
Towards Optimizing Hybrid Movie Recommender Systems

Hassan A. Khalil

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Corresponding Author Email: h.a.khalil@zu.edu.eg

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380116 ABSTRACT

Received: 26 September 2023

Revised: 2 December 2023

Accepted: 8 January 2024

Available online: 29 February 2024

Research in movie recommendation systems addresses several specific challenges to

enhance the accuracy, relevance, and user satisfaction of the recommendations. Some of

the key challenges include sparsity of data and cold start for new movies. Integrating

collaborative filtering and content-based filtering in a seamless and effective manner also

poses another key challenge. This article explores strategies for optimizing hybrid

recommendation systems to leverage the strengths of each approach. By addressing these

three key challenges, we aim to advance the state of movie recommendation systems,

providing more effective and user-centric solutions that cater to the diverse preferences and

needs of movie enthusiasts. Similarity-based models (memory-based) combined with

matrix factorization-based models (model-based) were used to generate an optimal hybrid

movie recommendation model. We evaluated the models using a large dataset of movies

and we showed that the proposed model is both efficient and scalable.

Keywords:

content-based recommender systems,

collaborative filtering recommender

systems, hybrid recommender systems, root

mean square error, matrix factorization,

resilient distributed dataset, spark

1. INTRODUCTION

In the digital age, where information is abundant and easily

accessible, individuals often face a challenge commonly

known as "information overload." This phenomenon occurs

when the volume of available information surpasses an

individual's capacity to process it effectively.

As a result, users may find it overwhelming to navigate

through the vast sea of data to discover content that aligns with

their preferences and interests. Recommendation systems play

a crucial role in addressing this challenge by leveraging

algorithms and data analysis to provide personalized

suggestions to users [1, 2]. These systems are designed to

understand user behavior, preferences, and patterns based on

their interactions with digital platforms. Whether it’s

streaming services, e-commerce websites, social media

platforms, or news outlets, recommendation systems help

users discover relevant content amidst the abundance of

options.

In essence, recommendation systems serve as navigational

aids in the vast digital landscape, offering users a curated and

personalized pathway through the abundance of available data.

As data overload continues to be a defining characteristic of

the digital age, the role of recommendation systems becomes

increasingly crucial in providing users with meaningful,

relevant, and personalized experiences across various online

domains.

Many different fields have studied recommender systems:

e-commerce [3-6], web search [7-9], information retrieval [10,

11], job boards [12-19], movie ratings [20-23], etc.

In the majority of movie recommender systems, a movie’s

usefulness is often stated by a score that reflects how a

particular user felt about a movie in question [24-27].

Predicting a score for movies that are not yet reviewed by users

can be one of the greatest challenges in building movie

recommender system.

Due to the large number of movies and users in the system,

it can be difficult for each user to see all movies and to rate

every one individually. The user can be guided to the movies

with the highest estimated ratings when it is possible to

estimate scores for movies that haven’t yet been evaluated.

The three most popular approaches are content-based (CB)

[28-31], collaborative filtering (CF) [32-36], and hybrid

(which combine the two prior approaches) [37-41].

Optimizing movie recommender systems offers tangible

benefits to users, the industry, and the academic community.

It enhances user experiences, contributes to industry growth,

fosters academic collaboration and innovation, and addresses

ethical considerations, ultimately shaping the landscape of

personalized content recommendations.

For streaming platforms and entertainment services,

optimized recommender systems contribute to increased user

engagement and retention. By offering compelling movie

recommendations, these platforms can keep users actively

involved, leading to longer subscription periods and higher

customer loyalty.

From industry players’ side, they can leverage optimized

recommender systems to enhance personalized advertising.

By understanding user preferences, the system can deliver

targeted ads, leading to higher click-through rates and more

effective advertising campaigns.

From users’ side, optimized hybrid recommender systems

can encourage users to explore new movie genres they might

not have considered. This not only broadens users' cinematic

horizons but also supports a diverse and inclusive

entertainment ecosystem.

Revue d'Intelligence Artificielle
Vol. 38, No. 1, February, 2024, pp. 159-173

Journal homepage: http://iieta.org/journals/ria

159

https://orcid.org/0000-0002-7903-6377
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380116&domain=pdf
https://crossmark.crossref.org/dialog/?doi=RIA_38.01_16&domain=pdf

Research in optimizing hybrid movie recommender systems

contributes also to the academic community by advancing

knowledge in the fields of machine learning (ML), data

science, and recommendation systems. It provides insights

into novel algorithms, optimization techniques, and evaluation

methodologies, contributing to the academic discourse and

shaping the future of recommendation systems.

The scope of this paper extends beyond movie

recommendation systems to encompass a broader examination

of recommender systems in various domains within the digital

landscape. While movie recommendation systems may be

used as illustrative examples, the focus is not limited to this

specific application.

The main contributions of this article are:

• Exploring strategies for optimizing hybrid

recommendation systems to leverage the strengths of each

approach used in the combination.

• Providing more effective and user-centric solutions

that cater to the diverse preferences and needs of movie

enthusiasts.

• Optimizing recommender models based on

similarities (memory-based) and models based on matrix

factorization (model-based).

• Modeling an efficient and scalable hybrid movie

recommendation system.

The remainder of this paper consists of seven sections.

Recommender systems methods are highlighted in Section 2.

Optimization of recommender systems are given in section 3.

Experiments are detailed in section 4. Solution establishment

is presented in section 5. Section 6 presents discussion of the

research work. Finally, section 7 concludes the article and

highlights the research perspectives.

2. METHODS OF RECOMMENDER SYSTEM: A

LITERATURE REVIEW

Recommender systems are classified according to the used

approach to estimate missing scores.

CB approaches: The user will be given r Recommender

systems are classified according to the used approach to

estimate missing scores.

• CB approaches: they recommend items based on their

attributes and features, matching them with user preferences.

It relies on item profiles and user profiles constructed from

explicit or implicit feedback.

Spotify’s recommendation system employs content-based

filtering by analyzing the audio features of songs (such as

tempo, key, and genre) and matching them to users’ listening

history to suggest music that aligns with their preferences.

The user will be given recommendations for movies that are

comparable to those he has previously preferred in terms of the

degree of similarity between the movies [28-31]. Consider

example 1 in Table 1, where users rate movies. It shows the

known scores for each user (in row) and for each movie (in

column). In the example presented in Table 1, the movies TAG

and Insidious: The Red Door were rated almost the same by

John. We also observe that the characteristics of the movies

TAG and Elemental are very close. The system therefore

recommends the movie Elemental to John, assigning it the best

score it has given to the movies TAG and Insidious: The Red

Door, i.e. 8.

• Collaborative filtering (CF) approaches: it relies on

user-item interaction data to make recommendations. It can be

user-based or item-based, and it identifies patterns and

similarities between users or items to predict preferences.

Netflix’s recommendation system utilizes collaborative

filtering to suggest movies and TV shows based on user

viewing history and preferences. The system analyzes user

behavior and similarities with other users to make

personalized recommendations.

Movies that previous users with comparable tastes and

preferences have liked will be suggested to the user [32-36].

Let’s go back to example 1 of Table 1. John and Miguel both

like TAG and Insidious: The Red Door and didn’t like Joy

Ride; their similar opinions on these movies suggest that in

general Miguel and John are of the same opinion. So

Miraculous is a good recommendation for John, since Miguel

loves her. The system thus assigns to the movie Miraculous,

for John, the score that Miguel gave to this movie, 9.

• Hybrid strategies: a fusion of the two methods

mentioned above [37-41]. They combine multiple

recommendation approaches to benefit from their strengths

and mitigate their weaknesses. This can involve integrating

collaborative filtering, content-based filtering, or other

techniques.

YouTube employs a hybrid recommender system that

incorporates collaborative filtering, content-based filtering,

and deep learning models. This enables the platform to

consider both user behavior and video content features for

more accurate and diverse recommendations.

Table 1. Sample data (example 1)

u(c, i) Miraculous TAG Elemental Joy Ride Insidious: The Red Door

John - 8 - 2 7

Miguel 9 8 - 3 6

Sarra 3 5 - 5 -

Lama 5 3 - 3 3

John - 8 - 2 7

2.1 CB recommender systems

The objective of CB methods is to identify which catalog

movies most closely fit the user’s tastes [28-31]. A huge user

base or extensive system usage history are not necessary for

this method. Figure 1 illustrates this process.

An explicit list of each movie’s attributes is the simplest

approach to define a catalog of movies. One might use the

genre, authors’ names, publisher, or any other details about a

book. A list of interests based on the same attributes is used to

express the user profile.

There are several ways to gauge how well the elements’

qualities match the user’s profile:

• The Dice index or other similarity measures [42].

• The TF-IDF (Term Frequency-Inverse Document

Frequency) [43].

160

• Techniques based on the similarity of vector spaces

(Bayesian approaches [44], decision trees [45], etc.) coupled

with statistical techniques.

Figure 1. CB movie recommender systems

CB have the following advantages:

• They recommend similar movies that others have

liked.

• In order to provide each user with the most

appropriate recommendations, they take into account their

profile.

• Since lists of keywords are frequently used, matching

user preferences and movie characteristics is effective for

many forms of data (textual, quantitative, etc.).

• Users’ personal information is useless.

• When a new movie is added to the catalog, there is no

cold start issue or low density since the preferences of the users

are considered [46].

However, such approaches also have drawbacks:

• It is impossible to discriminate between movies

represented by the same collection of keywords.

• Users who have viewed a lot of movies can be

problematic because their profiles contain too much

information that doesn’t fit the qualities of the movies.

• There is no history when a new user first uses the

system.

• User profiles are still challenging to create, and it’s

also important to consider how a user’s interests have changed

over time.

2.2 CF recommender systems

Systems built on the CF model generate recommendations

by comparing a user’s preferences to those of other users. The

substance of the movies to be recommended is not examined

or attempted to be understood by such systems. The technique

involves gathering reviews from numerous users to

automatically forecast a user’s preferences. The essential

premise of this strategy is that people who previously enjoyed

a specific movie would probably continue to enjoy it or

something quite similar in the future [32-36]. Figure 2

illustrates this process.

The idea of collaborative techniques is to foresee users

perceptions of the various components. The suggestion is

based on the user’s prior preferences and viewpoints as well

as on a user similarity metric. The key actions in this strategy

are:

• Many user preferences are saved.

• The user seeking the recommendation belongs to a

subgroup of people with similar preferences.

• The preferences for this group are averaged out;

movies are suggested to users who request recommendations

using the resultant preference feature.

Figure 2. CF movie recommender systems

Three different techniques of defining similarity can be

identified:

• Item-to-Item approaches are based on how similar

two movies are to one another. It should be noted that this

strategy works for a very broad range of users or elements.

• User-to-User approaches are predicated on user

similarities. They are not appropriate for a large number of

users.

We have already used the User-to-User approach in

Example 1: Miguel and John have similar opinions; Miguel

also likes Miraculous, so it is a good recommendation for John.

Let’s now use the Item-to-Item approach on this same example.

John and Miguel love TAG and Insidious: The Red Door. This

suggests that, in general, people who like TAG will also like

Insidious: The Red Door, so Insidious: The Red Door might

be recommended to Sarra (who likes TAG).

Due to their diversity, CF recommender systems are

consequently based on a variety of methodologies, including:

• User-to-user methods that consider user similarity or

neighborhood selection (e.g., algorithms based on

neighborhood search).

• The cosine similarity metric, among other things, for

item-to-item techniques.

161

• Techniques for predicting scores for other approaches

(Principal Component Analysis [47], matrix factorization [48],

latent semantic analysis [49], association rules [50], Bayesian

approaches [51], etc.).

The benefits of CF recommender systems are as follows:

• Applying user ratings to assess the utility of products.

• Locating individuals or groups of individuals whose

interests coincide with the current user.

However, such systems also have drawbacks:

• It’s challenging to locate users or groups of users

who are similar.

• The 𝑈𝑠𝑒𝑟 𝑥 𝐼𝑡𝑒𝑚 matrix’s low density hinders the

recommendation mechanism.

• There is also the cold-start issue: a new user’s

preferences are unknown when they use the system, and no

one is given credit for him when a new movie is uploaded to

the catalog.

• The computation expands linearly in systems with

many users and things; hence, suitable methods are required.

• non-diversity: If a user enjoys one Antonio Banderas

movie, it is not helpful to suggest all of his movies to them.

Amazon.com customizes its online store for each consumer

using recommendation algorithms. The store drastically alters

depending on the preferences of the customer, displaying baby

toys to new parents or programming movies to a software

developer. Collaborative filtering on movies, also known as

item-to-item filtering, is the basis of the algorithm used by

Amazon.com. With this algorithm, the number of movies in

the catalog is taken into account as well as the number of

customers.

2.3 Hybrid recommender systems

A hybrid recommender system relies on the logic of

multiple types of recommendation systems or uses its

constituent parts [37-40]. By merging CF and CB approaches,

such a system can make use of both external knowledge and

movie attributes [52]. Being a blend of methodologies, it

highlights the benefits of such approaches while minimizing

their drawbacks (see Figure 3).

Figure 3. Hybrid recommender system

The term hybrid refers to the historical development of

recommender systems, which involved the first exploitation of

specific information sources to produce well-established

approaches that were later integrated. The goal is to employ as

many different sources of knowledge as you can, selecting the

ones that are most pertinent to the work at hand.

Monolithic refers to a hybridization design where a single

algorithm incorporates elements of various recommendation

systems [53-55]. As shown in Figure 4, multiple recommender

systems contribute to this because the hybrid approach uses

additional input data that is specific to another recommender

algorithm or else the input data is upgraded by one technique

and used by another.

Figure 4. Monolithic hybrids

This includes, for instance, a CB recommendation system

that also uses community data to identify movie similarities.

The other two hybrid strategies demand combining at least

two different recommendation implementations [55, 56]. As

shown in Figure 5, parallel hybrid recommender systems

function independently of one another and generate unique

suggestion lists based on their input data. Their results are

merged into a final set of suggestions in a subsequent

hybridization process.

Figure 5. Parallelized hybrids

The output of one recommender system becomes a

component of the input data for the following system when

many recommender systems are connected in a pipe

architecture, as shown in Figure 6 [55, 57].

Figure 6. Pipelined hybrids

Each day, hundreds of millions of tailored

recommendations are made to customers by Netflix’s

recommendation engine, named Cinematch, based on an

analysis of overall movie ratings [58].

The Cinematch recommender system automatically

analyzes cumulative movie scores on a weekly basis using a

variant of Pearson’s Correlation Coefficient [59] with all other

movies in order to produce a list of films that are likely to be

enjoyed. As the user submits their ratings, the online, real-time

162

component of the system performs a multivariate regression

based on these correlations to produce an individual,

personalized prediction for each recommendable movie based

on these scores. In lack of a customized recommendation, the

overall average of the movie’s scores is used.

3. OPTIMIZING RECOMMENDER SYSTEMS

3.1 Movies dataset

GroupLens Research has collected and made available data

from the MovieLens website http://movielens.org. The first

dataset, named ratings.csv, of 100004 lines, contains the

ratings that users have given to movies (see Table 2):

Table 2. Rating sample data

 UserID MovieID Rating Timestamp

0 1 31 2.5 1260759144

1 1 1029 3.0 1260759179

2 1 1029 3.0 1260759182

3 1 1129 2.0 1260759185

The second dataset, named movies.csv, contains movie

information, including Title and Genres concatenated in a

string (see Table 3).

Table 3. Movies sample data (Bennett & Lanning, 2007)

 MovieID Title Genres

0 1 Toy Stoty (1995)
Adventure |Animation|

Children| Comedy| Fantasy

1 2 Jumanji (1995)
Adventure| Children|

Fantasy

2 3
Grumpier Old

Men (1995)
Comedy| Romance

3 4
Waiting to

Exhale (1995)
Comedy| Drama| Romance

We will then present the IMDbPY, a Python package for

retrieving and managing the data of the IMDb (Internet Movie

Database) package. It contains more characteristics relating to

movies. This allowed us to build a new dataset containing new

variables that best characterize the movies.

3.2 Model overview

A recommendation system is a kind of specific form of

filtering information aimed at presenting the elements likely to

interest the user. Setting up a recommender generally requires

3 steps:

• Data collection: in the basic case, these are either the

characteristics of movies or users, or the rating submitted

by the user to a which is generally presented in the form

of a rating out of 5 stars or binary events such as like and

follow.

• Model building: In general, it is a matrix that is often

presented in the form of a table which crosses the users

and the movies according to the main event.

• Extract recommendations: recommendations are

extracted from models and then found for a user, other

users, or the movies that are most comparable to them by

applying filters or processing.

3.3 Optimizing CF movie recommender system

Ensuring diversity and novelty in recommendations is

crucial for enhancing user satisfaction in a recommender

system. Users often appreciate a system that not only suggests

items they are likely to enjoy but also introduces them to new

and diverse content.

In optimizing CB recommendation systems, the features

used to represent items can be diversified. For example, if

recommending movies, features could include genre, director,

actors, and more. This allows the system to recommend items

that differ in various aspects, promoting diversity.

CF has been modified to ensure that user profiles are diverse.

It has been achieved by incorporating diversity measures in the

recommendation algorithm.

Optimizing hybrid models that combine both CB and CF

techniques leverage the strengths of each optimizing approach.

This leads to recommendations that are not only accurate but

also diverse, as they consider both item features and user

preferences.

We will also incorporate exploration-exploitation strategies

to balance between recommending items that are similar to the

user’s known preferences (exploitation) and suggesting

movies that are new or less explored (exploration). This helps

in introducing novelty while still providing familiar

recommendations.

By employing these strategies, recommender systems strike

a balance between accuracy and diversity, providing users

with recommendations that are not only personalized but also

introduce them to novel and diverse items. This, in turn,

contributes to a more satisfying user experience.

3.3.1 Memory-based CF

The two primary categories of memory-based CF

techniques are item-item filtering and user-item filtering [60],

[61]. A user-item filter will look up a certain user’s ratings to

locate people who are similar to that person and then suggest

movies that those similar users enjoyed (Users who are similar

to you, also liked ...). Item-item filtering, in contrast, takes a

movie, identifies users who enjoy it, and identifies more

movies that those users or similar users also enjoy. It accepts

something and outputs something else, like recommendations

(Users who liked this also liked…).

In both cases, and as a first step, we create the User Item

matrix from all the data where we will represent the crossing

of users and movies through the ratings. Since in such a case

we have to go through cross-validation, we will obtain two

User Item matrices: Train and Test. The first will contain 75%

of the ratings, while the second will have 25% of the latter.

Figure 7 shows an example of User × Item matrix.

163

Figure 7. Sample of User × Item matrix

We must determine similarity and build a similarity matrix

after building the User Item matrix.

In the item-item scenario, the similarity values between two

movies i and j are calculated by looking at all the users who

have rated the two movies (see Figure 8).

Figure 8. Item × Item matrix

By looking at all the movies that the two users score, the

user-item scenario compares the similarity values between two

users i and j (see Figure 9).

Figure 9. User × Item matrix

To do this, we used the following two metrics on the set of

training data (Train) for the two user-item and item-item cases:

1) Cosine similarity: A measurement that determines

the cosine of the angle between two vectors [62, 63]. Since we

take into account both the angle between the movies as well as

the relevance of each word count (TF-IDF), this metric can be

thought of as a comparison between things in a normalized

space (see Figure 10). We must solve Eq. (1).

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (1)

𝑐𝑜𝑠𝜃 =
�⃗� ⋅ �⃗⃗�

∥ �⃗� ∥∥ �⃗⃗� ∥
 (2)

Figure 10. Cosine similarity

2) City Block distance: This is a measure of distance

that is calculated as the average difference between

dimensions. In most cases, this distance produces results close

to those obtained by the simple Euclidean distance [64].

However, with this measure, the effect of a single large

difference (outliers) is mitigated (because it is not squared).

The City Block distance between vectors u and v is given in

the Eq. (3).

𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑢, 𝑣) = ∑  

𝑁

𝑖

|𝑢𝑖 − 𝑣𝑖| (3)

3.3.2 Model-based CF

The second subtype of CF, named model-based CF, will

now be used. It entails using the factorization matrix, which is

an unsupervised learning technique for dimensionality

reduction and decomposition of hidden variables [65]. By

multiplying the user and item latent variable matrices, the

factorization matrix aims to predict unknown ratings by

learning hidden user preferences and hidden object features

from known ratings in our dataset. The implementation of

recommender systems uses several dimensionality reduction

approaches. In conducting our study, we employed:

1) Singular Value Decomposition (SVD): this method

entails lowering the dimensionality of the User × Item matrix

that was previously computed [66].

Let R be the User × Item matrix of size m × n (m: number

of users, n: number of movies), and k: the dimension of the

164

latent character space. The general SVD equation is given by

Eq. (4).

𝑅 = 𝑈𝑆𝑉𝑇 (4)

where:

• 𝑈 (𝑚 × 𝑘) is the array of latent characters for users.

• 𝑉 (𝑛 × 𝑘) is the array of latent characters for movies.

The diagonal matrix of size k × k with real positive values.

By multiplying the three matrices, we can make the prediction.

2) Stochastic Gradient Descent (SGD): we wish to

estimate two matrices, 𝑃 (𝑚 × 𝑘) of latent characters for

users and 𝑄 (𝑛 × 𝑘) of latent characters for movies [67]. The

unknown ratings can then be predicted by multiplying the P

and Q matrices after the estimation of P and Q.

To update P and Q, we can use the SGD where we iterate

each observation in the train to update P and Q as we go (see

Eq. (5) and Eq. (6)).

To update P and Q, we can use the SGD where we iterate

each observation in the train to update P and Q as we go (see

Eq. (5) and Eq. (6)).

To update P and Q, we can use the SGD where we iterate

each observation in the train to update P and Q as we go (see

Eq. (5) and Eq. (6)).

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (5)

�⃗� ⋅ �⃗⃗� =∥ �⃗� ∥∥ �⃗⃗� ∥ 𝑐𝑜𝑠𝜃 (6)

where:

- γ is the learning speed.

- λ is the regularization term.

- e is the error which is the difference between the actual

rating and the predicted rating.

The SGD model is based on several steps defined

beforehand.

3) Alternating Least Squares (ALS): our goal with

ALS is to estimate P and Q. Then, by multiplying the transpose

of the P matrix by the Q matrix, we may estimate the unknown

ratings after estimating P and Q [68].

Table 4. presents the strengths and weaknesses of memory-based and model-based approaches

 Strengths Weaknesses

Memory-Based

Approaches

- Simplicity and Intuitiveness: Memory-based methods are

often straightforward to understand and implement. They

rely on the similarity between instances, making them

intuitive for many applications.

- No Training Phase: Memory-based systems do not require

a separate training phase. They immediately adapt to new

data, making them suitable for dynamic environments

where the data distribution can change over time.

- Transparency: The reasoning behind the

recommendations is transparent since it's based on the

similarity of instances. Users can easily understand why a

certain recommendation was made.

- Handling Cold Start Problem: Memory-based methods

can handle the cold start problem well, as they don't rely on

pre-existing models. They can provide recommendations

for new items based on their features and similarity to

existing items

- Scalability: Memory-based approaches may

struggle with scalability as the size of the dataset

increases. The computation cost of finding

similarities among all data points can become

prohibitive.

- Sparsity: In sparse datasets, where users'

interactions with items are limited, finding

meaningful similarities becomes challenging. This

can result in poor recommendations, especially for

less popular items.

- Lack of Personalization: Memory-based systems

may not capture complex patterns or individual

preferences well, leading to less personalized

recommendations compared to model-based

approaches

Model-Based

Approaches

- Scalability: Model-based approaches, particularly those

using machine learning models, can handle large datasets

more efficiently. They often scale better as the data size

grows.

- Personalization: Model-based methods can capture

complex patterns and individual preferences better than

memory-based methods. This results in more personalized

recommendations, especially in scenarios with diverse user

preferences.

- Feature Learning: Model-based approaches can

automatically learn relevant features and representations

from the data, allowing them to adapt to the underlying

patterns without manual feature engineering.

- Handling Sparsity: Model-based methods can perform

better in sparse datasets by learning latent factors and

relationships between users and items, effectively dealing

with the sparsity problem

- Complexity: Model-based methods are often more

complex to implement and may require a dedicated

training phase. The need for optimization and

hyperparameter tuning can add to the complexity.

- Cold Start Problem: Model-based systems may

struggle with the cold start problem, especially for

new items or users, as they rely on historical data for

training

- Lack of Transparency: The inner workings of

complex models may be less transparent compared to

memory-based approaches. This lack of transparency

can be a drawback in applications where

interpretability is crucial

According to Table 4, we adopt the following optimization

scenario:

1) Choose Memory-Based Approaches When:

• Transparency and simplicity are priorities.

• The dataset is not too large, and scalability is not a

primary concern.

• Cold start and adaptability to new data are critical.

2) Choose Model-Based Approaches When:

• Scalability and handling large datasets are essential

• Personalization and capturing complex patterns are

crucial.

• A training phase can be incorporated, and transparency is

not a top priority.

165

Ultimately, the choice between memory-based and model-

based approaches depends on the specific requirements and

constraints of the recommendation system and the

characteristics of the data it will operate on.

3.3.3 Optimizing CB recommender systems

Object recommendation or CB is different from CF because

it is not based on past user behavior. It involves recommending

objects based on the intrinsic qualities and properties of the

object itself and correlating them with the preferences and

interests of the user. For our case, we will only be interested in

the correlation of an object with another object.

The movies.csv dataset admits 3 variables MovieID which

represents the identifier of the movie, Title the name of the

movie and Genres which makes it possible to categorize the

movies according to their themes knowing that a movie can

have multiple genders.

To start, we treated the similarity between the movies based

only on the Genres variable. This did not seem to us sufficient

in terms of the degree of similarity, so we thought of using the

IMDbPY python package to have new variables that best

characterize the movies in our dataset. The new variables

added are: Genre, Year, Kind, Director, Cast, Writer, Rating,

Runtimes, Countries, Languages, and Production companies.

Figure 11 shows how to import movie data using IMDbPY

https://github.com/MaximShidlovski23/imdbpy.

Figure 11. Importing movie data using IMDbPY

Figure 12. Square matrix

Now that we have the characteristics of all the movies from

their titles and their IMDB identifiers, we can create our new

dataset with all the movies and their characteristics.

Now, the goal is to build a square matrix (l x l: where l is

the number of movies) that contains the distance between each

pair of movies in order to determine which things are closest

to one another and hence share the most similarities (see

Figure 12).

3.4 Optimizing hybrid recommender systems

After presenting CF and CB, the idea behind this part is to

create a model that combines the results of the two previous

methods. In this part we tried to combine between the

similarity scores of the movies (compared to a certain movie)

obtained by the two methods:

CF and CB.

4. EXPERIMENTS

4.1 Optimizing CF recommender systems

One must use an evaluation metric to gauge the precision of

the anticipated estimations in order to evaluate the similarity.

The Root Mean Square Error (RMSE), one of the two primary

performance measures for a regression model, is one of the

most widely used, despite the fact that there are many more. It

determines the usual discrepancy between predicted values

and actual values [69]. It provides an estimate of how well the

model can forecast the required quantity. It is given by Eq. (7).

𝑅𝑀𝑆𝐸 = √
∑  𝑁

𝑖=1 (𝑥𝑖 − �̂�𝑖)
2

𝑁
 (7)

where:

N is the number of non-missing data points.

𝑥𝑖 is the actual observations time series.

 �̂�𝑖 is the estimated time series.

The similarity results are given in Table 5.

Table 5. Similarity results

 Cosine Similarity City Block Similarity

Item-based CF 1.50327465213 1.55417757528

User-based CF 1.49776385250 1.51726541940

We can deduce after observing the results that the best

model is the one with the smallest value for RMSE. For our

case it is user-item for the Cosine metric.

As a conclusion, we can state that memory-based models

are simple to use and generate forecasts with acceptable

accuracy. Since this sort of model evaluates the correlation

between all users and things at each time, it is not scalable, i.e.,

it is not useful in a situation of a huge database. As a result, it

does not address the issue of cold start [70], which arises when

we begin with a new person or object about which we do not

have sufficient knowledge.

To answer the scalability problem, we create Model Based

models that we will deal with in the next section. And to

address the problem of cold start, we use the Content based

recommendation that we will also see later.

We calculated in Table 6 the performance with RMSE

between the predicted matrix and the test matrix.

Table 6. Performance with RMSE between the predicted and

the test matrices

 RMSE

SVD

k=50 1.50142530774

k=75 1.48097179306

k=80 1.47721123270

k=100 1.46997911037

k=110 1.46779703654

k=125 1.47084637082

k=150 1.47754794975

SGD - 1.50060377979

ALS
Epoch 1/2 1.054704

Epoch 2/2 0.799782

For the SVD technique, the prediction error measured with

RMSE is 1.47, a smaller value than for the Memory based

models, therefore a better performance. It should also be noted

166

that SVD takes considerably less time to run than Memory-

based models.

Such a result of the RMSE, is influenced by the number of

latent variables k, an important parameter of the SVD model.

We therefore executed it by modifying each time the values of

k to realize at the end that k = 100 is the optimal number of

latent variables. So, for the performance measurement with

RMSE (via the SGD technique), we calculate at each step the

respective RMSE (see Figure 13). To obtain the error of the

whole model, we calculate the average of the RMSEs at all

stages (RMSE=1.50060377979).

The RMSE value obtained is higher than that obtained with

SVD but remains better than the Memory based models. We

did not limit ourselves to the final RMSE value, so we

represented the error as a function of the number of steps

previously set for the training and validation data. We notice

that the two curves converge and the value of RMSE decreases

with each new step.

Figure 13. SGD learning curve

As the old model-based methods dealt with, we calculated

the RMSE for the ALS model. As for SVD, ALS admits a

definite number of steps through which the RMS decreases

until it converges. In the case of our model, although the

execution of ALS takes more time than SGD, we limited

ourselves to 2 steps of the algorithm.

We notice that this error value for ALS is the best among all

the other methods tested.

We can conclude that the best Collaborative Filtering model

is ALS.

We created the User x Item recommendation matrix on our

complete dataset after deciding that ALS was the best model.

To better look at the effectiveness of our model, we have

implemented a set of functions that allow us to make the

recommendation:

• Recommendation of movies for a given user: we seek

to recommend to a user gives an example of movies that

may interest him while associating each the predicted

ratings.

• Detect users similar to a given user: We want to return

users similar to a given use with the correlation between

them.

• Estimate the rating from a given user and movie.

• Calculation of correlations: We have, in addition to the

recommendations and the estimation of the ratings

attributed to the movies, implemented functions that

calculate the correlation between two users, two movies,

and between a user and a movie.

4.2 Optimizing CF recommender systems

Let’s look at the scenario where we want to compare movies

based on the Genre variable (romantic, adventure, children,

etc.). In our current dataset, the Gender variable is written in

the form: first we must convert the Genre column into a matrix

X containing 0 or 1: such that the rows of the matrix represent

the movies (the movies) and the columns represent all the

different types that we have in our dataset, and therefore X[i,

j] = 1 if among the genres of the ith movie, there is jth Genre

(see Tables 7 and 8).

We used the vectorizer () function of the Python scikit-learn

package to produce this matrix.

Table 7. Movie features

MovieID Title Genre Year Writer Director Cast Rating Runtimes Countries Language

0 1

Toy

Story

(1995)

Animation,

Adventure,

Comedy,

Family,

Fantasy

1995

John Lasseter,

Pete Docter,

Andrew

Stanton, Joe

R.

John

Lasseter

Tom

Hanks,

Tim

Alien,

Don

Rickles,

Jim

Vamey,

Wal.

8.3 81 USA English

Table 8. Genre matrix

Item Comedy Animation Children Family

1 1 0 1 0

2 0 1 0 0

3 1 1 1 0

4 0 0 0 1

5 1 0 0 1

Now the matrix we desired has been constructed, it is time

to decide on a metric to determine how similar two objects are.

There are many metrics to use when comparing two objects;

in this instance, we choose cosine similarity. We ultimately get

at our matrix in Table 9 after applying the cosine similarity

metric, which calculates the similarity degree between all pairs

of entries.

Several types of recommendations were proposed:

1) Recommendation based on the Gender variable:

After obtaining the similarity matrix, for each movie we

retrieve the indices of the movies that are the most similar to

our selected one: the greater the cosine similarity metric, the

greater the two movies are similar. Two movies are perfectly

identical if cosine similarity=1. Let’s test our function on the

first movie: MovieID=1.

#data.query(’MovieID==1|MovieID==2090|

MovieID==2355 | MovieID==1031 | MovieID==1030’)

167

Table 9. Sample of similarities between all movie pairs

 0 1 2 3 4 5 6 7 8 9 … 889

0 1 0.600000 0.316228 0.258199 0.516398 0 0.316228 0.547723 0 0.259199 0.316228

1 0.600000 1 0 0 0.258199 0.447214 0 0.365148 0.516398 0.774597 0.316228

2 0.316228 0 1 0.816497 0.816497 0.500000 0.577350 0 0 0.500000

3 0.258199 0 0.816497 1 0.666667 0.288675 0.816497 0.707107 0 0 0.816497

4 0.516398 0.258199 0.816497 0.666667 1 0 0.408248 0.707107 0 0 0.408248

5 0 0.447214 0 0.288675 0 1 0.353553 0.204124 0.866025 0.577350 0.353553

6 0.316228 0.500000 0.816497 0.408248 0.353553 1 0.577350 0 0 1

7 0.547723 0.365148 0.577350 0.707107 0.707107 0.204124 0.577350 1 0 0.235702 0.577350

8 0 0.516398 0 0 0 0.866025 0 0 1 0.235702 0.577350

9 0.258199 0.774597 0 0 0 0.577350 0 0.235702 0.666667 1 0

10 0.258199 0 0.816497 1 0.666667 0.288675 0.816497 0.707107 0 0 0.816497

11 0.516398 0.258199 0.408248 0.333333 0.333333 0.408248 0.235702 0 0 0.408248

12 0.600000 0.400000 0 0.259199 0.258199 0.223607 0.316228 0.547723 0 0.258199 0.316228

The function returns movies classified according to the

order of similarity. In our example, the function tells us that

the movies closest to the MovieID=1 in terms of Genre are:

2090, 2355, 1031, and 1030.

Let’s check this in Table 10. We can see that the obtained

result is very relevant, since the most similar movies to Toy

Story movie is indeed The Rescuers (1977) movie as long as

they are identical in terms of Genre.

2) Recommendation based on writer variable: We do

the same thing as we did on the Gender variable.

#data.query(’MovieID==1|MovieID==2355|

MovieID==1604’)[[’MovieID’,’title’,’writer’]])

Let’s check this in Table 11.

This result is very relevant since we notice that the movie

Bug’s Life which has the MovieID=2355 has three writings in

common with the Toy Story movie on which we did our

research.

3) Recommendation based on the director variable:

We apply the same function as before we get:

#(data.query(’MovieID==1|MovieID==2355’))[[’MovieID’,

’title’,’director’]]

Let’s check this in Table 12.

Bug’s Life and Toy Story movies both have John Lasseter

as director.

4) Recommendation based on the variable

Production companies: We apply the same function as before

we obtain:

#data.query(’MovieID==1|MovieID==2355|

MovieID==1020’))[[’MovieID’,’title’,’Production

Companies’]]

Let’s check this in Table 13.

Bug’s Life and Toy Story movies have exactly the same

Production Companies, which proves that our results are very

relevant. According to all these results, we notice that the

movie with ID=2355 appears on all the results, as a movie very

similar to our selected movie.

5) General recommendation: The idea here is to

combine all the recommendations made previously, to deduce

a final recommendation that will be even more efficient. For

this, for each movie for which we want to search for similar

movies, we have applied a function that creates a DataFrame

that contains all the MovieID with their scores (of similarity

with respect to the selected movie) for each recommendation.

Table 14 presents an example of the obtained result.

In our case we can conclude that MovieID=2355 is the most

similar to MovieID=1, in terms of Genre, Writer, Director,

Countries, and Production Companies, since it has a total score

of 4.37. This confirms our remark that we made earlier.

4.3 Optimizing hybrid recommender systems

To illustrate our idea, we take as an example the case where

we want to retrieve the indices of similar movies to

MovieID=1, by combining CF and CB based on Gender. We

get the results shown in Table 15. Based on this result, one

could conclude that MovieID=4886 is very similar to

MovieID=1.

Table 10. Closest movies to the MovieID=1 in terms of Genre

 MovieID Title Genre Year Writer

0 1 Toy Story (1995)
Animation, Adventure, Comedy, Family,

Fantasy
1995 John Lasseter, Pete Docter

754 1030 Pete’s Dragon (1977)
Animation, Adventure, Comedy, Family,

Fantasy, Musical
1977 Malcolm

755 1031
Bedknobs and Broomsticks

(1971)

Animation, Adventure, Comedy, Family,

Fantasy, Musical
1971 Ralph Wright, Ted Berman

1488 2090 The Rescuers (1977)
Animation, Adventure, Comedy, Family,

Fantasy
1977 Margery

1688 2355 A Bug’s Life (1998)
Animation, Adventure, Comedy, Family,

Fantasy
1998

John Lasseter, An- drew

Stanton

168

Table 11. Closest movies to the MovieID=1 in terms of Writer

 MovieID Title Writer

0 1 Toy Story (1995)
John Lasseter, Pete Docter, Andrew Stanton, Joe Ranft, Joss Whedon, Andrew Stanton, Joel

Cohen, Alec Sokolow

1150 1604
Money Talks

(1997)
Joel Cohen, Alec Sokolow

1688 2355
A Bug’s Life

(1998)
John Lasseter, Andrew Stanton, Joe Ranft, Andrew Stanton, Don McEnery, Bob Shaw

Table 12. Closest movies to the MovieID=1 in terms of Director

 MovieID Title Director

0 1 Toy Story (1995) John Lasseter

1688 2355 A Bug’s Life (1998) John Lasseter, Andrew Stanton

Table 13. Closest movies to the MovieID=1 in terms of Production Companies

 MovieID Title Production Companies

0 1 Toy Story (1995) Pixar Animation Studios, Walt Disney Pictures

745 1020 Money Talks (1997) Walt Disney Pictures

1688 2355 A Bug’s Life (1998) Pixar Animation Studios, Walt Disney Pictures

Table 14. General recommendation

Score_Genre MovieID Score_Writer Score_Director Score_Countries Score_Production_Companies Score_All Score_Genre

1 1 2355 0.67082 0.707107 1.0 1 4.377927

24 0.8 1282 0 0 1.0 0.707107 2.507107

73 0.670820 1020 0 0 1.0 0.707107 2.377927

11 0.845154 1566 0 0 1.0 0.5 2.345154

Table 15. Indices of similar movies to MovieID=1 by combining CF and CB based solely on Gender

 Score_CB MovieID Score_CF Score_All

5 1.0 4886 0.983677 1.983677

4 1.0 3114 0.982578 1.982578

0 1.0 2294 0.962589 1.962589

8 1.0 136016 0.938667 1.938667

The applied optimizations enable recommender systems to

provide meaningful and personalized suggestions, even in

scenarios with limited historical interaction data. The

adaptability of these approaches ensures that

recommendations become increasingly accurate and tailored

as the system learns from user feedback and interactions over

time. In addressing the cold start problem, CB approaches

demonstrate effectiveness by leveraging item features and, in

some cases, user-provided information. While ALS models

have been successful in CF scenarios, they face challenges

when dealing with sparse data and new items or users.

The choice between CB approaches and CF models like

ALS depends on the specific characteristics of the

recommendation scenario, including the availability of

historical data and the nature of the items or users involved.

The proposed optimal hybrid approach combines the

strengths of both methods and it provides a robust solution,

ensuring effective recommendations in diverse situations.

5. SOLUTION’S ESTABLISHMENT

The different steps of the solution’s establishment are as

follows:

• Step 1 - Load and parse the data (RDD creation) (see

Figure 14).

• Step 2 - CF: we used the Spark MLlib library which

contains the implementation of the CF method using the

ALS method.

• Step 3 - Focus recommendation on lower rated movies:

one of the big problems with recommender systems is

recommending always the 20% of the base that represents

the most popular movies. Since they are the the more rated,

they will be the most correlated with the other movies.

• Step 4 - Create a new user with ratings and merge this new

RDD with the old database: we used this function to add

users to the dataset, or to update the dataset notes if we

have a new review event.

• Step 5: For a given user, we displayed the five movies

most likely to please him (among the movies that have

never rated). We used this function in the application to

generate recommendations for users.

• Step 6: For a given user and a given movie, we estimated

the rating and then compare with the real note. We used

this function in the application to display a user on an

establishment page, the predicted rating thanks to our

model, in order to encourage him to give his own rating.

169

Figure 14. Resilient distributed dataset creation

6. DISCUSSION

Model-based CF approaches address data sparsity by

leveraging mathematical models to infer latent factors that

capture the underlying patterns in user-item interactions.

These methods aim to overcome the challenges posed by

sparse datasets, where users have interacted with only a small

fraction of the available items. While model-based CF

approaches offer advantages in handling data sparsity, they

also have some limitations.

Matrix factorization techniques, such as SVD or ALS,

decompose the user-item interaction matrix into latent factors.

By representing users and items in a lower-dimensional latent

space, these models can capture hidden patterns and

relationships. These techniques are effective in handling data

sparsity because it enables the model to fill in missing entries

in the user-item interaction matrix. The inferred latent factors

help predict how a user would interact with unrated items

based on their preferences and the characteristics of those

items.

Regularization also helps control the complexity of the

model, reducing the risk of fitting noise in sparse datasets. It

encourages the model to generalize well to unseen data,

improving its ability to make accurate predictions for items

with limited interactions.

In conclusion, model-based CF approaches effectively

address data sparsity by leveraging mathematical models and

regularization techniques. However, they are not immune to

limitations, including challenges in handling the cold start

problem and sensitivity to hyperparameters. Striking a balance

between model complexity and interpretability is crucial in

designing effective and scalable model-based CF systems for

recommendation tasks.

7. CONCLUSIONS

Integrating different recommendation techniques

seamlessly is not always straightforward. Combining CF and

CB requires careful consideration of how these components

interact, and the optimization process might be intricate.

For memory-based CF, the models generate good results,

but they do not solve the problems of Cold Start -no

information on users and movies-, sparsity, and scalability. For

model-based CF, they solved the sparsity problem.

Indeed, hybrid recommender systems often rely on CF

methods, which can face difficulties in handling sparse

datasets. Limited user-item interactions make it challenging to

accurately infer user preferences and item similarities.

Moreover, the cold start problem persists in hybrid systems,

particularly for new users or items. CB approach helps in

recommending new items, but the lack of historical interaction

data for CF can limit the system’s ability to provide

personalized suggestions.

The interpretability of hybrid models can also be limited. As

the system combines CF and CB techniques, understanding the

reasoning behind specific recommendations becomes

challenging, potentially affecting user trust and satisfaction.

Addressing these limitations and challenges requires a holistic

approach, involving a careful balance between model

complexity, scalability, adaptability, and user satisfaction.

Regular monitoring, updating models based on user feedback,

and experimenting with different algorithms and features are

essential for optimizing hybrid movie recommender systems

effectively. These two axes open on our future research work.

This open on our future research work.

REFERENCES

[1] Forestiero, A. (2022). Heuristic recommendation

technique in internet of things featuring swarm

intelligence approach. Expert Systems with Applications,

187: 115904.

https://doi.org/10.1016/j.eswa.2021.115904

[2] Rhanoui, M., Mikram, M., Yousfi, S., Kasmi, A.,

Zoubeidi, N. (2022). A hybrid recommender system for

patron driven library acquisition and weeding. Journal of

King Saud University - Computer and Information

Sciences, 34(6, Part A): 2809-2819.

https://doi.org/10.1016/j.jksuci.2020.10.017

[3] Tawfiq, F., Rahma, A.M.S., Abdulwahab, H.B. (2021).

An e-commerce recommendation system based on

dynamic analysis of customer behavior. Sustainability,

13(19). https://doi.org/10.3390/ su131910786

[4] Salampasis, M., Katsalis, A., Siomos, T., Delianidi, M.,

Tektonidis, D., Christantonis, K., Kaplanoglou, P.,

Karaveli, I., Bourlis, C., Diamantaras, K. (2023). A

170

flexible session-based recommender system for

ecommerce. Applied Sciences, 13(5). https://doi.org/

10.3390/app13053347

[5] Ben Schafer, J., Konstan, J., Riedl, J. (1999).

Recommender systems in e-commerce. In Proceedings

of the 1st ACM conference on Electronic commerce.

Association for Computing Machinery, New York, NY,

USA, pp. 158-166.

https://doi.org/10.1145/336992.337035

[6] Schafer, J. B., Konstan, J., Riedl, J. (1999).

Recommender systems in e-commerce. In 1st ACM

Conference on Electronic Commerce, pp. 158-166.

https://doi.org/10.1145/336992.337035

[7] Murugappan, V.M.R., Rodriguez, C., Navarro Depaz, C.,

Concha, U.R., Pandey, B., S. Kharat, R., Marappan, R.

(2023). Machine learning based recommendation system

for web-search learning. Telecom, 4: 118-134.

https://doi.org/10.3390/telecom4010008

[8] Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia

García, R., García-Sánchez, F. (2012). Social

knowledge-based recommender system. application to

the movies domain. Expert Systems with Applications,

39(12): 10990-11000.

https://doi.org/10.1016/j.eswa.2012.03.025

[9] Burke, R. (2007). Hybrid web recommender systems. In

P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The

Adaptive Web: Methods and Strategies of Web

Personalization. Springer Berlin Heidelberg. pp. 377-408.

https://doi.org/10.1007/978-3-540-72079- 9_12

[10] Schedl, M., Gómez, E., Lex, E. (2022). Retrieval and

recommendation systems at the crossroads of artificial

intelligence, ethics, and regulation. In Proceedings of the

45th International ACM SIGIR Conference on Research

and Development in Information Retrieval, pp. 3420-

3424. https://doi.org/10.1145/3477495.3532683

[11] Mukund, N., Thakur, S., Abraham, S., Aniyan, A.K.,

Mitra, S., Philip, N.S., Vaghmare, K., Acharjya, D.P.

(2018). An information retrieval and recommendation

system for astronomical observatories. The

Astrophysical Journal Supplement Series, 235(1): 22.

https://doi.org/10.3847/1538-4365/aaadb2

[12] Mishra, R., & Rathi, S. (2022). Enhanced DSSM (deep

semantic structure modelling) technique for job

recommendation. Journal of King Saud University -

Computer and Information Sciences, 34(9): 7790-7802.

https://doi.org/10.1016/j.jksuci. 2021.07.018

[13] Ntioudis, D., Masa, P., Karakostas, A., Meditskos, G.,

Vrochidis, S., Kompatsiaris, I. (2022). Ontologybased

personalized job recommendation framework for

migrants and refugees. Big Data and Cognitive

Computing, 6(4). https://doi.org/10.3390/bdcc6040120

[14] Junior, J., Vilasbôas, F., De Castro, L. (2020). The

influence of feature selection on job clustering for an E-

recruitment recommender system. https://doi.org/

10.1007/978-3-030-61534-5_16

[15] Lee, Y., Lee, Y.C., Hong, J., Kim, S.W. (2017).

Exploiting job transition patterns for effective job

recommendation. In IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pp. 2414-2419.

https://doi.org/10.1109/SMC.2017.8122984

[16] Reusens, M., Lemahieu, W., Baesens, B., Sels, L. (2017).

A note on explicit versus implicit information for job

recommendation. Decis. Support Syst., 98(100): 26-35.

https://doi.org/10.1016/j.dss.2017.04.002

[17] Liu, K., Shi, X., Kumar, A., Zhu, L., Natarajan, P. (2016).

Temporal learning and sequence modeling for a job

recommender system. Recommender Systems Challenge.

https://doi.org/10.1145/2987538. 2987540

[18] Alsaif, S.A., Sassi Hidri, M., Eleraky, H.A., Ferjani, I.,

Amami, R. (2022). Learning-based matched

representation system for job recommendation.

Computers, 11(11).

https://doi.org/10.3390/computers11110161

[19] Alsaif, S.A., Hidri, M.S., Ferjani, I., Eleraky, H.A., Hidri,

A. (2022). NLP-based bi-directional recommendation

system: Towards recommending jobs to job seekers and

resumes to recruiters. Big Data and Cognitive Computing,

6(4): 147. https://doi.org/10.3390/bdcc6040147

[20] Marchand, A., Marx, P. (2020). Automated product

recommendations with preference-based explanations.

Journal of Retailing, 96(3): 328-343. https://doi.

org/https://doi.org/10.1016/j.jretai.2020.01.001

[21] Falconnet, A., Coursaris, C. K., Beringer, J., Van Osch,

W., Sénécal, S., Léger, P.M. (2023). Improving user

experience with recommender systems by informing the

design of recommendation messages. Applied Sciences,

13(4). https://www.mdpi.com/2076-

3417/13/4/2706/xml#.

[22] Kim, J., Choi, I., Li, Q. (2021). Customer satisfaction of

recommender system: Examining accuracy and diversity

in several types of recommendation approaches.

Sustainability, 13(11). https://www.mdpi.com/2071-

1050/13/11/6165.

[23] Guia, M., Silva, R., Bernardino, J. (2019). A hybrid

ontology-based recommendation system in ecommerce.

Algorithms, 12: 239. https://doi.org/10. 3390/a12110239

[24] Jayalakshmi, S., Ganesh, N., Cep, R., Senthil Murugan, ˇ

J. (2022). Movie recommender systems: Concepts,

methods, challenges, and future directions. Sensors,

22(13). https://doi.org/10.3390/s22134904

[25] Kavi Priya, S., Manonmani, T., Dharshana, N.,

Ragaanasuya, K. (2022). Movie recommendation system

with hybrid collaborative and content-based filtering

using convolutional neural network. International journal

of health sciences, 6(S8): 5357-5372.

https://sciencescholar.us/journal/index.php/ijhs/

article/view/13454.

[26] Salmani, S., Kulkarni, S. (2021). Hybrid movie

recommendation system using machine learning. In

International Conference on Communication,

Information & Computing Technology, pp. 1-10.

https://doi.org/10.1109/ICCICT50803.2021.9510058

[27] Kumar, M., Yadav, D., Singh, A., Kr, V. (2015). A movie

recommender system: MOVREC. International Journal

of Computer Applications, 124: 7-11.

http://dx.doi.org/10.5120/ijca2015904111

[28] Colace, F., Conte, D., Santo, M.D., Lombardi, M.,

Santaniello, D., Valentino, C. (2022). A content-based

recommendation approach based on singular value

decomposition. Connection Science, 34(1): 2158-2176.

https://doi.org/10.1080/09540091.2022.2106943

[29] Pérez-Almaguer, Y., Yera, R., Alzahrani, A.A., Martínez,

L. (2021). Content-based group recommender systems:

A general taxonomy and further improvements. Expert

Systems with Applications, 184.

https://doi.org/10.1016/j.eswa.2021.115444

[30] Joseph, A., Benjamin, J. (2022). Movie recommendation

system using content-based filtering and cosine

171

similarity. National Conference on Emerging Computer

Applications (NCECA), pp. 405-408.

https://doi.org/10.5281/zenodo.6791117

[31] Javed, U., Shaukat, K., Hameed, I.A., Iqbal, F., Alam,

T.M., Luo, S. (2021). A review of content-based and

context-based recommendation systems. International

Journal of Emerging Technologies in Learning (iJET),

16(3): 274-306. https://doi.org/10.3991/

IJET.V16I03.18851

[32] Al Jobaer, A., Sanchi, B.B., Javed, A., Islam, M.S.,

Jameel, A.S.M.M. (2021). An advanced

recommendation system by combining popularity-based

and user-based collaborative filtering using machine

learning. International Conference on Science &

Contemporary Technologies (ICSCT), Dhaka,

Bangladesh, pp. 1-5.

https://doi.org/10.1109/ICSCT53883.2021.9642580

[33] Li, L., Wang, Z., Li, C., Chen, L., Wang, Y. (2022).

Collaborative filtering recommendation using fusing

criteria against shilling attacks. Connection Science,

34(1): 1678-1696. https://doi.org/10.1080/

09540091.2022.2078280

[34] Liu, X., Li, S. (2021). Collaborative filtering

recommendation algorithm based on similarity of co-

rating sequence. In International Symposium on

Electrical, Electronics and Information Engineering, pp.

458-463. https://doi.org/10.1145/3459104.3459180

[35] Wu, L. (2021). Collaborative filtering recommendation

algorithm for MOOC resources based on deep learning.

Complexity, 2021: 1-11. https://doi.org/10.1155/

2021/5555226

[36] Hu, B., Long, Z. (2021). Collaborative filtering

recommendation algorithm based on user explicit

preference. In IEEE International Conference on

Artificial Intelligence and Computer Applications

(ICAICA), Dalian, China, pp. 1041-1043.

https://doi.org/10.1109/ICAICA52286.2021.9498149

[37] Sun, N., Chen, T., Guo, W., Ran, L. (2021). Enhanced

collaborative filtering for personalized e-government

recommendation. Applied Sciences, 11: 12119.

https://doi.org/10.3390/app112412119

[38] Çano, E. (2017). Hybrid recommender systems: A

systematic literature review. Intelligent Data Analysis,

21: 1487-1524. https://doi.org/10.3233/IDA-163209

[39] Pande, C., Witschel, H.F., Martin, A. (2022). New hybrid

techniques for business recommender systems. Applied

Sciences, 12(10). https://doi.org/10.3390/app12104804

[40] Sacenti, J.A.P., Willrich, R., Fileto, R. (2018). Hybrid

recommender system based on multi-hierarchical

ontologies. In Proceedings of the 24th Brazilian

Symposium on Multimedia and the Web, pp. 149-156.

https://doi.org/10.1145/3243082.3243106

[41] Jannach, D., Pu, P., Ricci, F., Zanker, M. (2022).

Recommender systems: Trends and frontiers. AI

Magazine, 43(2): 145-150.

https://doi.org/10.1002/aaai.12050

[42] Pajula, J., Kauppi, J.-P., Tohka, J. (2012). Intersubject

correlation in FMRI: Method validation against stimulus-

model based analysis. PloS one, 7: e41196.

https://doi.org/10.1371/journal.pone.0041196

[43] Sammut, C., Webb, G.I. (2010). Tf–idf. In Encyclopedia

of machine learning. Springer US. pp. 986-987.

https://doi.org/10.1007/978-0-387- 30164-8_832

[44] Krishnapuram, B., Hartemink, A., Carin, L., Figueiredo,

M.A.T. (2004). A Bayesian approach to joint feature

selection and classifier design. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(9): 1105-

1111. https://doi.org/10.1109/TPAMI.2004.55

[45] Quinlan, J.R. (1986). Induction of decision trees.

Machine Learning, 1: 81-106.

https://doi.org/10.1007/BF00116251

[46] Panteli, A., Boutsinas, B. (2023). Addressing the cold-

start problem in recommender systems based on frequent

patterns. Algorithms, 16(4). https://doi.org/10.3390/

a16040182

[47] Jolliffe, I. (1986). Principal component analysis.

Springer Verlag.

[48] Koren, Y., Bell, R., Volinsky, C. (2009). Matrix

factorization techniques for recommender systems.

Computer, 42(8): 30-37. https://doi.org/10.1109/MC.

2009.263

[49] Landauer, T.K., Foltz, P.W., Laham, D. (1998). An

introduction to latent semantic analysis. Discourse

processes, 25(2-3): 259-284.

https://doi.org/10.1080/01638539809545028

[50] Kabir, M.R., Zaiane, O. (2023). Classification by

frequent association rules. In Proceedings of the 38th

ACM/SIGAPP Symposium on Applied Computing, pp.

1217-1220. https://doi.org/10.1145/3555776.3577848

[51] Kyeong, S., Shin, J. (2022). Two-stage credit scoring

using Bayesian approach. Journal of Big Data, 9.

https://doi.org/10.1186/s40537-022-00665-5

[52] Sakib, N., Ahmad, R.B., Ahsan, M., Based, M.A.,

Haruna, K., Haider, J., Gurusamy, S. (2021). A hybrid

personalized scientific paper recommendation approach

integrating public contextual metadata. IEEE Access, 9:

83080-83091.

https://doi.org/10.1109/ACCESS.2021.3086964

[53] Polatidis, N., Georgiadis, C. (2013). Mobile

recommender systems: An overview of technologies and

challenges. In 2013 2nd International Conference on

Informatics and Applications, ICIA 2013, Lodz, Poland.

https://doi.org/10.1109/ICoI

[54] Cai, X., Hu, Z., Zhao, P., Zhang, W., Chen, J. (2020). A

hybrid recommendation system with many-objective

evolutionary algorithm. Expert Systems with

Applications, 159: 113648.

https://doi.org/https://doi.org/10.1016/j.eswa.2020.1136

48

[55] Mgarbi, H., Chkouri, M.Y., Tahiri, A. (2023).

Recommendation system: Technical study. In J.

Kacprzyk, M. Ezziyyani, & V. E. Balas (Eds.),

International Conference on Advanced Intelligent

Systems for Sustainable Development, pp. 265-271.

Springer Nature Switzerland.

[56] Zhou, M., Liu, Y. (2018/01). Hybrid recommendation

and parallelization of movies based on spark. In

Proceedings of the 2017 4th International Conference on

Machinery, Materials and Computer (MACMC 2017),

pp. 437-442. https://doi.org/10.2991/macmc17.2018.81

[57] Oh, J., Kim, S., Yun, S.-Y., Choi, S., Yi, M. (2019). A

pipelined hybrid recommender system for ranking the

items on the display. In RecSys Challenge ’19:

Proceedings of the Workshop on ACM Recommender

Systems Challenge, pp. 1-5. https://doi.org/10.

1145/3359555.3359565

172

[58] Bennett, J., Lanning, S. (2007). The Netflix prize. In

Proceedings of the KDD Cup Workshop 2007, pp. 3-6.

http://www.cs.uic.edu/~liub/KDD-cup-

2007/NetflixPrize-description.pdf.

[59] Kirch, W. (Ed.). (2008). Pearson’s correlation coefficient.

In Encyclopedia of Public Health, pp. 1090-1091.

Springer Netherlands. https://doi.org/10.1007/978- 1-

4020-5614-7_2569

[60] Zarei, M.R., Moosavi, M.R. (2019). A memory-based

collaborative filtering recommender system using social

ties. In 4th International Conference on Pattern

Recognition and Image Analysis (IPRIA), pp. 263-267.

https://doi.org/10.1109/PRIA.2019.8786023

[61] Al-bashiri, H., Abdulhak, M., Romli, A., Kahtan, H.

(2018). An improved memory-based collaborative

filtering method based on the TOPSIS technique. PLOS

ONE, 13: e0204434. https://doi.org/10.1371/

journal.pone.0204434

[62] Li, B., Han, L. (2013). Distance weighted cosine

similarity measure for text classification. In H. Yin, K.

Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, &

X. Yao (Eds.), Intelligent Data Engineering and

Automated Learning – Ideal 2013, pp. 611-618. Springer

Berlin Heidelberg.

[63] Wang, Z., Chen, J., Hu, J. (2022). Multi-view cosine

similarity learning with application to face verification.

Mathematics, 10(11).

https://doi.org/10.3390/math10111800

[64] Mercioni, M.A., Holban, S. (2019). A survey of distance

metrics in clustering data mining techniques. In

Proceedings of the 3rd International Conference on

Graphics and Signal Processing, pp. 44-47.

https://doi.org/10.1145/3338472.3338490

[65] Pujahari, A., Sisodia, D.S. (2020). Model-based

collaborative filtering for recommender systems: An

empirical survey. In 2020 First International Conference

on Power, Control and Computing Technologies

(ICPC2T), Raipur, India, pp. 443-447.

https://doi.org/10.1109/ICPC2T48082.2020.9071454

[66] Lathauwer, L.D., Moor, B.D., Vandewalle, J. (2000). A

multilinear singular value decomposition. SIAM Journal

on Matrix Analysis and Applications, 21(4): 1253-1278.

https://doi.org/10.1137/S0895479896305696

[67] Bottou, L. (2012). Stochastic Gradient Descent tricks.

Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 421–

436,.https://doi.org/10.1007/978-3-642-35289-825

[68] Takács, G., Tikk, D. (2012). Alternating least squares for

personalized ranking. In Proceedings of the Sixth ACM

Conference on Recommender Systems, pp. 83-90.

https://doi.org/10.1145/2365952.2365972

[69] Chai, T., Draxler, R.R. (2014). Root mean square error

(RMSE) or mean absolute error (MAE)? – Arguments

against avoiding RMSE in the literature. Geoscientific

Model Development, 7(3): 1247-1250.

https://doi.org/10.5194/gmd-7-1247-2014

[70] Herce-Zelaya, J., Porcel, C., Tejeda-Lorente, Á.,

BernabéMoreno, J., Herrera-Viedma, E. (2023).

Introducing CSP dataset: A dataset optimized for the

study of the cold start problem in recommender systems.

Information, 14(1).

https://doi.org/10.3390/info14010019

173

