attribute level: Within 

an organization, when a decision-maker, referred to as ru, and 

other team members exhibit significant differences in the 

importance or evaluation of a specific attribute, it is termed as 

preference conflict degree at the attribute level. For instance, 

one decision-maker might prioritize cost-effectiveness, while 

other team members may value the innovation or sustainability 

of a project more highly. The preference conflict degree at the 

attribute level reflects the divergence between an individual 

and the group when evaluating a specific attribute α of a 

particular option β. The formula is expressed as follows: 

 

1
( ) ( )

ni i i

ii
D ls k w s k  =

= −  (7) 

 

b) Preference conflict degree at the option level: Preference 

conflict degree at the option level refers to the degree of 

inconsistency between a decision-maker's overall evaluation 

of an option and the collective opinion of the group. Within an 

organization, this may manifest as divergent overall 

evaluations of the same option by different teams or 

departments. For example, the marketing team might prioritize 

market acceptance, while the product team might be more 

concerned with technical feasibility. The formula is 

represented as: 

 

1

1 b
u uF F

b
 

=

=   (8) 

 

c) Preference conflict degree at the decision-maker level: 

Preference conflict degree at the decision-maker level reflects 

the overall difference in opinion of a particular decision-maker, 

across all option evaluations, in comparison with the entire 

team or other members within the organization. This degree of 

conflict can illustrate a decision-maker's overall position 

within the organizational decision-making culture and their 

influence on group consensus. The formula is expressed as: 

 

1

1 au uF F
a

 =
=   (9) 

 

Within the context of organizational structure optimization 

and given the uniqueness of the decision-making process, it is 

understood that preference conflicts are not only inevitable but 

also beneficial for fostering high-quality decisions within a 

moderate range. However, preference conflicts exceeding a 

certain degree can hinder the decision-making process, leading 

to decreased decision-making efficiency or even paralysis. 

The setting of a threshold η is intended to quantify the presence 

of preference conflicts. If the degree of preference conflict Fu 

for a decision-maker in evaluating options is less than or equal 

to η, it is considered that the decision-maker's preferences are 

consistent with the group; conversely, if Fu exceeds η, 

significant preference conflicts are deemed to exist. 

The distinction between decision conflicts within an 

organization and other group decision conflicts mainly lies in 

the more fixed relationships among decision participants, and 

their decisions are often influenced by organizational culture, 

internal politics, and organizational structure. Therefore, when 

resolving preference conflicts within an organization, greater 

attention needs to be paid to the interaction process among 

decision-makers and their roles and statuses within the 

organization. Hence, in determining the threshold η, 

differences in decision-making weights among various levels, 

departments, and individuals should be considered. That is, the 

threshold η should reflect the organization's decision-making 

culture, strategic objectives, and overall attitude towards 

conflict tolerance. This threshold can be determined through 

methods such as historical data analysis, expert consultation, 

and simulation of decision-making experiments. In calculating 

Fu, the difference between a decision-maker's evaluations and 

the group's average evaluations should be taken into account. 

Considering the characteristics and needs within an 

organization, this study adjusts the conflict identification 

process into the following three steps: 

Step 1: Conflict identification at the decision-maker level 

Internally, this step involves analyzing factors such as the 

decision-maker's personal background, position, power 

structure, personal interests, and values. It is important to note 

that within an organization, decision-makers may have more 

complex interests and motivations, which may differ from the 

motives and behavior patterns of individuals in other types of 

group decision-making. The set of decision-makers whose 

degree of conflict exceeds the threshold η is represented by 

FZMS, with the formula given as: 
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 | uFZMS u F =   (10) 

 

Step 2: Conflict identification at the option level 

This step focuses on the evaluation differences between 

various decision options. Internal evaluation of options may 

be influenced by the existing organizational structure, resource 

allocation, historical performance, and future development 

plans. Utilizing algorithms to analyze differences between 

options and their potential impacts on different departments or 

business lines within the organization can help identify 

potential conflict points caused by options. The set of options 

whose degree of conflict exceeds the threshold η is represented 

by XZMS, with the formula given as: 

 

( ) , | uXZMS u u DZMS F =     (11) 

 

Step 3: Conflict identification at the attribute level 

Internally, the attribute level primarily refers to specific 

factors involved in the decision-making process, such as cost, 

risk, time frame, technical requirements, etc. Internal decision-

making often requires balancing different business attributes. 

The set of attributes whose degree of conflict exceeds the 

threshold η is represented by OZMS, with the formula given as: 

 

( ) ( ) , , | , uOZMS u u XZMS F   =     (12) 

 

Once the specific levels at which conflicts exist are 

identified, the organization can take targeted measures to 

manage and mediate conflicts. For example, providing more 

information through decision support systems, changing the 

power structure by adjusting decision processes, or increasing 

consensus on organizational goals and option evaluations 

through training and communication. 

 

3.2 Conflict resolution 

 

Within the context of organizational structure optimization, 

the conflict resolution process does not merely seek complete 

unanimity of preferences among decision-makers. Instead, it 

aims to accurately identify and analyze the attributes, opinions, 

and preferences of decision-makers at all levels within the 

organization, striving to minimize the degree of conflict 

between individuals and the group, different management 

levels, and diverse functional departments. Compared to 

conflict resolution in general group decision-making, internal 

organizational conflict management places greater emphasis 

on maintaining decision efficiency and consistency with 

organizational goals, while fully considering organizational 

culture, power structures, and the synergistic effects between 

individuals. Figure 4 presents a flowchart for conflict 

resolution aimed at organizational structure optimization. 

Within an organization, conflict resolution is a dynamic, 

iterative process that considers trust relationships, involving 

decision-makers adjusting their preferences through trust 

network after understanding and evaluating the assessments or 

preferences of other members. The main difference between 

internal organizational decision conflicts and general group 

decision conflicts lies in the focus on maintaining coordination 

and trust between individuals and the whole, seeking 

optimization and consensus of solutions while preserving 

decision efficiency and alignment with organizational goals. 

In this study, decision-makers adjust their preferences based 

on the strength and direction of trust relationships, 

encompassing self-assessment and consideration of 

preferences of leaders or influential members, as well as 

consensus on the overall organizational objectives and value 

judgments. The selection of adjustment coefficients and 

criteria is determined by the internal trust network structure, 

decision-making levels, and the complexity of interactions 

among members, ensuring that the final resolution of conflicts 

not only reduces the individual conflict degree but also 

strengthens the organization's synergistic effect and decision-

making efficiency, promoting optimization of the 

organizational structure and enhancement of decision quality. 

 

 
 

Figure 4. Flowchart for conflict resolution aimed at organizational structure optimization 
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In the process of resolving internal organizational decision 

conflicts considering trust relationships, each decision-

maker’s preferences are influenced not only by their initial 

evaluations but also significantly by the preferences of their 

most trusted colleagues or leaders. This dynamic adjustment 

of preferences is based on dual factors: the individual’s 

preference similarity for options and the level of trust with 

other decision-makers. This trust level is then reflected 

through an adjustment coefficient, determining the extent of 

influence trusted decision-makers have on individual 

preference adjustments. Unlike ordinary group decision 

conflicts, the resolution of internal organizational decision 

conflicts places greater emphasis on the construction and 

utilization of trust network, capturing not only the consistency 

of preferences but more importantly, reflecting the trust 

relationships between different decision-makers. In this 

process, the practical needs of organizational structure 

optimization require decision-makers to make conscious 

preference adjustments based on mutual trust, to foster 

harmony and efficiency in the decision-making process, 

ensuring that solution optimization enhances the 

organization's decision quality and achieves structural 

optimization. 

Assuming two decision-makers, ru and rk, where rk is 

another decision member most trusted by ru, and their 

respective evaluations or preferences for options are nu and nk, 

with ru's degree of conflict exceeding η, ru needs to adjust 

decisions to reduce nu. The formula for ru's preference 

adjustment is given as: 

 

( ) ( ) ( ) ( )1 1u u kn P n P n P + = − +  (13) 

 

Assuming the number of decision-makers is represented by 

v, the preference adjustment coefficient ϕ can be calculated as 

follows: 

 

1

max( )uk

v

ukk

s

s


=

=
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 (14) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Based on the data from Figure 5, it is observed that with an 

increase in the number of control cycles, the testing error in 

human resource allocation control by the FCMAC shows an 

overall decreasing trend. Starting from an error rate of 8.30% 

at 6 cycles, the rate steadily declines to 7.68% at 11 cycles, 

indicating that with more iterations, the FCMAC becomes 

more precise in predicting and controlling the allocation of 

human resources. Particularly, when the number of cycles 

increases from 10 to 11, the decrease in error is notably 

significant, dropping from 7.80% to 7.68%. However, as the 

number of cycles continues to rise to 12 and 13, a slight 

increase in error rates is observed, reaching 7.79% and 7.81%, 

respectively. This suggests that excessive iteration may not 

necessarily lead to better outcomes, possibly due to the model 

beginning to overfit or other factors causing a slight decrease 

in performance. The experimental results demonstrate the 

effectiveness of the human resource allocation control strategy 

based on the FCMAC proposed in this study. Increasing the 

number of control cycles within a certain range can enhance 

the accuracy of the strategy. The FCMAC model is capable of 

adapting to changes in organizational needs and optimizing 

resource configuration, especially when the number of control 

cycles reaches 11, where the model achieves the lowest testing 

error, proving the potential of this strategy in practical 

applications. 

 

 
 

Figure 5. Testing error of the FCMAC under different 

numbers of human resource allocation control cycles 

 

 
 

Figure 6. Convergence of the FCMAC during the testing 

process  

 

 
 

Figure 7. Change in conflict degrees of different decision-

makers 
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Table 1. Sample data after optimization of human resource allocation control 

 

Sample 

ID 

Employee 

Satisfaction 

Training and 

Development 

Needs 

Change in 

Productivity or 

Service Efficiency 

Human 

Resource 

Costs 

Change in 

Project 

Delivery Time 

Change in 

Workload 

Balance 

Change in 

Employee Work 

Proportion 

1 7 1156 4% 31256 9h 47 14% 

2 6 1248 7% 32147 7h 48 12% 

3 7 912 8% 35698 11h 28 12% 

4 6 1245 9% 28956 6h 51 13% 

... ... ... ... ... ... ... ... 

2256 7 1689 5% 35647 6h 43 13% 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. Optimization of decision time, labor relation 

quality, and team collaboration level after internal conflict 

resolution 

Figure 6 displays the convergence behavior of the FCMAC 

during the training process of the human resource allocation 

control strategy, with data indicating a significant reduction in 

errors across the training, validation and test sets as epochs 

increase. In the initial phase of training (0-2 epochs), the error 

rapidly decreases from 600 to 80, demonstrating the FCMAC's 

ability to learn and adjust swiftly. With further training (4-10 

epochs), the error continues to decrease across all data sets, 

reaching levels of 1, 0.6, and 0.5 at 10 epochs, respectively, 

showcasing excellent learning capabilities and efficient 

convergence speed. Continuing the training up to 18 epochs, 

the model's error stabilizes at 0.6 and 0.2 on the validation and 

test sets, respectively, while the training set error remains at 1, 

indicating the model has achieved stable generalization 

performance. Moreover, compared to the predefined target 

error (0.2), the error on the test set has already met the target, 

while the best error recorded at 0.0006 is significantly lower 

than the target error. These experimental results thoroughly 

demonstrate the effectiveness of the human resource allocation 

control strategy based on the FCMAC. The model not only 

learns quickly and adapts to the training data but also exhibits 

good generalization capabilities in subsequent validation and 

testing, which is key to the success of the control strategy. The 

stable decline in error and test results below the target error 

indicate that the strategy can respond in real-time to changes 

in organizational needs and optimize resource configuration in 

practical scenarios. 

Table 1 provides sample data following the optimization of 

human resource allocation control, including key indicators 

such as employee satisfaction, training and development needs, 

changes in productivity or service efficiency, human resource 

costs, changes in project delivery time, workload balance and 

proportion of employee work. From the sample data, it is 

observed that employee satisfaction generally remains at a 

high level (e.g., satisfaction of 7 for samples 1 and 3), while 

project delivery times have been reduced (e.g., from standard 

time to 7 hours for sample 2), improvements in workload 

balance are evident (e.g., a workload balance of 51 for sample 

4), and changes in the employee work proportion are 

maintained within a reasonable range (between 12%-14%). 

These improvements indicate that in the optimized human 

resource configuration, all indicators have shifted in a positive 

direction, reflecting the efficiency of human resource 

allocation and the improvement of employee work conditions. 

From this data analysis, it can be concluded that the human 

resource allocation control strategy based on the FCMAC 

effectively enhances key human resource management 

indicators, such as increasing employee satisfaction, 

optimizing the match between training and development needs 

and resources, enhancing productivity or service efficiency, 

and while controlling human resource costs, shortening project 

delivery times, achieving workload balance. These positive 
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changes not only enhance the overall operational efficiency of 

the organization but may also bring long-term economic 

benefits and improve employee welfare. Therefore, the human 

resource allocation control strategy based on the FCMAC 

proposed in this study not only demonstrates efficiency in 

laboratory tests but also proves its effectiveness in optimizing 

human resource configurations in practical applications. 

Figure 7 shows the conflict degree values of five decision-

makers at two different time points, as well as the conflict 

degree threshold they need to meet. At the initial state Fu(0), 

the conflict degree of Decision-Maker 3 (0.0352) is slightly 

above the threshold (0.032), while the conflict degrees of the 

other decision-makers are below the threshold. This indicates 

that before the implementation of the resolution strategy, the 

conflict levels of most decision-makers were already within an 

acceptable range. In the state Fu(1) after strategy 

implementation, the conflict degree values of all decision-

makers are below the threshold, and compared to the initial 

state, except for a slight decrease in the conflict degree of 

Decision-Maker 1, other decision-makers experienced various 

degrees of reduction, especially Decision-Maker 3, whose 

conflict degree decreased from above the threshold at 0.0352 

to 0.0307. This demonstrates the effectiveness of the strategy 

in reducing their conflict degrees. From this data analysis, it is 

evident that the internal conflict identification and resolution 

strategy proposed in this paper is effective in reducing the 

conflict degrees of decision-makers. Especially for those 

whose initial conflict degrees exceeded the threshold, the 

implementation of the strategy significantly reduced their 

conflict degrees to an acceptable level. This indicates that the 

decision model incorporating trust metrics can accurately 

identify and resolve conflicts within the organization. Through 

the quantification and management of trust relationships, 

decision-makers are able to make more harmonious and 

consistent decisions in the context of conflict, thereby 

enhancing the overall decision-making efficiency and internal 

coordination of the organization. 

Figure 8(a) records a significant reduction in internal 

decision-making time within the organization as the model 

training progresses. Starting from an initial decision time of 

500 units, a rapid decrease is observed with the increase in 

epochs, reducing to only 12 units of time by the 10th epoch. 

Although the reduction in decision time slows down thereafter, 

a decreasing trend continues, reaching 7 units of time by the 

16th epoch. This change indicates that with the training of the 

FCMAC model, the internal decision-making process 

becomes more efficient, reflecting the model's learning on 

how to resolve conflicts more swiftly. Figure 8(b) reflects the 

changes in labor relation quality as the FCMAC model training 

progresses. At the beginning of model training, the quality of 

labor relations was very low (0.001), which could indicate 

serious labor relations issues or conflicts. With the increase in 

epochs, the quality of labor relations experiences fluctuations 

but overall shows a significant upward trend, especially 

between the 4th and 12th epoch, where this indicator grows 

from 0.1 to 10, then stabilizes between 0.1 and 1 after the 14th 

epoch. This fluctuation might suggest that the model, during 

its learning and adaptation process, continuously adjusts the 

human resource allocation strategy to achieve optimal quality 

of labor relations. Figure 8(c) displays the changes in team 

collaboration level as the model training epochs increase. In 

the first 12 epochs, the level of team collaboration remains at 

0, implying that internal conflicts may not have been 

effectively identified or resolved during this stage, leading to 

inactive team cooperation. However, starting from the 13th 

epoch, the level of team collaboration begins to show 

significant positive growth, gradually increasing from 1 to 5 

by the 16th epoch. This continuous upward trend indicates that 

after a series of iterative learning, the FCMAC's human 

resource allocation control strategy begins to take effect, 

gradually enhancing the collaborative capabilities among team 

members. 

Combining the above experimental results, it can be 

concluded that the human resource allocation control strategy 

based on the FCMAC is not only effective for the optimal 

allocation of human resources but also significantly improves 

internal decision-making efficiency, as well as enhancing the 

quality of labor relations and team collaboration. The notable 

reduction in decision time confirms the model's capability in 

understanding and addressing internal trust and conflict 

relations. Furthermore, as the model undergoes further training, 

its effectiveness continues to improve. Although 

improvements in labor relation quality are not constant, the 

stable performance in the later stages of model training 

illustrates that the strategy can sustain high-quality labor 

relations after initial adjustments. With the continuous 

application of the strategy and ongoing optimization of the 

model, a significant improvement in the level of team 

collaboration has been achieved. 

 

 

5. CONCLUSION 

 

This paper explores a human resource allocation control 

strategy based on the FCMAC, providing an effective method 

for responding in real-time to organizational demand changes 

and optimizing resource configuration. The feasibility and 

efficiency of the FCMAC in human resource allocation have 

been demonstrated through the analysis of network test errors 

under different control cycle numbers and discussions on 

convergence. Experimental results indicate that the optimized 

human resource allocation plan can significantly enhance 

organizational efficiency. 

Furthermore, the internal conflict identification and 

resolution strategy considering trust relationships, introduced 

through a decision model incorporating comprehensive trust 

metrics, offers a new perspective for the precise handling of 

organizational conflicts. Experimental data show that this 

strategy not only effectively reduces the conflict degree of 

decision-makers but also improves decision time, labor 

relation quality, and team collaboration level after conflict 

resolution. 

Overall, this study not only enriches the theoretical domain 

of human resource allocation and organizational conflict 

management but also provides specific guidance for practical 

application. However, the research also has limitations, such 

as potential restrictions to specific organizational types and 

sizes, as well as factors related to model parameter selection 

during experimental validation. Future research could validate 

the universality and stability of the model across a broader 

range of organizational types and sizes. Further exploration 

could also examine the impact of model parameters on 

experimental outcomes, as well as how to integrate more 

advanced technologies such as machine learning to enhance 

the model's predictive capabilities and application scope.
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