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Research in movie recommendation systems addresses several specific challenges to 

enhance the accuracy, relevance, and user satisfaction of the recommendations. Some of 

the key challenges include sparsity of data and cold start for new movies. Integrating 

collaborative filtering and content-based filtering in a seamless and effective manner also 

poses another key challenge. This article explores strategies for optimizing hybrid 

recommendation systems to leverage the strengths of each approach. By addressing these 

three key challenges, we aim to advance the state of movie recommendation systems, 

providing more effective and user-centric solutions that cater to the diverse preferences and 

needs of movie enthusiasts. Similarity-based models (memory-based) combined with 

matrix factorization-based models (model-based) were used to generate an optimal hybrid 

movie recommendation model. We evaluated the models using a large dataset of movies 

and we showed that the proposed model is both efficient and scalable. 
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1. INTRODUCTION

In the digital age, where information is abundant and easily 

accessible, individuals often face a challenge commonly 

known as "information overload." This phenomenon occurs 

when the volume of available information surpasses an 

individual's capacity to process it effectively. 

As a result, users may find it overwhelming to navigate 

through the vast sea of data to discover content that aligns with 

their preferences and interests. Recommendation systems play 

a crucial role in addressing this challenge by leveraging 

algorithms and data analysis to provide personalized 

suggestions to users [1, 2]. These systems are designed to 

understand user behavior, preferences, and patterns based on 

their interactions with digital platforms. Whether it’s 

streaming services, e-commerce websites, social media 

platforms, or news outlets, recommendation systems help 

users discover relevant content amidst the abundance of 

options. 

In essence, recommendation systems serve as navigational 

aids in the vast digital landscape, offering users a curated and 

personalized pathway through the abundance of available data. 

As data overload continues to be a defining characteristic of 

the digital age, the role of recommendation systems becomes 

increasingly crucial in providing users with meaningful, 

relevant, and personalized experiences across various online 

domains. 

Many different fields have studied recommender systems: 

e-commerce [3-6], web search [7-9], information retrieval [10,

11], job boards [12-19], movie ratings [20-23], etc.

In the majority of movie recommender systems, a movie’s 

usefulness is often stated by a score that reflects how a 

particular user felt about a movie in question [24-27]. 

Predicting a score for movies that are not yet reviewed by users 

can be one of the greatest challenges in building movie 

recommender system.  

Due to the large number of movies and users in the system, 

it can be difficult for each user to see all movies and to rate 

every one individually. The user can be guided to the movies 

with the highest estimated ratings when it is possible to 

estimate scores for movies that haven’t yet been evaluated. 

The three most popular approaches are content-based (CB) 

[28-31], collaborative filtering (CF) [32-36], and hybrid 

(which combine the two prior approaches) [37-41]. 

Optimizing movie recommender systems offers tangible 

benefits to users, the industry, and the academic community. 

It enhances user experiences, contributes to industry growth, 

fosters academic collaboration and innovation, and addresses 

ethical considerations, ultimately shaping the landscape of 

personalized content recommendations. 

For streaming platforms and entertainment services, 

optimized recommender systems contribute to increased user 

engagement and retention. By offering compelling movie 

recommendations, these platforms can keep users actively 

involved, leading to longer subscription periods and higher 

customer loyalty. 

From industry players’ side, they can leverage optimized 

recommender systems to enhance personalized advertising. 

By understanding user preferences, the system can deliver 

targeted ads, leading to higher click-through rates and more 

effective advertising campaigns. 

From users’ side, optimized hybrid recommender systems 

can encourage users to explore new movie genres they might 

not have considered. This not only broadens users' cinematic 

horizons but also supports a diverse and inclusive 

entertainment ecosystem. 
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Research in optimizing hybrid movie recommender systems 

contributes also to the academic community by advancing 

knowledge in the fields of machine learning (ML), data 

science, and recommendation systems. It provides insights 

into novel algorithms, optimization techniques, and evaluation 

methodologies, contributing to the academic discourse and 

shaping the future of recommendation systems. 

The scope of this paper extends beyond movie 

recommendation systems to encompass a broader examination 

of recommender systems in various domains within the digital 

landscape. While movie recommendation systems may be 

used as illustrative examples, the focus is not limited to this 

specific application.  

The main contributions of this article are: 

• Exploring strategies for optimizing hybrid 

recommendation systems to leverage the strengths of each 

approach used in the combination.  

• Providing more effective and user-centric solutions 

that cater to the diverse preferences and needs of movie 

enthusiasts. 

• Optimizing recommender models based on 

similarities (memory-based) and models based on matrix 

factorization (model-based). 

• Modeling an efficient and scalable hybrid movie 

recommendation system. 

The remainder of this paper consists of seven sections. 

Recommender systems methods are highlighted in Section 2. 

Optimization of recommender systems are given in section 3. 

Experiments are detailed in section 4. Solution establishment 

is presented in section 5. Section 6 presents discussion of the 

research work. Finally, section 7 concludes the article and 

highlights the research perspectives. 

 

 

2. METHODS OF RECOMMENDER SYSTEM: A 

LITERATURE REVIEW 

 

Recommender systems are classified according to the used 

approach to estimate missing scores.  

CB approaches: The user will be given r Recommender 

systems are classified according to the used approach to 

estimate missing scores.  

• CB approaches: they recommend items based on their 

attributes and features, matching them with user preferences. 

It relies on item profiles and user profiles constructed from 

explicit or implicit feedback. 

Spotify’s recommendation system employs content-based 

filtering by analyzing the audio features of songs (such as 

tempo, key, and genre) and matching them to users’ listening 

history to suggest music that aligns with their preferences. 

The user will be given recommendations for movies that are 

comparable to those he has previously preferred in terms of the 

degree of similarity between the movies [28-31]. Consider 

example 1 in Table 1, where users rate movies. It shows the 

known scores for each user (in row) and for each movie (in 

column). In the example presented in Table 1, the movies TAG 

and Insidious: The Red Door were rated almost the same by 

John. We also observe that the characteristics of the movies 

TAG and Elemental are very close. The system therefore 

recommends the movie Elemental to John, assigning it the best 

score it has given to the movies TAG and Insidious: The Red 

Door, i.e. 8. 

• Collaborative filtering (CF) approaches: it relies on 

user-item interaction data to make recommendations. It can be 

user-based or item-based, and it identifies patterns and 

similarities between users or items to predict preferences. 

Netflix’s recommendation system utilizes collaborative 

filtering to suggest movies and TV shows based on user 

viewing history and preferences. The system analyzes user 

behavior and similarities with other users to make 

personalized recommendations.  

Movies that previous users with comparable tastes and 

preferences have liked will be suggested to the user [32-36]. 

Let’s go back to example 1 of Table 1. John and Miguel both 

like TAG and Insidious: The Red Door and didn’t like Joy 

Ride; their similar opinions on these movies suggest that in 

general Miguel and John are of the same opinion. So 

Miraculous is a good recommendation for John, since Miguel 

loves her. The system thus assigns to the movie Miraculous, 

for John, the score that Miguel gave to this movie, 9. 

• Hybrid strategies: a fusion of the two methods 

mentioned above [37-41]. They combine multiple 

recommendation approaches to benefit from their strengths 

and mitigate their weaknesses. This can involve integrating 

collaborative filtering, content-based filtering, or other 

techniques. 

YouTube employs a hybrid recommender system that 

incorporates collaborative filtering, content-based filtering, 

and deep learning models. This enables the platform to 

consider both user behavior and video content features for 

more accurate and diverse recommendations.

 

Table 1. Sample data (example 1) 

 
u(c, i) Miraculous TAG Elemental Joy Ride Insidious: The Red Door 

John - 8 - 2 7 

Miguel 9 8 - 3 6 

Sarra 3 5 - 5 - 

Lama 5 3 - 3 3 

John - 8 - 2 7 

 

2.1 CB recommender systems 

 

The objective of CB methods is to identify which catalog 

movies most closely fit the user’s tastes [28-31]. A huge user 

base or extensive system usage history are not necessary for 

this method. Figure 1 illustrates this process. 

An explicit list of each movie’s attributes is the simplest 

approach to define a catalog of movies. One might use the 

genre, authors’ names, publisher, or any other details about a 

book. A list of interests based on the same attributes is used to 

express the user profile.  

There are several ways to gauge how well the elements’ 

qualities match the user’s profile: 

• The Dice index or other similarity measures [42]. 

• The TF-IDF (Term Frequency-Inverse Document 

Frequency) [43]. 
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• Techniques based on the similarity of vector spaces 

(Bayesian approaches [44], decision trees [45], etc.) coupled 

with statistical techniques. 

 

 
 

Figure 1. CB movie recommender systems 

 

CB have the following advantages: 

 

• They recommend similar movies that others have 

liked. 

• In order to provide each user with the most 

appropriate recommendations, they take into account their 

profile. 

• Since lists of keywords are frequently used, matching 

user preferences and movie characteristics is effective for 

many forms of data (textual, quantitative, etc.). 

• Users’ personal information is useless. 

• When a new movie is added to the catalog, there is no 

cold start issue or low density since the preferences of the users 

are considered [46]. 

However, such approaches also have drawbacks: 

• It is impossible to discriminate between movies 

represented by the same collection of keywords. 

• Users who have viewed a lot of movies can be 

problematic because their profiles contain too much 

information that doesn’t fit the qualities of the movies. 

• There is no history when a new user first uses the 

system. 

• User profiles are still challenging to create, and it’s 

also important to consider how a user’s interests have changed 

over time. 

 

2.2 CF recommender systems  

 

Systems built on the CF model generate recommendations 

by comparing a user’s preferences to those of other users. The 

substance of the movies to be recommended is not examined 

or attempted to be understood by such systems. The technique 

involves gathering reviews from numerous users to 

automatically forecast a user’s preferences. The essential 

premise of this strategy is that people who previously enjoyed 

a specific movie would probably continue to enjoy it or 

something quite similar in the future [32-36]. Figure 2 

illustrates this process. 

The idea of collaborative techniques is to foresee users 

perceptions of the various components. The suggestion is 

based on the user’s prior preferences and viewpoints as well 

as on a user similarity metric. The key actions in this strategy 

are: 

• Many user preferences are saved. 

• The user seeking the recommendation belongs to a 

subgroup of people with similar preferences. 

• The preferences for this group are averaged out; 

movies are suggested to users who request recommendations 

using the resultant preference feature. 

 

 
 

Figure 2. CF movie recommender systems 

 

Three different techniques of defining similarity can be 

identified: 

• Item-to-Item approaches are based on how similar 

two movies are to one another. It should be noted that this 

strategy works for a very broad range of users or elements. 

• User-to-User approaches are predicated on user 

similarities. They are not appropriate for a large number of 

users. 

We have already used the User-to-User approach in 

Example 1: Miguel and John have similar opinions; Miguel 

also likes Miraculous, so it is a good recommendation for John. 

Let’s now use the Item-to-Item approach on this same example. 

John and Miguel love TAG and Insidious: The Red Door. This 

suggests that, in general, people who like TAG will also like 

Insidious: The Red Door, so Insidious: The Red Door might 

be recommended to Sarra (who likes TAG).   

Due to their diversity, CF recommender systems are 

consequently based on a variety of methodologies, including: 

• User-to-user methods that consider user similarity or 

neighborhood selection (e.g., algorithms based on 

neighborhood search). 

• The cosine similarity metric, among other things, for 

item-to-item techniques. 
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• Techniques for predicting scores for other approaches 

(Principal Component Analysis [47], matrix factorization [48], 

latent semantic analysis [49], association rules [50], Bayesian 

approaches [51], etc.). 

The benefits of CF recommender systems are as follows: 

• Applying user ratings to assess the utility of products.  

• Locating individuals or groups of individuals whose 

interests coincide with the current user.  

However, such systems also have drawbacks:  

•  It’s challenging to locate users or groups of users 

who are similar.  

• The 𝑈𝑠𝑒𝑟 𝑥 𝐼𝑡𝑒𝑚  matrix’s low density hinders the 

recommendation mechanism.  

• There is also the cold-start issue: a new user’s 

preferences are unknown when they use the system, and no 

one is given credit for him when a new movie is uploaded to 

the catalog. 

• The computation expands linearly in systems with 

many users and things; hence, suitable methods are required. 

• non-diversity: If a user enjoys one Antonio Banderas 

movie, it is not helpful to suggest all of his movies to them. 

 

Amazon.com customizes its online store for each consumer 

using recommendation algorithms. The store drastically alters 

depending on the preferences of the customer, displaying baby 

toys to new parents or programming movies to a software 

developer. Collaborative filtering on movies, also known as 

item-to-item filtering, is the basis of the algorithm used by 

Amazon.com. With this algorithm, the number of movies in 

the catalog is taken into account as well as the number of 

customers. 

 

2.3 Hybrid recommender systems 

 

A hybrid recommender system relies on the logic of 

multiple types of recommendation systems or uses its 

constituent parts [37-40]. By merging CF and CB approaches, 

such a system can make use of both external knowledge and 

movie attributes [52]. Being a blend of methodologies, it 

highlights the benefits of such approaches while minimizing 

their drawbacks (see Figure 3). 

 

 
 

Figure 3. Hybrid recommender system 

 

The term hybrid refers to the historical development of 

recommender systems, which involved the first exploitation of 

specific information sources to produce well-established 

approaches that were later integrated. The goal is to employ as 

many different sources of knowledge as you can, selecting the 

ones that are most pertinent to the work at hand. 

Monolithic refers to a hybridization design where a single 

algorithm incorporates elements of various recommendation 

systems [53-55]. As shown in Figure 4, multiple recommender 

systems contribute to this because the hybrid approach uses 

additional input data that is specific to another recommender 

algorithm or else the input data is upgraded by one technique 

and used by another.  

 

 
 

Figure 4. Monolithic hybrids 

 

This includes, for instance, a CB recommendation system 

that also uses community data to identify movie similarities.  

The other two hybrid strategies demand combining at least 

two different recommendation implementations [55, 56]. As 

shown in Figure 5, parallel hybrid recommender systems 

function independently of one another and generate unique 

suggestion lists based on their input data. Their results are 

merged into a final set of suggestions in a subsequent 

hybridization process. 

 

 
 

Figure 5. Parallelized hybrids 

 

The output of one recommender system becomes a 

component of the input data for the following system when 

many recommender systems are connected in a pipe 

architecture, as shown in Figure 6 [55, 57].  

 

 
 

Figure 6. Pipelined hybrids 

 

Each day, hundreds of millions of tailored 

recommendations are made to customers by Netflix’s 

recommendation engine, named Cinematch, based on an 

analysis of overall movie ratings [58]. 

The Cinematch recommender system automatically 

analyzes cumulative movie scores on a weekly basis using a 

variant of Pearson’s Correlation Coefficient [59] with all other 

movies in order to produce a list of films that are likely to be 

enjoyed. As the user submits their ratings, the online, real-time 
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component of the system performs a multivariate regression 

based on these correlations to produce an individual, 

personalized prediction for each recommendable movie based 

on these scores. In lack of a customized recommendation, the 

overall average of the movie’s scores is used. 

 

 

3. OPTIMIZING RECOMMENDER SYSTEMS 

 

3.1 Movies dataset 

 

GroupLens Research has collected and made available data 

from the MovieLens website http://movielens.org. The first 

dataset, named ratings.csv, of 100004 lines, contains the 

ratings that users have given to movies (see Table 2): 

 

Table 2. Rating sample data 

 
 UserID MovieID Rating Timestamp 

0 1 31 2.5 1260759144 

1 1 1029 3.0 1260759179 

2 1 1029 3.0 1260759182 

3 1 1129 2.0 1260759185 

 

The second dataset, named movies.csv, contains movie 

information, including Title and Genres concatenated in a 

string (see Table 3). 

 

Table 3. Movies sample data (Bennett & Lanning, 2007) 

 
 MovieID Title Genres 

0 1 Toy Stoty (1995) 
Adventure |Animation| 

Children| Comedy| Fantasy 

1 2 Jumanji (1995) 
Adventure| Children| 

Fantasy 

2 3 
Grumpier Old 

Men (1995) 
Comedy| Romance 

3 4 
Waiting to 

Exhale (1995) 
Comedy| Drama| Romance 

 

We will then present the IMDbPY, a Python package for 

retrieving and managing the data of the IMDb (Internet Movie 

Database) package. It contains more characteristics relating to 

movies. This allowed us to build a new dataset containing new 

variables that best characterize the movies. 

 

3.2 Model overview 

 

A recommendation system is a kind of specific form of 

filtering information aimed at presenting the elements likely to 

interest the user. Setting up a recommender generally requires 

3 steps:  

 

• Data collection: in the basic case, these are either the 

characteristics of movies or users, or the rating submitted 

by the user to a which is generally presented in the form 

of a rating out of 5 stars or binary events such as like and 

follow.  

• Model building: In general, it is a matrix that is often 

presented in the form of a table which crosses the users 

and the movies according to the main event. 

• Extract recommendations: recommendations are 

extracted from models and then found for a user, other 

users, or the movies that are most comparable to them by 

applying filters or processing. 

 

3.3 Optimizing CF movie recommender system 

 

Ensuring diversity and novelty in recommendations is 

crucial for enhancing user satisfaction in a recommender 

system. Users often appreciate a system that not only suggests 

items they are likely to enjoy but also introduces them to new 

and diverse content. 

In optimizing CB recommendation systems, the features 

used to represent items can be diversified. For example, if 

recommending movies, features could include genre, director, 

actors, and more. This allows the system to recommend items 

that differ in various aspects, promoting diversity. 

CF has been modified to ensure that user profiles are diverse. 

It has been achieved by incorporating diversity measures in the 

recommendation algorithm. 

Optimizing hybrid models that combine both CB and CF 

techniques leverage the strengths of each optimizing approach. 

This leads to recommendations that are not only accurate but 

also diverse, as they consider both item features and user 

preferences. 

We will also incorporate exploration-exploitation strategies 

to balance between recommending items that are similar to the 

user’s known preferences (exploitation) and suggesting 

movies that are new or less explored (exploration). This helps 

in introducing novelty while still providing familiar 

recommendations. 

By employing these strategies, recommender systems strike 

a balance between accuracy and diversity, providing users 

with recommendations that are not only personalized but also 

introduce them to novel and diverse items. This, in turn, 

contributes to a more satisfying user experience. 

 

3.3.1 Memory-based CF 

The two primary categories of memory-based CF 

techniques are item-item filtering and user-item filtering [60], 

[61]. A user-item filter will look up a certain user’s ratings to 

locate people who are similar to that person and then suggest 

movies that those similar users enjoyed (Users who are similar 

to you, also liked ...). Item-item filtering, in contrast, takes a 

movie, identifies users who enjoy it, and identifies more 

movies that those users or similar users also enjoy. It accepts 

something and outputs something else, like recommendations 

(Users who liked this also liked…). 

In both cases, and as a first step, we create the User Item 

matrix from all the data where we will represent the crossing 

of users and movies through the ratings. Since in such a case 

we have to go through cross-validation, we will obtain two 

User Item matrices: Train and Test. The first will contain 75% 

of the ratings, while the second will have 25% of the latter. 

Figure 7 shows an example of User × Item matrix.
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Figure 7. Sample of User × Item matrix 

 

We must determine similarity and build a similarity matrix 

after building the User Item matrix. 

In the item-item scenario, the similarity values between two 

movies i and j are calculated by looking at all the users who 

have rated the two movies (see Figure 8). 

 

 
 

Figure 8. Item × Item matrix 

 

By looking at all the movies that the two users score, the 

user-item scenario compares the similarity values between two 

users i and j (see Figure 9). 

 

 
 

Figure 9. User × Item matrix 

 

To do this, we used the following two metrics on the set of 

training data (Train) for the two user-item and item-item cases: 

1) Cosine similarity: A measurement that determines 

the cosine of the angle between two vectors [62, 63]. Since we 

take into account both the angle between the movies as well as 

the relevance of each word count (TF-IDF), this metric can be 

thought of as a comparison between things in a normalized 

space (see Figure 10). We must solve Eq. (1). 

 

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (1) 

 

𝑐𝑜𝑠𝜃 =
�⃗� ⋅ �⃗⃗�

∥ �⃗� ∥∥ �⃗⃗� ∥
 (2) 

 

 
 

Figure 10. Cosine similarity 

 

2) City Block distance: This is a measure of distance 

that is calculated as the average difference between 

dimensions. In most cases, this distance produces results close 

to those obtained by the simple Euclidean distance [64]. 

However, with this measure, the effect of a single large 

difference (outliers) is mitigated (because it is not squared).    

The City Block distance between vectors u and v is given in 

the Eq. (3). 

 

𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑢, 𝑣) = ∑  

𝑁

𝑖

|𝑢𝑖 − 𝑣𝑖| (3) 

 

3.3.2 Model-based CF 

The second subtype of CF, named model-based CF, will 

now be used. It entails using the factorization matrix, which is 

an unsupervised learning technique for dimensionality 

reduction and decomposition of hidden variables [65]. By 

multiplying the user and item latent variable matrices, the 

factorization matrix aims to predict unknown ratings by 

learning hidden user preferences and hidden object features 

from known ratings in our dataset. The implementation of 

recommender systems uses several dimensionality reduction 

approaches. In conducting our study, we employed: 

1) Singular Value Decomposition (SVD): this method 

entails lowering the dimensionality of the User × Item matrix 

that was previously computed [66]. 

Let R be the User × Item matrix of size m × n (m: number 

of users, n: number of movies), and k: the dimension of the 
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latent character space. The general SVD equation is given by 

Eq. (4). 

 

𝑅 = 𝑈𝑆𝑉𝑇 (4) 

 

where:  

• 𝑈 (𝑚 ×  𝑘) is the array of latent characters for users. 

• 𝑉 (𝑛 ×  𝑘) is the array of latent characters for movies. 

The diagonal matrix of size k × k with real positive values. 

By multiplying the three matrices, we can make the prediction. 

2) Stochastic Gradient Descent (SGD): we wish to 

estimate two matrices, 𝑃 (𝑚 ×  𝑘) of latent characters for 

users and 𝑄 (𝑛 ×  𝑘) of latent characters for movies [67]. The 

unknown ratings can then be predicted by multiplying the P 

and Q matrices after the estimation of P and Q. 

To update P and Q, we can use the SGD where we iterate 

each observation in the train to update P and Q as we go (see 

Eq. (5) and Eq. (6)). 

To update P and Q, we can use the SGD where we iterate 

each observation in the train to update P and Q as we go (see 

Eq. (5) and Eq. (6)). 

To update P and Q, we can use the SGD where we iterate 

each observation in the train to update P and Q as we go (see 

Eq. (5) and Eq. (6)). 

 

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (5) 

 

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (6) 

 

where: 

- γ is the learning speed.  

- λ is the regularization term. 

- e is the error which is the difference between the actual 

rating and the predicted rating. 

The SGD model is based on several steps defined 

beforehand. 

3) Alternating Least Squares (ALS): our goal with 

ALS is to estimate P and Q. Then, by multiplying the transpose 

of the P matrix by the Q matrix, we may estimate the unknown 

ratings after estimating P and Q [68].

 

Table 4. presents the strengths and weaknesses of memory-based and model-based approaches 

 
 Strengths Weaknesses 

Memory-Based 

Approaches 

- Simplicity and Intuitiveness: Memory-based methods are 

often straightforward to understand and implement. They 

rely on the similarity between instances, making them 

intuitive for many applications. 

- No Training Phase: Memory-based systems do not require 

a separate training phase. They immediately adapt to new 

data, making them suitable for dynamic environments 

where the data distribution can change over time. 

- Transparency: The reasoning behind the 

recommendations is transparent since it's based on the 

similarity of instances. Users can easily understand why a 

certain recommendation was made. 

- Handling Cold Start Problem: Memory-based methods 

can handle the cold start problem well, as they don't rely on 

pre-existing models. They can provide recommendations 

for new items based on their features and similarity to 

existing items 

- Scalability: Memory-based approaches may 

struggle with scalability as the size of the dataset 

increases. The computation cost of finding 

similarities among all data points can become 

prohibitive. 

- Sparsity: In sparse datasets, where users' 

interactions with items are limited, finding 

meaningful similarities becomes challenging. This 

can result in poor recommendations, especially for 

less popular items. 

- Lack of Personalization: Memory-based systems 

may not capture complex patterns or individual 

preferences well, leading to less personalized 

recommendations compared to model-based 

approaches 

Model-Based 

Approaches 

- Scalability: Model-based approaches, particularly those 

using machine learning models, can handle large datasets 

more efficiently. They often scale better as the data size 

grows. 

- Personalization: Model-based methods can capture 

complex patterns and individual preferences better than 

memory-based methods. This results in more personalized 

recommendations, especially in scenarios with diverse user 

preferences. 

- Feature Learning: Model-based approaches can 

automatically learn relevant features and representations 

from the data, allowing them to adapt to the underlying 

patterns without manual feature engineering. 

- Handling Sparsity: Model-based methods can perform 

better in sparse datasets by learning latent factors and 

relationships between users and items, effectively dealing 

with the sparsity problem 

- Complexity: Model-based methods are often more 

complex to implement and may require a dedicated 

training phase. The need for optimization and 

hyperparameter tuning can add to the complexity. 

- Cold Start Problem: Model-based systems may 

struggle with the cold start problem, especially for 

new items or users, as they rely on historical data for 

training 

- Lack of Transparency: The inner workings of 

complex models may be less transparent compared to 

memory-based approaches. This lack of transparency 

can be a drawback in applications where 

interpretability is crucial 

According to Table 4, we adopt the following optimization 

scenario: 

 

1) Choose Memory-Based Approaches When: 

• Transparency and simplicity are priorities. 

• The dataset is not too large, and scalability is not a 

primary concern. 

• Cold start and adaptability to new data are critical. 

2) Choose Model-Based Approaches When: 

• Scalability and handling large datasets are essential  

• Personalization and capturing complex patterns are 

crucial. 

• A training phase can be incorporated, and transparency is 

not a top priority. 
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Ultimately, the choice between memory-based and model-

based approaches depends on the specific requirements and 

constraints of the recommendation system and the 

characteristics of the data it will operate on. 
 

3.3.3 Optimizing CB recommender systems 

Object recommendation or CB is different from CF because 

it is not based on past user behavior. It involves recommending 

objects based on the intrinsic qualities and properties  of the 

object itself and correlating them with the preferences and 

interests of the user. For our case, we will only be interested in 

the correlation of an object with another object. 

The movies.csv dataset admits 3 variables MovieID which 

represents the identifier of  the movie, Title the name of the 

movie and Genres which makes it possible to categorize the 

movies according to their themes knowing that a movie can 

have multiple genders. 

To start, we treated the similarity between the movies based 

only on the Genres variable. This did not seem to us sufficient 

in terms of the degree of similarity, so we thought of using the 

IMDbPY python package to have new variables that best 

characterize the movies in our dataset. The new variables 

added are: Genre, Year, Kind, Director, Cast, Writer, Rating, 

Runtimes, Countries, Languages, and Production companies. 

Figure 11 shows how to import movie data using IMDbPY 

https://github.com/MaximShidlovski23/imdbpy. 

 

 
 

Figure 11. Importing movie data using IMDbPY 

 

 
 

Figure 12. Square matrix 
 

Now that we have the characteristics of all the movies from 

their titles and their IMDB identifiers, we can create our new 

dataset with all the movies and their characteristics.  

Now, the goal is to build a square matrix (l x l: where l is 

the number of movies) that contains the distance between each 

pair of movies in order to determine which things are closest 

to one another and hence share the most similarities (see 

Figure 12). 
 

3.4 Optimizing hybrid recommender systems 
 

After presenting CF and CB, the idea behind this part is to 

create a model that combines the results of the two previous 

methods. In this part we tried to combine between the 

similarity scores of the movies (compared to a certain movie) 

obtained by the two methods: 

CF and CB. 

4. EXPERIMENTS 

 

4.1 Optimizing CF recommender systems 

 

One must use an evaluation metric to gauge the precision of 

the anticipated estimations in order to evaluate the similarity. 

The Root Mean Square Error (RMSE), one of the two primary 

performance measures for a regression model, is one of the 

most widely used, despite the fact that there are many more. It 

determines the usual discrepancy between predicted values 

and actual values [69]. It provides an estimate of how well the 

model can forecast the required quantity. It is given by Eq. (7). 

 

𝑅𝑀𝑆𝐸 = √
∑  𝑁

𝑖=1 (𝑥𝑖 − �̂�𝑖)
2

𝑁
 (7) 

 

where: 

N is the number of non-missing data points. 

𝑥𝑖 is the actual observations time series. 

 �̂�𝑖  is the estimated time series.  

The similarity results are given in Table 5. 

 

Table 5. Similarity results 

 
 Cosine Similarity City Block Similarity 

Item-based CF 1.50327465213 1.55417757528 

User-based CF 1.49776385250 1.51726541940 

 

We can deduce after observing the results that the best 

model is the one with the smallest value for RMSE. For our 

case it is user-item for the Cosine metric.  

As a conclusion, we can state that memory-based models 

are simple to use and generate forecasts with acceptable 

accuracy. Since this sort of model evaluates the correlation 

between all users and things at each time, it is not scalable, i.e., 

it is not useful in a situation of a huge database. As a result, it 

does not address the issue of cold start [70], which arises when 

we begin with a new person or object about which we do not 

have sufficient knowledge.  

To answer the scalability problem, we create Model Based 

models that we will deal with in the next section. And to 

address the problem of cold start, we use the Content based 

recommendation that we will also see later.  

We calculated in Table 6 the performance with RMSE 

between the predicted matrix and the test matrix. 

 

Table 6. Performance with RMSE between the predicted and 

the test matrices 

 
  RMSE 

SVD 

k=50 1.50142530774 

k=75 1.48097179306 

k=80 1.47721123270 

k=100 1.46997911037 

k=110 1.46779703654 

k=125 1.47084637082 

k=150 1.47754794975 

SGD - 1.50060377979 

ALS 
Epoch 1/2 1.054704 

Epoch 2/2 0.799782 

 

For the SVD technique, the prediction error measured with 

RMSE is 1.47, a smaller value than for the Memory based 

models, therefore a better performance. It should also be noted 
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that SVD takes considerably less time to run than Memory-

based models. 

Such a result of the RMSE, is influenced by the number of 

latent variables k, an important parameter of the SVD model. 

We therefore executed it by modifying each time the values of 

k to realize at the end that k = 100 is the optimal number of 

latent variables. So, for the performance measurement with 

RMSE (via the SGD technique), we calculate at each step the 

respective RMSE (see Figure 13). To obtain the error of the 

whole model, we calculate the average of the RMSEs at all 

stages (RMSE=1.50060377979). 

The RMSE value obtained is higher than that obtained with 

SVD but remains better than the Memory based models. We 

did not limit ourselves to the final RMSE value, so we 

represented the error as a function of the number of steps 

previously set for the training and validation data. We notice 

that the two curves converge and the value of RMSE decreases 

with each new step. 

 

 
 

Figure 13. SGD learning curve 

 

As the old model-based methods dealt with, we calculated 

the RMSE for the ALS model. As for SVD, ALS admits a 

definite number of steps through which the RMS decreases 

until it converges. In the case of our model, although the 

execution of ALS takes more time than SGD, we limited 

ourselves to 2 steps of the algorithm. 

We notice that this error value for ALS is the best among all 

the other methods tested.  

We can conclude that the best Collaborative Filtering model 

is ALS. 

We created the User x Item recommendation matrix on our 

complete dataset after deciding that ALS was the best model.  

To better look at the effectiveness of our model, we have 

implemented a set of functions that allow us to make the 

recommendation: 

• Recommendation of movies for a given user: we seek 

to recommend to a user gives an example of movies that 

may interest him while associating each the predicted 

ratings. 

• Detect users similar to a given user: We want to return 

users similar to a given use with the correlation between 

them. 

• Estimate the rating from a given user and movie. 

• Calculation of correlations: We have, in addition to the 

recommendations and the estimation of the ratings 

attributed to the movies, implemented functions that 

calculate the correlation between two users, two movies, 

and between a user and a movie. 

 

4.2 Optimizing CF recommender systems 

 

Let’s look at the scenario where we want to compare movies 

based on the Genre variable (romantic, adventure, children, 

etc.). In our current dataset, the Gender variable is written in 

the form: first we must convert the Genre column into a matrix 

X containing 0 or 1: such that the rows of the matrix represent 

the movies (the movies) and the columns represent all the 

different types that we have in our dataset, and therefore X[i, 

j] = 1 if among the genres of the ith movie, there is jth Genre 

(see Tables 7 and 8). 

We used the vectorizer () function of the Python scikit-learn 

package to produce this matrix.

 

Table 7. Movie features 
 

MovieID Title Genre Year Writer Director Cast Rating Runtimes Countries Language 

0         1 

Toy 

Story 

(1995) 

Animation, 

Adventure, 

Comedy, 

Family, 

Fantasy 

1995 

John Lasseter, 

Pete Docter, 

Andrew 

Stanton, Joe 

R. 

John 

Lasseter 

Tom 

Hanks, 

Tim 

Alien, 

Don 

Rickles, 

Jim 

Vamey, 

Wal. 

8.3 81 USA English 

Table 8. Genre matrix 
 

Item Comedy Animation Children Family 

1 1 0 1 0 

2 0 1 0 0 

3 1 1 1 0 

4 0 0 0 1 

5 1 0 0 1 

 

Now the matrix we desired has been constructed, it is time 

to decide on a metric to determine how similar two objects are. 

There are many metrics to use when comparing two objects; 

in this instance, we choose cosine similarity. We ultimately get 

at our matrix in Table 9 after applying the cosine similarity 

metric, which calculates the similarity degree between all pairs 

of entries. 

Several types of recommendations were proposed:  

1) Recommendation based on the Gender variable: 

After obtaining the similarity matrix, for each movie we 

retrieve the indices of the movies that are the most similar to 

our selected one: the greater the cosine similarity metric, the 

greater the two movies are similar. Two movies are perfectly 

identical if cosine similarity=1. Let’s test our function on the 

first movie: MovieID=1. 

 

#data.query(’MovieID==1|MovieID==2090| 

MovieID==2355 | MovieID==1031 | MovieID==1030’) 
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Table 9. Sample of similarities between all movie pairs 

 

 0 1 2 3 4 5 6 7 8 9 … 889 

0 1 0.600000 0.316228 0.258199 0.516398 0 0.316228 0.547723 0 0.259199  0.316228 

1 0.600000 1 0 0 0.258199 0.447214 0 0.365148 0.516398 0.774597  0.316228 

2 0.316228 0 1 0.816497 0.816497  0.500000 0.577350 0 0  0.500000 

3 0.258199 0 0.816497 1 0.666667 0.288675 0.816497 0.707107 0 0  0.816497 

4 0.516398 0.258199 0.816497 0.666667 1 0 0.408248 0.707107 0 0  0.408248 

5 0 0.447214 0 0.288675 0 1 0.353553 0.204124 0.866025 0.577350  0.353553 

6 0.316228  0.500000 0.816497 0.408248 0.353553 1 0.577350 0 0  1 

7 0.547723 0.365148 0.577350 0.707107 0.707107 0.204124 0.577350 1 0 0.235702  0.577350 

8 0 0.516398 0 0 0 0.866025 0 0 1 0.235702  0.577350 

9 0.258199 0.774597 0 0 0 0.577350 0 0.235702 0.666667 1  0 

10 0.258199 0 0.816497 1 0.666667 0.288675 0.816497 0.707107 0 0  0.816497 

11 0.516398 0.258199 0.408248 0.333333 0.333333  0.408248 0.235702 0 0  0.408248 

12 0.600000 0.400000 0 0.259199 0.258199 0.223607 0.316228 0.547723 0 0.258199  0.316228 

The function returns movies classified according to the 

order of similarity. In our example, the function tells us that 

the movies closest to the MovieID=1 in terms of Genre are: 

2090, 2355, 1031, and 1030.  

Let’s check this in Table 10. We can see that the obtained 

result is very relevant, since the most similar movies to Toy 

Story movie is indeed The Rescuers (1977) movie as long as 

they are identical in terms of Genre. 

2) Recommendation based on writer variable: We do 

the same thing as we did on the Gender variable. 

 

#data.query(’MovieID==1|MovieID==2355| 

MovieID==1604’ )[[’MovieID’,’title’,’writer’]] ) 

 

Let’s check this in Table 11. 

This result is very relevant since we notice that the movie 

Bug’s Life which has the MovieID=2355 has three writings in 

common with the Toy Story movie on which we did our 

research. 

3) Recommendation based on the director variable: 

We apply the same function as before we get:  

 

#(data.query(’MovieID==1|MovieID==2355’ ))[[’MovieID’,

’title’,’director’]] 

 

Let’s check this in Table 12. 

Bug’s Life and Toy Story movies both have John Lasseter 

as director. 

4) Recommendation based on the variable 

Production companies: We apply the same function as before 

we obtain: 

 

#data.query(’MovieID==1|MovieID==2355| 

MovieID==1020’))[[’MovieID’,’title’,’Production 

Companies’]] 

 

Let’s check this in Table 13. 

Bug’s Life and Toy Story movies have exactly the same 

Production Companies, which proves that our results are very 

relevant. According to all these results, we notice that the 

movie with ID=2355 appears on all the results, as a movie very 

similar to our selected movie.  

5) General recommendation: The idea here is to 

combine all the recommendations made previously, to deduce 

a final recommendation that will be even more efficient. For 

this, for each movie for which we want to search for similar 

movies, we have applied a function that creates a DataFrame 

that contains all the MovieID with their scores (of similarity 

with respect to the selected movie) for each recommendation.   

Table 14 presents an example of the obtained result. 

In our case we can conclude that MovieID=2355 is the most 

similar to MovieID=1, in terms of Genre, Writer, Director, 

Countries, and Production Companies, since it has a total score 

of 4.37. This confirms our remark that we made earlier. 

 

4.3 Optimizing hybrid recommender systems 

 

To illustrate our idea, we take as an example the case where 

we want to retrieve the indices of similar movies to 

MovieID=1, by combining CF and CB based on Gender. We 

get the results shown in Table 15. Based on this result, one 

could conclude that MovieID=4886 is very similar to 

MovieID=1. 

Table 10. Closest movies to the MovieID=1 in terms of Genre 

 
 MovieID Title Genre Year Writer 

0 1 Toy Story (1995) 
Animation, Adventure, Comedy, Family, 

Fantasy 
1995 John Lasseter, Pete Docter 

754 1030 Pete’s Dragon (1977) 
Animation, Adventure, Comedy, Family, 

Fantasy, Musical 
1977 Malcolm 

755 1031 
Bedknobs and Broomsticks 

(1971) 

Animation, Adventure, Comedy, Family, 

Fantasy, Musical 
1971 Ralph Wright, Ted Berman 

1488 2090 The Rescuers (1977) 
Animation, Adventure, Comedy, Family, 

Fantasy 
1977 Margery 

1688 2355 A Bug’s Life (1998) 
Animation, Adventure, Comedy, Family, 

Fantasy 
1998 

John Lasseter, An- drew 

Stanton 
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Table 11. Closest movies to the MovieID=1 in terms of Writer 

 
 MovieID Title Writer 

0 1 Toy Story (1995) 
John Lasseter, Pete Docter, Andrew Stanton, Joe Ranft, Joss Whedon, Andrew Stanton, Joel 

Cohen, Alec Sokolow 

1150 1604 
Money Talks 

(1997) 
Joel Cohen, Alec Sokolow 

1688 2355 
A Bug’s Life 

(1998) 
John Lasseter, Andrew Stanton, Joe Ranft, Andrew Stanton, Don McEnery, Bob Shaw 

 

Table 12. Closest movies to the MovieID=1 in terms of Director 

 
 MovieID Title Director 

0 1 Toy Story (1995) John Lasseter 

1688 2355 A Bug’s Life (1998) John Lasseter, Andrew Stanton 

 

Table 13. Closest movies to the MovieID=1 in terms of Production Companies 

 
 MovieID Title Production Companies 

0 1 Toy Story (1995) Pixar Animation Studios, Walt Disney Pictures 

745 1020 Money Talks (1997) Walt Disney Pictures 

1688 2355 A Bug’s Life (1998) Pixar Animation Studios, Walt Disney Pictures 

 

Table 14. General recommendation 

 
Score_Genre MovieID Score_Writer Score_Director Score_Countries Score_Production_Companies Score_All Score_Genre 

1 1 2355 0.67082 0.707107 1.0 1 4.377927 

24 0.8 1282 0 0 1.0 0.707107 2.507107 

73 0.670820 1020 0 0 1.0 0.707107 2.377927 

11 0.845154 1566 0 0 1.0 0.5 2.345154 

 

Table 15. Indices of similar movies to MovieID=1 by combining CF and CB based solely on Gender 

 
 Score_CB MovieID Score_CF Score_All 

5 1.0 4886 0.983677 1.983677 

4 1.0 3114 0.982578 1.982578 

0 1.0 2294 0.962589 1.962589 

8 1.0 136016 0.938667 1.938667 

The applied optimizations enable recommender systems to 

provide meaningful and personalized suggestions, even in 

scenarios with limited historical interaction data. The 

adaptability of these approaches ensures that 

recommendations become increasingly accurate and tailored 

as the system learns from user feedback and interactions over 

time. In addressing the cold start problem, CB approaches 

demonstrate effectiveness by leveraging item features and, in 

some cases, user-provided information. While ALS models 

have been successful in CF scenarios, they face challenges 

when dealing with sparse data and new items or users.  

The choice between CB approaches and CF models like 

ALS depends on the specific characteristics of the 

recommendation scenario, including the availability of 

historical data and the nature of the items or users involved.  

The proposed optimal hybrid approach combines the 

strengths of both methods and it provides a robust solution, 

ensuring effective recommendations in diverse situations. 

 

 

5. SOLUTION’S ESTABLISHMENT 

 

The different steps of the solution’s establishment are as 

follows:  

• Step 1 - Load and parse the data (RDD creation) (see 

Figure 14). 

• Step 2 - CF: we used the Spark MLlib library which 

contains the implementation of the CF method using the 

ALS method.  

• Step 3 - Focus recommendation on lower rated movies: 

one of the big problems with recommender systems is 

recommending always the 20% of the base that represents 

the most popular movies. Since they are the the more rated, 

they will be the most correlated with the other movies. 

• Step 4 - Create a new user with ratings and merge this new 

RDD with the old database: we used this function to add 

users to the dataset, or to update the dataset notes if we 

have a new review event. 

• Step 5: For a given user, we displayed the five movies 

most likely to please him (among the movies that have 

never rated). We used this function in the application to 

generate recommendations for users. 

• Step 6: For a given user and a given movie, we estimated 

the rating and then compare with the real note. We used 

this function in the application to display a user on an 

establishment page, the predicted rating thanks to our 

model, in order to encourage him to give his own rating.
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Figure 14. Resilient distributed dataset creation 

 

 

6. DISCUSSION 

 

Model-based CF approaches address data sparsity by 

leveraging mathematical models to infer latent factors that 

capture the underlying patterns in user-item interactions. 

These methods aim to overcome the challenges posed by 

sparse datasets, where users have interacted with only a small 

fraction of the available items. While model-based CF 

approaches offer advantages in handling data sparsity, they 

also have some limitations. 

Matrix factorization techniques, such as SVD or ALS, 

decompose the user-item interaction matrix into latent factors. 

By representing users and items in a lower-dimensional latent 

space, these models can capture hidden patterns and 

relationships. These techniques are effective in handling data 

sparsity because it enables the model to fill in missing entries 

in the user-item interaction matrix. The inferred latent factors 

help predict how a user would interact with unrated items 

based on their preferences and the characteristics of those 

items. 

Regularization also helps control the complexity of the 

model, reducing the risk of fitting noise in sparse datasets. It 

encourages the model to generalize well to unseen data, 

improving its ability to make accurate predictions for items 

with limited interactions. 

In conclusion, model-based CF approaches effectively 

address data sparsity by leveraging mathematical models and 

regularization techniques. However, they are not immune to 

limitations, including challenges in handling the cold start 

problem and sensitivity to hyperparameters. Striking a balance 

between model complexity and interpretability is crucial in 

designing effective and scalable model-based CF systems for 

recommendation tasks. 

 

 

7. CONCLUSIONS 

 

Integrating different recommendation techniques 

seamlessly is not always straightforward. Combining CF and 

CB requires careful consideration of how these components 

interact, and the optimization process might be intricate.  

For memory-based CF, the models generate good results, 

but they do not solve the problems of Cold Start -no 

information on users and movies-, sparsity, and scalability. For 

model-based CF, they solved the sparsity problem. 

Indeed, hybrid recommender systems often rely on CF 

methods, which can face difficulties in handling sparse 

datasets. Limited user-item interactions make it challenging to 

accurately infer user preferences and item similarities. 

Moreover, the cold start problem persists in hybrid systems, 

particularly for new users or items. CB approach helps in 

recommending new items, but the lack of historical interaction 

data for CF can limit the system’s ability to provide 

personalized suggestions. 

The interpretability of hybrid models can also be limited. As 

the system combines CF and CB techniques, understanding the 

reasoning behind specific recommendations becomes 

challenging, potentially affecting user trust and satisfaction.  

Addressing these limitations and challenges requires a holistic 

approach, involving a careful balance between model 

complexity, scalability, adaptability, and user satisfaction. 

Regular monitoring, updating models based on user feedback, 

and experimenting with different algorithms and features are 

essential for optimizing hybrid movie recommender systems 

effectively. These two axes open on our future research work. 

This open on our future research work. 
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