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Plant diseases are caused by a variety of environmental variables, which cause large losses 

in productivity so the diagnostic systems that are automated play a significant part in 

agricultural automation. A large number of disease images with appropriate plant village 

database disease label information must be collected to construct a functional image-based 

autonomous image diagnostic system. However, manual detection of plant diseases is a 

time-consuming and error-prone process. Conventional systems showed reasonably good 

diagnostic performance, however, most of their disease predictions were heavily unfairness 

owing to “latent similarity” within a dataset (backgrounds, lighting, and/or the separation 

between the target and the camera) among training and test images, and their genuine 

diagnosis skills were far lower than stated. To overcome this issue, this paper proposed a 

Hybrid Fourier Filter De-noising (HFFDF) algorithm and enhanced EigenGAN (Generative 

Adversarial Network (GAN)), which creates a large number of diverse and large-quality 

training images and serves as a reliable data supplement for the diagnostic classifier. These 

produced images may be utilized as resources to improve the efficiency of plant disease 

diagnostic systems. The results shown that the performance of the new method of HFFDF 

is effective compared with other denoising filters of Gaussian, Median and wiener filter 

algorithms. The Experimental result shows that proposed HFFDF and EigenGAN methods 

clearly outperforms than existing methods. 
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1. INTRODUCTION

Deep learning is now being integrated with computer vision 

and artificial intelligence to assist in the detection and 

recognition of images and videos, as well as in the solution of 

issues in a variety of fields. One of the most active agricultural 

research disciplines is the automated identification of plant 

disease. Detecting plant diseases in an appropriate and effective 

approach is crucial to ensuring worldwide food protection [1, 

2]. Deep learning is now a widely used technology with a wide 

range of applications such as agriculture and botanical studies, 

revolutionizing the field of computer vision in recent years. 

Numerous deep learning methods for computerized 

identification of plant diseases have been developed to help 

farmers and reduce plant output losses. 

Effective plant disease control is a challenge that is linked to 

climate change and sustainable agriculture [3]. Climate change, 

according to research findings, can affect the stages and rates 

of pathogen growth; it can also impact host resistance, resulting 

in physiological alterations in host-pathogen interactions [4, 5]. 

The predicament is exacerbated by the fact that illnesses are 

now more easily transmitted internationally than ever before. 

New infections can emerge in previously recognized locations 

and, inherently, in areas with little local ability to combat them 

[6, 7]. 

The process of increasing the volume and diversity of data 

in deep learning is known as data augmentation. This paper 

presents to transform existing data instead of gathering new 

data. Data augmentation enhances the value of base data 

within an organization by combining information from 

internal and external sources. Data augmentation is an 

essential step in deep learning because deep learning requires 

vast volumes of data and it is not always possible to acquire 

thousands or millions of data samples, therefore data 

augmentation come in handy. 

A GAN is a methodology for estimating generative models 

that are composed of two differentiable sub-models that are 

often implemented as deep neural networks: the discriminator 

D with parameters dD and the generator G with parameters dG. 

Figure 1 depicts an example of a common GAN configuration. 

The discriminator and the generator compete with one another. 

Using a latent noise vector z, the generator is taught to generate 

images G(z) that mimic the training data distribution pR. As 

input, a sample from the distribution pz, while the discriminator 

is fed produced images G(z) as well as real training data x and 

is trained to distinguish between generated and genuine images. 

This paper presents, a novel Hybrid Fourier Filter De-

noising (HFFDF) algorithm and enhanced EigenGAN data 

augmentation method for plant disease images is presented. 

The objective of the proposed system is to develop a hybrid 

image de-noising method for plant disease images that 

effectively eliminates unimportant noises. Following the 
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denoising procedure, an improved EigenGAN data 

augmentation technique of generated images can be employed 

to enhance plant disease performance diagnosis systems. 

Figure 1. The architecture configuration of a standard 

GAN 

2. RELATED WORK

Saikawa et al. [8] revealed that diagnostic cues are usually 

confusing and that additional factor, including image 

conditions; frequently have a important influence on the 

decision. As an outcome, latent similarities in the dataset 

frequently cause overfitting, and diagnostic presentation on 

actual unknown data is typically significantly diminished. Due 

to the bias caused by dataset similarities, numerous algorithms 

have showed exceptional diagnostic performance; nevertheless, 

this issue has not been fully addressed.  

According to Cui et al. [9], discussed the incremental 

usefulness of a new data point decreases with the number of 

samples. By associating a small adjacent region with each 

sample rather than a single point, the authors established a 

novel theoretical framework for calculating data overlap. The 

volume of samples is a simple formula (1-βn)/(1-β), where n is 

the number of samples and β[0,1] is a hyper-parameter that 

can be used to calculate the effective number of samples. By 

employing the appropriate number of samples for each class, 

they came up with a re-weighting technique that rebalances the 

loss and produces a loss that is balanced across classes. 

Karras et.al. [10] borrowed from the style transfer literature 

to present an alternate generator design for generative 

adversarial networks. The novel architecture offers both an 

automatically learnt, unsupervised separation of high-level 

properties and random variation in the generated images, and 

simple, scale-specific synthesis management. The new 

generator outperforms the state-of-the-art in terms of standard 

distribution quality criteria, yielding much higher interpolation 

qualities and better disentangling the hidden sources of 

variation. 

The issue of data augmentation in image categorization was 

examined and various solutions were contrasted by Perez et al. 

[11]. The efficacy of data augmentation methods like cropping, 

rotating, and flipping input images has been demonstrated in 

prior study. They restrict access to a small portion of the 

ImageNet dataset and look at each data augmentation method 

separately. Traditional transformations, as noted above, are one 

of the more successful data augmentation options. They also 

used GANs to produce graphics in a variety of styles. Lastly, 

they developed neural augmentation; it permits a neural 

network to discover modifications that best enhance the 

classifier. They discussed the method's strengths and 

weaknesses on several datasets. 

Despite recent advances in generative image modeling, 

Brock et al. [12] argued that successfully generating high-

resolution, varied samples from complicated datasets such as 

ImageNet remained an elusive aim. To that goal, they trained 

Generative Adversarial Networks at the biggest scale yet tried 

and investigated the instabilities that arise at such a vast scale. 

They discover that by applying orthogonal regularization to the 

generator, they can perform a simple "truncation trick," 

providing tight control over the trade-off between sample 

accuracy and variety by minimizing the variance of the 

Generator's input. 

By enhancing perceptual quality and maintaining semantics, 

Nazki et al. [13] discussed a GAN-based image-to-image 

translation technique. They presented AR-GAN, a synthetic 

image generator that prioritizes feature activations in 

comparison to the original image in addition to the adversarial 

loss. They demonstrated artificial images that were more 

pleasing to the eye than the most popular models of the present, 

and they assessed the efficiency of their GAN framework using 

a variety of datasets and metrics. Second, they evaluated how 

well a baseline convolutional neural network classifier for 

improved recognition performed in comparison to the 

conventional data augmentation method, employing the 

resultant synthetic examples to enrich their training set. 

Brahimi et al. [14] proposed a public dataset to test different 

CNN architectures utilizing three learning algorithms for plant 

disease classification. These novel structures better state-of-

the-art plant disease classification results, with an accuracy of 

99.76 percent. In addition, the authors proposed saliency maps 

as a visualization tool to comprehend and interpret the CNN 

classification mechanism. 

Cap et.al. [15] introduced LeafGAN, an innovative image-

to-image translation system using a unique attention 

mechanism. By transforming healthy photographs into a wide 

range of diseased images, LeafGAN serves as a data 

augmentation tool to enhance the accuracy of plant disease 

detection. Our model's unique attention mechanism allows it to 

selectively alter relevant regions from images with different 

backgrounds, enhancing the training images' adaptability. 

3. PROPOSED METHODOLOGY

By utilizing the plant disease information, the study strategy 

accounts for the sequence in which all of the experiments were 

conducted [16]. The Hybrid Fourier Filter De-noising (HFFDF) 

technique successfully removes noise from plant images, 

yielding enhanced and noise-free images suitable for additional 

processing such as image data augmentation. Figure 2 depicts 

the overall proposed flow diagram. 

3.1 Image pre-processing 

Image preprocessing is the process of transforming raw 

image data into a usable format. The approach to preprocessing 

is broken into two phases: (i) Image size conversion and (ii) 

Hybrid Fourier Filter De-noising (HFFDF).  This pre-
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processing phase improves the plant image section by 

removing unneeded distortions and improving several image 

properties that are important for subsequent processing. The 

original plant image database of pixels size (1968× 4160 uint8) 

is converted into predefined 512 × 512 sizes, excluding pixel 

uncertainty, using the ‘bicubic’ interpolation method. 

Following that, disease database images should be comparable 

in size and are expected linked with indexed images on a 

regular gray-scale map. 

Figure 2. Proposed flow diagram 

3.2 Hybrid Fourier Filter De-noising (HFFDF) 

The proposed Hybrid Fourier Filter De-noising technique is 

characterized as having a light and noise variation value of 0.5 

and calculates image scaling. Then resized images will be 

converted to the Fast Fourier Transform technique using FFT. 

Then calculate luminance and contrast Frequency for image 

variations, with absolute pixel variation. Next, Image 

smoothing is a process used to reduce noise, sharp edges, and 

clutter from the image. Finally, the inverse FFT Image with 

pixel variation image adjust function is used to display the de-

noised image. The acquired de-noised image is displayed using 

image adjust function. Finally, the result shows the highest 

PSNR value compared to Existing image denoise filter 

algorithms. 

Algorithm 1: Hybrid Fourier Filter De-noising (HFFDF) 

Input: Image I, noise and light variation n, l = 0.5, contrast 

Frequency cF, height h, smoothing factor smf. 

Output: Result Image DR. 

Begin 

Step 1: Image dimensions should be calculated. 

Step 2: FFT image conversion 

Step 3: Initialize FFT Parameters (dimension and image total 

number pixels (N)) 

Step 4: Optimize absolute FFT Image Pixels 

Process 

Step 5: Calculate contrast frequency  

cF =  FFTTp ×  abs(FFTTp > 0)

+
1

𝒍
×  abs(FFTTp == 0)

(1) 

Step 6: Calculate absolute pixel for noise variation 

abspixel = abspixel × (abspixel > 𝑛2)
+ 𝑛2 × (abspixel ≤ 𝑛2)

(2) 

smf =  
cF × (absPixel − n2)

absPixel × 𝑛2
(3) 

Result = smf × FFTimage (4) 

Step 7: Result image 

DR = real(ifft(Result)) (5) 

The proposed HFFDF approach contrasts various de-noise 

filtering algorithms, including the applied median filter, 

Wiener, and the Gaussian, and median filters. Figure 3 displays 

the results of the comparison. 

Figure 3. Hybrid Filter De-noising Filter (HFDF) process 

results 

3.3 Enhanced EigenGAN Data Augmentation 

Enhanced EigenGAN Data Augmentation is a technique that 

extends the EigenGAN: Layer-Wise Eigen-Learning for GANs 

[17] technique. The GAN [18] is a generative model that

generates information out of noise. GAN learning competes

with a generator and a discriminator. The discriminator, in

239



particular, attempts to identify synthetic samples from actual 

samples, whilst the generator attempts to create the generated 

samples as realistic as possible to trick the discriminator. The 

synthesized data distribution corresponds to the genuine data 

distribution when the competition approaches Nash 

equilibrium. 

In order to train at layer generator mapping from a set of 

latent variables {ykRq| yk~ Nd(0, I),k = 1,…,t}, the EigenGAN 

Generator with Layer Wise Subspaces is intended to the 

synthesized image Im = G(y1,…,yt), where yk is added and the 

solution into the kth generator layer and d specifies the number 

of aspects of each subspace. 

The system embeds a linear subspace model in the kth layer 

lsmk = (Ok,Ik,µk,pk) where, 

• Ok = [ok1, …, okq] is the orthonormal source of the

subspace, and every source vector okmRHk×Wk×Ck (i.e,

Height, Width and Channel) is designed to uncover a

“Eigendimension” that keeps unsupervised a variant

of interpreted generated samples.

• Ik = diag (Ik1,…,Ikq) is a diagonal matrix with Ikm 

choosing the “importance” of the source vector okm .

To be more specific, a big fixed value of Ikm indicates

that okm controls the considerable variation of the kth

layer, however, a low absolute value denotes a little

amount of variance, which is also a form of dimension

selection.

• Subspace's origin is denoted by µk.

• pk denotes the projection subspace

Then, the research method uses the kth latent variable yk = 

[yk1,…,ykq]T as the linear coordinates for sampling one of the 

subspace's points lsmk: 

∅𝑘 = 𝑂𝑘𝐼𝑘𝑦𝑖 + 𝜇𝑘

= ∑ 𝑦𝑘𝑚𝐼𝑘𝑚𝑜𝑘𝑚 + 𝜇𝑘 + 𝑝𝑘
𝑞
𝑚=1

(6) 

As indicated below, sample point k is going to be 

incorporated as a network feature of the kth layer. 

If hkRHk×Wk×Ck denotes the kth layer's feature maps and Im = 

ht+1 denotes the closing fused image, then the further 

association among the neighboring layers is, 

hk+1 = Conv2x (hk + f (k)); k = 1,…,t (7) 

where “Conv2x” refers to shifted convolutions that double 

the resolution of the attribute maps and f might be either a 

unique transform task. 

The proposed enhanced EigenGAN technique will be trained 

on a CPU device with Eigen block using Discriminator and 

Generator model input parameters of image size, noise 

dimension, base channels, and max channels. In the 

Discriminator section, the base and max channels with kernel 

size are processed using convLayer, and the blocks are returned 

as output. The blocks are appended with a sequential layer in 

linear manner. In the Generator model, the image size will 

increase the power of 2 based on max channels with the number 

of blocks. Eigenblock was processed with the linear subspace 

model (lsm) layer in this section. When the last result is 

converted into projection subspace (pk), the feature convolution 

is approximated. 

The suggested approach begins by discussing the linear 

instance of EigenGAN. The linear model, adapted from 

Equation (6), is written as follows: 

Im = OIy+µ++ pk (8) 

Figures 4 to 8 display the results of the EigenGAN method. 

Figure 4. Input of Pepper_bell_Bacterial_spot image 

Figure 5. Enhanced EigenGAN result -1 

Figure 6. Enhanced EigenGAN result -2 
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Figure 7. Enhanced EigenGAN result -3 

Figure 8. Enhanced EigenGAN result -4 

4.EXPERIMENTAL RESULTS

The results of the experiments indicated the effectiveness of

the Hybrid Fourier Filter De-noising (HFFDF) denoising filter 

and the Enhanced EigenGAN data augmentation. The 

experimentation findings are performed on an Intel I5 CPU 

with a clock speed of 3.20 GHz, 8GB of RAM, Windows 10 

operating system of MATLAB R2014b and python 3.8 

simulations. The dataset of Plant Village disease dataset 

consists of 54303 healthy and unhealthy leaf images divided 

into 38 categories by species and disease are treated with 

denoising and image data augmentation is evaluated in this 

experimental study.  

Table 1 and Figure 9 depicts the evaluation of plant diseases 

and the Plant Village image database de-nosing measures of 

Root Mean Square Error (RMSE), which is defined as: 

RMSE = sqrt (mean ((input - denoise)2)); (9) 

Figure 9. RMSE chart 

Table 1: Root Mean Square Error (RMSE) comparison 

Images Gaussian Median Wiener Proposed HFFDF 

Pepper__bell___Bacterial_spot 0.7268 0.6267 0.4973 0.4955 

Pepper__bell___healthy 0.7492 0.6407 0.4801 0.4701 

Potato___Early_blight 0.76314 0.5163 0.4400 0.438 

Tomato_Bacterial_spot 0.89985 0.62349 0.38094 0.32702 

Tomato_Early_blight 0.76271 0.66902 0.40065 0.3359 

Tomato_Late_blight 0.9575 0.59281 0.396 0.36705 

Table 2. Peak Signal Noise Ratio (PSNR) comparison 

Images Gaussian Median Wiener Proposed HFFDF 

Pepper__bell___Bacterial_spot 31.5028 42.1947 42.6407 58.7179 

Pepper__bell___healthy 31.9975 44.3138 44.7612 55.0073 

Potato___Early_blight 31.8557 44.476 44.5972 55.7046 

Tomato_Bacterial_spot 32.4008 40.7282 41.7191 56.1631 

Tomato_Early_blight 31.9801 40.5354 41.6231 56.1813 

Tomato_Late_blight 32.5814 41.5142 42.3184 56.0233 

Table 2 and Figure 10 shows the Plant image de-noising 

PSNR measurements on plant diseases and the Plant Village 

image database is defined as follows: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝑓

𝑅𝑀𝑆𝐸
) (10) 
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Figure 10. PSNR chart 

5. CONCLUSION

The development of information and communication 

technology in the areas of image preprocessing and data 

augmentation in Plant Village diseases datasets was examined 

in this research. The proposed approach has three stages, 

which are as follows: 1) image dimension reduction: the 

original plant image database images are shrunk to 

predetermined sizes; 2) Hybrid Image De-noising: the noise is 

removed using Hybrid Fourier Filter De-noising (HFFDF). 

The proposed HFFDF algorithm serves an important purpose 

in image data augmentation systems. The enhanced 

EigenGAN with projection subspace model developed here 

generates a large number of various and large-quality training 

images and acts as a proficient data supplement for the 

diagnostic classifier. 
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