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Botnet is a cyber-attack that aims to compromise the security of internet of things (IoT) 

networks by exploiting infected devices to launch attacks and gain unauthorized access to 

private information. Intrusion detection system (IDS) emerges as critical countermeasures 

for tackling the risks posed by botnet attacks, playing a crucial role in ensuring the 

integrity and confidentiality of data in IoT environments. Developing an effective botnet 

detection system depends on efficient contextual understanding and accurate attack 

pattern characterization. Recently, deep learning and machine learning based IDS have 

demonstrated promising results in traffic pattern recognition and identification as normal 

or malicious from raw data. However, these approaches fail to detect simultaneous botnet 

attacks as it ignores its distributed nature. In this paper, we propose an efficient hybrid 

deep learning model for simultaneous botnet attack detection over IoT networks. The two-

stage hybrid model analyzes the network traffic data captured from three parallel sensors 

and extracts simultaneous characteristics of attack traffic. The use of parallel detection 

enables more comprehensive coverage of the network, thereby increasing the detection 

accuracy of malicious activities that could be missed by a single sensor. Features are 

extracted using a long-short-term memory base autoencoder (LSTM-AE) over the NCC-

2 Simultaneous Botnet Dataset. The LSTM-AE is trained using data from multiple sensors 

to model temporal characteristics and results in reduced latent representation. Attack type 

identification is achieved through a multi-class classification using the Extreme Gradient 

Boosting (XGBoost) ensemble learning algorithm. The recently released NCC-2 dataset 

is the first dataset to provide data representing sequential and simultaneous botnet 

activities detected concurrently by multiple sensors. Performance exploration indicates 

that for parallel botnet detection, the proposed LSTM-AE-XGB model achieves high 

accuracy while reducing false or missing detection. Moreover, to demonstrate model 

efficiency, we conducted a 10-fold cross-validation and a comparative performance 

analysis with the state-of-the-art ML and DL-based techniques for feature extraction and 

simultaneous botnet detection. 
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1. INTRODUCTION

The emergence of Internet of Things (IoT)-related services 

has become a revolutionizing technological development that 

significantly impacts various aspects of our daily lives. With 

over ten billion interconnected devices via the Internet, IoT- 

based application usage is continuously growing in many 

fields, including healthcare, education, agriculture, transport, 

and industry [1, 2]. IoT device communication often requires 

the generation and exchange of a substantial volume of private 

data. However, hardware limitations and insufficient security 

arrangements of IoT devices contribute to their vulnerabilities 

against cyber-attacks and fail to ensure a secure data trans- 

action [3]. Cyber-attacks are illegitimate actions carried out by 

an external agent that involve unauthorized attempts to access 

confidential data or perform malicious actions through an 

infected device.  

IoT botnet cyber-attack are considered a prominent threat to 

IoT devices [4]. In 2021, the FBI's Internet Crime Complaint 

Center (IC3) received more than 6.9 billion reports of 

cybercrime [3]. A botnet is a compromised network utilized 

by a botnet master to launch attacks or illegal actions [5], 

causing data loss and even threatening the usability of the 

entire network. Therefore, the early detection of botnet activity 

using an intrusion detection system (IDS) is crucial for 

network security. Existing solutions for botnet detection may 

be categorized into signature-based and anomaly-based 

methods. Signature-based methods apply pattern matching of 

traffic characteristics to a predefined signature [6]. However, 

those methods required the regular updating of the signature 

database by a cyber security expert. In addition, it fails to 

detect zero-day attacks. Anomaly-based intrusion detection 

systems (IDS) are a recent and efficient countermeasure to 

tackle botnet attacks [7]. Anomaly-based IDS analyzes 

network traffic data to classify it as normal or malicious 

(Figure 1). IDSs aim to detect compromised nodes before any 
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malicious actions are initiated and adopt real-time 

countermeasures to ensure data integrity and protection [8]. 

Recently, machine learning (ML) and deep learning (DL) 

techniques have demonstrated their efficiency and robustness 

for cyber-attack detection and prevention over IoT networks. 

Techniques such as convolutional neural networks (CNN) [9], 

deep neural networks (DNN) [10], long short-term memory 

(LSTM) [11], extreme gradient boosting (XGBoost) [12], 

autoencoders [2], multi-layer perceptron (MLP) [13], and 

random forest (RF) [14]. Anomaly botnet detection models 

based on machine learning and deep learning are trained to 

recognize complex patterns in network traffic through the use 

of learned characteristics. An indication of malicious activity 

may be detected if a deviation from normal network behavior 

is detected. 

Existing solutions have demonstrated major drawbacks. 

They have mostly focused on a binary classification problem 

for discriminating between normal and illegitimate traffic. 

However, they fail to identify specific attack types, which is a 

crucial step for network security enhancement and threat 

prevention. In fact, attack type identification enables the 

development of effective detection methods and defense 

mechanisms adjusted to specific attack. Furthermore, the 

absence of a realistic dataset that considers the nature of botnet 

attacks as a distributed activity. While it is classified as a 

distributed or spread activity, existing datasets and solutions 

don’t consider simultaneous data or parallel detection. 

Recently, the NCC-2 dataset [15] was released to address the 

lack of these fundamental characteristics. To overcome these 

limitations, we propose a LSTM-AE-XGB model that makes 

use of parallel sensor data to identify the patterns of botnet 

attack activities. Our approach improves detection accuracy by 

applying a long-short-term memory base autoencoder (LSTM-

AE) algorithm for feature extraction to extract patterns, 

correlations, and dependencies. within network traffic. Attack 

type identification is performed through a multi-class 

classification using the Extreme Gradient Boosting (XGBoost) 

classifier. 

 

 
 

Figure 1. A network intrusion detection system 

 

We use a long-short-term memory-based autoencoder (AE- 

LSTM) to extract and generate a new feature set representing 

attack classes independently of instance numbers; this is 

essential when dealing with imbalanced data. We train AE-

LSTM over data from multiple sensors to extract temporal 

dependencies and long-term patterns in attack and normal 

traffic data. Computed latent representation increases the 

distance over samples derived from dissimilar classes to 

enhance the classification performance. Based on the 

computed latent feature representation, we perform a 

multiclass classification task using the XGBoost Classifier. In 

this study, we explore LSTM-AE-XGB model performances 

using the recently released NCC-2 Simultaneous Botnet 

dataset. In comparison to existing datasets that do not include 

such valuable information. The dataset includes data from 

multiple parallel sensors, consisting of both normal traffic and 

sequential and simultaneous botnet attack activities. 

The main contributions of this paper are: 

·We propose an efficient and accurate simultaneous botnet 

attack detection and identification model over combined 

traffic from multiple sensors. 

·LSTM-AE feature selection and extraction approach was 

used to automate the selection and extraction of latent 

representations of temporal dependencies, long- term patterns 

of attack and normal traffic. 

·We performed an extensive performance evaluation of 

the proposed model using the recently released NCC2dataset.  

·Experiments reveal that the proposed hybrid model is 

able to accurately detect and identify various traffic activities. 

· We conducted a comparative analysis of feature 

extraction and parallel botnet detection approaches based on 

ML and deep learning. 

The rest of this paper is organized as follows. In section 2, 

the recent solutions for IoT botnet attack detection are 

investigated. Section 3, gives a detailed description of the 

NCC-2 Dataset. In section 4, proposed methodology for the 

IoT-Botnet detection and identification is introduced. The 

experimental results are presented and discussed in section 5. 

The paper is concluded with future research scope in section 6. 

 

 

2. PREVIOUS WORKS 

 

In this section, we explore recent research papers focusing 

on ML and DL-based IoT IDS. We applied a methodological 

categorization that groups studied solutions into five 

categories based on the approaches used: convolutional neural 

networks (CNNs), long short-term memory (LSTM), 

XGBoost classifier, autoencoders (AE), and random forest 

(RF) based models. 

The CNN and negative selection algorithms are used to first 

identify traffic packets as bots or not and then identify the 

botnet type [16]. The model achieves an accuracy of 99% over 

the ISCX 2012 dataset. An integrated deep neural network and 

principal component analysis (PCA)-based method for zero-

day attack detection is proposed by Al-Fawa'reh et al. [10]. 

Model analyze flow data in cloud environments for real-time 

anomalies’ detection. It’s reported that the PCA-DNN model 

achieves an accuracy of 98% for all attack detection over the 

cloud-based dataset. Hoang and Vu [14] aim to detect DGA 

botnets by enhancing the existing ML detection model. 

Increasing the detection rate and decreasing false alarms are 

achieved through the addition of seven new domain features. 

The model gives results of 3.02% false alarm rate and an 

overall accuracy of 97.03%. 

An XGBoost based network intrusion detection system is 

proposed by Mohiuddin et al. [17]. A reduced feature map is 

generated using a modified wrapper-based whale sine-cosine 

method (MWWSCA). A binary and multiclass classification 

attack detection is performed using a weighted extreme 

gradient boosting (XGBoost) classifier. Experimental results 

of binary classification over two datasets, UNSW-NB15 and 

CICIDS-2017 revealed an accuracy of 99% and 98% 

respectively, while 91% for multiclass classification over the 

UNSW-NB15 dataset. The XGBoost classifier has been used 

for compromised IOT device detection [18]. The model 

achieved an accuracy of 93.6% of the IoT-23 dataset. Li et al. 

[19] investigate the uses of several generative adversarial 

network (GAN) architectures for the generation of realistic 
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network traffic instances. Synthetic traffic samples are 

classified using the XGBoost classifier. The Wasserstein GAN 

architecture achieves the best overall performances with 

99.97%, 99.94%, and 100% for accuracy, recall, and precision, 

respectively, over the UNSW NB15 dataset. 

The LSTM network has been widely used for intrusion 

detection from long traffic data. Its ability to learn and 

discriminate data flow instances based on sequential network 

traffic behavioral characterization is crucial to IDS 

performance. CNN and LSTM networks are combined for 

real-time detection of DDoS based on local and temporal 

features of traffic obtained from four security cameras [11]. A 

hybrid model, DNN-LSTM that could target cyber-attacks is 

proposed by Sattari et al. [5]. The two DL networks are 

executed simultaneously over the training dataset, and the later 

obtained results are merged for traffic type identification. The 

method is able to detect 99.98% of bot attacks within 0.022 ms 

over the N BaIoT dataset. An edge-assisted anomaly-based 

architecture for IoT attack detection is proposed [19]. Multi-

edge collaborative traffic capture and y detectors dedicated to 

each type of device dedicated LSTM autoencoder detector for 

each specific devise. 

IDS aims to characterize attack activities through the 

analysis of large-scale traffic datasets. To enhance 

classification performances, recent solutions use ML and DL 

techniques for feature selection and extraction. Autoencoders 

(AE) have been widely used to reduce data complexity and 

generate an optimal descriptive representation. Haseeb et al. 

[2] propose an AE-based feature extraction method to cluster 

IoT attacks. Attack behavior is identified from changes in 

command data and generates a feature representation based on 

the correlation between commands. The K-means-clusters k = 

8 classifier is used to regroup IoT attacks within clusters. 

Evaluation shows that attacks with common features are 

grouped within the same cluster. AE and triplet networks are 

combined by Andresini et al. [20] for feature extraction from 

imbalanced data. The triplet network is used over the 

generated AE representation to associate each flow with its 

closest reconstruction class. The use of latent representation 

enhances classification performance by considering AE 

embedding learning. The evaluation results over three datasets, 

KDDCUP99, AAGM17, and CICIDS17 is 93.50%, 89.63% 

and 98.24% respectively. DoS and DDoS attacks were 

detected based on variational AE [21]. Latent representation is 

learned from malicious and benign traffic. The authors 

proposed two VAE-based methods. The first is used as a 

binary classifier for two traffic types. The second one uses 

VAE trained on legitimate traffic to filter out the anomalies. 

Two methods were tested over the CSECICIDS2018 and 

CICIDS2017 datasets. The obtained results show the 

efficiency of both methods, with slightly higher performances 

for the classifier-based method in comparison to the anomaly-

based method. In the study of Bårli et al. [22] an optimized 

lightweight AE IoT anomaly detection model is introduced. 

The model consists of a two-layer microswarm population-

based optimizer that simultaneously selects features and 

autoencoder neurons. The KNN classifier is trained using the 

selected feature representation with the computed AE 

complexity. Experiments are conducted over the N-Baiot 

dataset and show the highest performances of the proposed 

model in comparison to existing non-optimized and well-

known optimizer-based solutions. The reported accuracy is 

99%, with a complexity of 2 nerines and a feature dimension 

of 30. A solution for new and unknown cyber-attack detection 

in the IoT network is introduced by Vu et al. [23]. Three 

regularized variants of AEs are proposed to accurately predict 

unknown attack features. AEs variants, namely MDA, MVAE, 

and MAE are trained on two traffic types: Normal and 

unknown attacks, and generate a latent feature representation 

that will be used for the training of four classifiers: SVM, LR, 

PCT and NCT. Methods performances are investigated on nine 

datasets and demonstrate that proposed models enable the 

detection of unknown attacks through the projection of initial 

features into a linear and isolated latent representation. The 

three proposed methods outperform existing models that use 

either the original or AE and DBN-generated feature sets over 

all the datasets used. 

Existing IDS discriminates between two types of traffic: 

benign or malicious. Recently, researchers have focused more 

on attack type identification to ensure the adoption of the 

appropriate prevention technique. Thakur et al. [24] propose a 

generic-specific AE architecture to first learn the common 

characteristics of intrusion activities and then learn those 

related to each specific attack type. The CICIDS 2017 dataset 

is used for model evaluation. The method achieves a high 

accuracy of up to 1 for the detection of 14 attack types, 

including DDoS, Slowloris, Slowhttptest, Hulk, GoldenEye, 

Heartbleed, PortScan, Bot, FTP, SSH, Brute Force, XSS, SQL 

Injection, and Infiltration.  

The Random Forest (RF) classifier is combined information 

gain (IG) for relevant feature extraction in the study of Yin et 

al. [13]. The resulting feature set is processed through a 

machine wrapper method that provides a recursively 

eliminated feature based on learning-based techniques. The 

MLP classifier is used for multi-classification of attack types. 

The obtained experimental results over the UNSW-NB15 

dataset are 84.24% over the 23- feature subset. Khan and 

Mailewa [25] identify four attack classes over the NSL-KDD 

dataset. Deep AE and support vector machine (SVM) are 

combined for attack feature extraction and detection from non-

linear high-dimensional feature space. Method evaluation 

indicates that the DAE+SVM model has high performance 

metrics in comparison to PCA+SVM. The authors find that 

low-frequency attacks are detected with a 0.72 micro-average 

score, and the L1 regularization technique is more efficient 

than Lasso regularization over the used dataset. Features set 

minimization for ML-based intrusion detection is investigated 

in the study of Kalakoti et al. [26] for binary and multiclass 

classification for the detection of IoT botnet attacks using two 

datasets, Med-BIoT and N-BaIoT. Filter and wrapper methods 

SFS and SBS are used to generate optimal feature 

representation to guarantee high detection accuracy for each 

classification problem. It was shown through experiments that 

post-attack detection is related to channel-based features, 

while bot attacks are influenced by host-based features. The 

authors indicated that they have high detection performance 

using various machine learning classifiers. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Problem formulation 

 

Let dataset D, consist of three sub-datasets: 

 

D={D1, D2, D3} (1) 

 

Each includes data captured from Sensor S1, Sensor S2 or 
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Sensor S3 respectively. Each sub-dataset Di contains 

∑ 𝑆𝑘
𝑀𝑖
𝑘=1  samples, each sample consist of a total of 18 features: 

 

𝑆𝑘 = {𝑓𝑘1, 𝑓𝑘2, … , 𝑓𝑘15, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑎𝑏𝑒𝑙𝑘 ,  
                             𝐵𝑜𝑡𝑛𝑒𝑡𝑁𝑎𝑚𝑒𝑘  , 𝑒𝑛𝑠𝑜𝑟𝐼𝑑𝑘} 

(2) 

 

where, ActivityLabel represents traffic type as botnet or normal. 

The feature BonetName represents the botnet activity type as 

Neris, Virut, Rbot, Nsys.ay, Sogo, Murlo,Menti, or Normal. 

The ensorId feature represents the sensor identifier as 1, 2, or 

3. In this paper, we aim to detect the attack type of each traffic 

sample using the LSTM-AE-XGB model. We intend to use 

hybrid DL model to address a multiclass classification 

problem for botnet activity identification over the NCC2 

dataset. A long-short-term memory-based autoencoder 

(LSTM-AE) is utilized to extract and generate a new feature 

set representing attack classes. The computed latent feature 

representation captures temporal dependencies and long-term 

patterns present in traffic data captured simultaneously over 

parallel sensors. Traffic activities are detected and classified 

using the XGBoost classifier. 

A general overview of the proposed model LSTM-AE-XGB 

architecture for simultaneous botnet attack detection is given 

in Figure 2. 

 

 
 

Figure 2. An overview of the LSTM-AE-XGB model for 

simultaneous botnet attack detection 

 

3.2 The NCC-2 dataset simultaneous botnet dataset 

 

In this paper, the recently released NCC-2 Simultaneous 

Botnet dataset [15] is used for feature extraction and model 

training. The dataset includes data from three parallel sensors 

that capture normal, sequential and simultaneous botnet attack 

activities. It provides a traffic network taking into 

consideration the distributed nature of botnet attacks. In this 

dataset, botnet attack scenarios are simulated based on attacks 

extracted from the CTU-13 [27] and NCC [28] datasets. The 

two types of network traffic activities Botnet and normal are 

simultaneously captured over three sensors. The dataset 

contains a total of four sub-datasets. Three subsets include 

traffic data from each sensor S1, S2 and S3 recorded over eight 

hours. In addition, a sub-dataset incorporates a combination of 

those subsets. 

The sub-dataset contains traffic captured by sensor S1 

consists of several botnet activities, including Neris, Rbot, 

Virut, Sogo and NSIS.ay. Sensor S2 sub-datset includes traffic 

from four attack activities: Menti, Virut, Rbot and Neris. 

Traffic data collected from the third sensor S3 includes botnet 

types: Virut, Rbot, NSIS.ay, Neris, and Murlo botnet attack 

types. A combination of those three sub-datasets is also 

provided. Table 1 lists the instance numbers for each botnet 

attack type captured from different sensors in the NCC2 

dataset. 

The dataset contains 15 features existing in the CTU-13 and 

NCC datasets, including StartTime, SrcAddr, Activity time, 

Dur, DstAddr, Proto, Sport, Dport, Dir, State, dTos, sTos, 

TotPkts, SrcBytes, TotBytes and Label. In addition, there are 

three features describing traffic type, botnet activity type, and 

sensor information. 

 

Table 1. Traffic type distribution for the three sub-datasets of 

the NCC-2 dataset 

 
Sensor Traffic type Instances Total 

Sensor S1 

Neris 

Rbot 

virut 

Nsis.ay 

Sogo 

47000 

62000 

19000 

9000 

9000 

146000 

Normal 4749158 4749158 

Sensor S2 

Neris 

Rbot 

Virut 

Menti 

267000 

72000 

19000 

6000 

364000 

Normal 5634133 5634133 

Sensor S3 

Neris 

Rbot 

virut 

Nsis.ay 

Murlo 

220000 

13000 

38000 

9000 

14000 

294000 

Normal 3591792 3591792 

 

3.3 Preprocessing 

 

The NCC2 dataset is initially preprocessed by applying data 

cleaning, attack selection, and encoding techniques. The used 

data set consists of three sub-datasets. Each corresponds to 

network traffic captured by a sensor. Captured data depends 

on the covered segment of the network. This includes specific 

criteria such as a defined range of IP addresses, ports, and 

particular protocols used. Hence, the different sub-datasets are 

preprocessed separately. Preprocessing involves cleaning, 

encoding, attack selection, resampling, and normalization. 

Data is cleaned by removing null values, duplicate rows, and 

unused features such as the binary classification label 

ActivityLabel. 

The proposed model aims to detect attacks simultaneously 

captured by all three sensors; each attack class that is not 

captured in parallel is removed. As a result, the feature 

BonetName will represent five attack types: Neris, Virut, Rbot, 

Nsis.ay, and Normal, and the model is used for five class 

classification task. 

158



 

Despite the fact that the performances of ML and DL 

models are strongly affected by imbalanced data, Moreover, 

the Normal class represents the majority class with 13975083 

instances, while the total number of botnet attack instances is 

significantly lower. We apply majority class undersampling 

using the Random Undersampling Technique (RUS) to 

balance normal and attack traffic activities at 50% each. 

Finally, the three sub datasets are merged into one dataset, 

and the Z-score normalization technique is applied to scale the 

data. The resulting dataset is then split with a ratio of 80% for 

training and 20% for tests used for classifier training and 

classification. 

 

3.4 Feature extraction 

 

Relevant features from the dataset are extracted and reduced 

using LSTM-AE. In fact, efficient feature extraction is crucial 

for enhancing classification results in high-dimensional 

datasets. 

Autoencoder (AE) is an unsupervised learning artificial 

neural network. Intended to generate a low-dimensional 

feature representation of the input data in a nonlinear space 

[29]. The architecture of an autoencoder consists of three 

layers: the input layer, the encoder, and the decoder neural 

network. The encoder processes the input data to produce a 

learned latent representation that captures key features. In 

contrast, the decoder aims to precisely reconstruct the input 

data based on the produced representation. 

The LSTM-based autoencoder (LSTM-AE) is widely used 

for anomaly detection, dimensionality reduction, and 

significant characteristic extraction from series data [29-31]. 

In this work, we use the LSTM neural network as the encoder 

layer. LSTM-AE aims to model temporal dependencies over 

the traffic sequence and produce an optimal latent 

representation. We train a one-layer LSTM-based autoencoder 

using the preprocessed data to generate a latent representation 

L computed using the following equation: 

 

𝐿 = 𝐿𝑆𝑇𝑀(𝑊𝑆 + 𝑏) (3) 

 

where, S is the traffic data sequence from the input layer, W is 

the weight matrix, and b is the bias vector. 

The LSTM-AE consists of one LSTM layer of 32 units and 

a ReLU activation function, followed by a RepeatVector layer. 

The Adam optimizer and the Mean Squared Error (MSE) loss 

function are used for model compilation. The training is 

performed across 10 epochs with a batch size of 256. 

Algorithm 1. gives a description of the LSTM-AE-based 

feature extraction method. The produced latent representation 

L is considered an optimal feature representation and will be 

further considered for classifier training and evaluation. 

 

3.5 Attack detection and identification 

 

Extreme Gradient Boosting (XGBoost) is an ensemble 

learning technique that employs the gradient boosting 

technique over a set of decision trees. The XGBoost classifier 

presents strong advantages, including the ability to effectively 

classify instances by learning from previous mistakes, employ 

fine-tuning hyperparameters, adopt regularizing techniques, 

and handle imbalanced data [32]. 

 

 

Algorithm 1. Pseudo code of LSTM-AE based feature extraction 

method 
Input: 

- X train: Preprocessed training subset 

- X test: Preprocessed test subset 

Output: 

- L train: Latent representation for the training subset 

- L test: Latent representation for the test subset 

Local parameters: 

- X train←(1, 14) 

- Latent dim← 8 

- Number epochs←10 

- batch size← 256 

- Activation function ← Relu 

- Used optimizer←Adam 

- Selected loss function← MSE 

Begin 

create encoder model  

encod model.add(LSTM layer)  

encoder model.add(RepeatVector layer) 

encoder model.compile(optimizer=’adam’, loss=’mse’) 

encoder model.fit(X train) 

L train ← encoder model.predict(X train)  

L test ←encoder model.predict(X test)  

End 

 

3.6 Attack detection and identification 

 

Extreme Gradient Boosting (XGBoost) is an ensemble 

learning technique that employs the gradient boosting 

technique over a set of decision trees. The XGBoost classifier 

presents strong advantages, including the ability to effectively 

classify instances by learning from previous mistakes, employ 

fine-tuning hyperparameters, adopt regularizing techniques, 

and handle imbalanced data [32]. 

 

 
 

Figure 3. The overall architecture of the used XGBoost 

classifier 

 

XGBoost aims to reduce prediction errors through the 

residual aggregation of weak leaner (decision tree) at each step. 

To ensure low complexity and avoid overfitting, a regulariza- 

tion technique is employed [18]. It aims to minimize the loss 

following the equation: 

 

𝐿(𝑡) = ∑ 𝑙(𝑦𝑘 , 𝑦′
𝑘
𝑘−1 + 𝑓𝑡(𝑋𝑖)) + 𝜃(𝑓𝑡)𝑛

𝑘=1   (4) 

 

where, 𝑦′𝑘
𝑘−1 is the prediction of the k example by the 

increment t and θ(ft) is a penalty parameter [18]. 
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In this paper, we train the XGBoost classifier using the 

computed latent representation L. The architecture of the 

XGboost classifier is given in Figure 3. We aim to accurately 

detect anomalous activity and identify the exact botnet type. 

 

3.7 Evaluation metrics 

 

Extreme Gradient Boosting (XGBoost) is an ensemble 

learning technique that employs. In this work, we address a 

multiclass classification problem using ML and DL techniques. 

Hence, for the proposed model evaluation, the standard 

metrics, including accuracy, precision, recall, F1-score and the 

confusion matrix (CM) are considered. To compute these 

measures, four parameters are first extracted: true negative 

(TN), true positive (TP), false negative (FN) and false positive 

(FP). and false negative (FN). The TP, TN represent traffic 

type instances correctly identified, and the FP, FN are the 

miss-classified instances. The following equations are used to 

compute the following metrics: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃)
  (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
  (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
   (7) 

 

 

4. EXPIREMETAL RESULTS 

 

The performance of the proposed AE-LSTM-XGB model 

for parallel botnet detection is explored and presented in this 

section. Moreover, we performed a comparative performance 

analysis of the state-of-the-art ML-based and DL-based 

solutions for efficient feature extraction and parallel botnet 

detection. 

 

4.1 Experimental setup 

 

Table 2. Parameters of the used XGBoost classifier 

 
Parameters Description Value 

Evaluation 

Metric 

Metric for measuring performance 

during training 

Log loss 

function 

Learning Rate Model weight update step size 0.3 

Objective 
Probabilistic classification of 

multiclass data 
- 

Gamma 
Leaf splitting minimum reduction 

loss 
0 

Random State by 

Tree 
Reproducibility random seed 0 

Regularization 

Lambda 
Term of L2 regularization 1 

Max Depth Tree maximum depth 6 

Iterations 

(n_estimators) 
Training rounds 100 

Scale POS 

Weight 
Scaling positive examples errors 1 

Min Child 

Weight 

Leaf node minimum required sum 

of weights 
1 

colsample_bytree Features percentage for tree 1 

Subsample 
Training instances percentage used 

by each tree 
1 

 

The experimental setup used the Google Colaboratory 

environment. Google Colab is a cloud-based Jupyter notebook 

environment that incorporates required software, including 

Python 3, and uses libraries such as Scikit-learn, Keras, 

NumPy, Pandas, and TensorFlow. The XGBoost classifier is 

trained with the parameters listed in Table 2. 

 

4.2 Performance analysis 

 

To ensure accurate detection over the NCC2 dataset, we 

processed data to balance traffic class instances. We have 

applied the RUS downsampling methods to balance sample 

data for different traffic activities. Figure 4 shows the class 

distribution over all three sensors before and after class 

balancing. The network activity type is 50% for normal and 

50% for total attack traffic types. 

 

 
 

Figure 4. Class distribution of the NCC2 dataset before and 

after preprocessing 

 

The performance of the proposed model is presented in 

Table 3 and the confusion matrix is given in Figure 7. Results 

indicate that the proposed model achieves high performance 

on the used dataset with an F1-score, recall, and precision of 

up to 0.999. 

 

Table 3. Multi-class classification report of the proposed 

model over the NCC2 Dataset 

 

Class Name Pre Rec F1 support 
Class 

freq % 

Normal 1.000 1.000 1.000 129149 50.00 

Neris 1.000 1.000 1.000 92940 35.89 

Rbot 0.999 0.998 0.999 13096 05.11 

Virut 0.998 0.999 0.999 13156 05.10 

Nsis.ay 1.000 1.000 1.000 10126 03.89 

Accuracy 0.999 258467 0.0 

Macro avg 0.999 0.999 0.999 258467 0.0 

Weighted 

avg 
1.000 1.000 1.000 258467 0.0 

 

The XGB classifier achieves an accuracy, precision, and 

recall of 1,000 on the “Normal, Neris” and “Rbot” classes, 

indicating the model’s efficiency in correctly detecting class 

instances from these classes with minimal misclassification. 

These results demonstrate that the proposed model is highly 

effective and can accurately distinguish instances, even for 

small classes. The macro average value of 0.999 and weighted 

average value of 1,000 indicate the proposed model’s ability 

to efficiently learn important features of different attack types 

and emphasize its reliability for imbalanced multiclass 

classification. 

Table 4 lists the results of 10-fold cross-validation of the 

proposed LSTM-AE-XGBoost model. The model demon 

strates an average accuracy of 0.9997, and F1 scores up to 
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0.9998 across 10 folds. Precision values range from 0.999623 

to 0.999845. The model presents significant efficiency across 

all folds, indicating its ability to accurately predict attack types 

with minimal misclassification. Proposed model consistent 

performances suggest its robustness and generalization 

capacity. 

 

Table 4. 10-fold cross validation of the proposed model 

LSTM-AE-XGBoost 

 
Fold Acc Pre Rec F1 

1 0.999845 0.999845 0.999845 0.999845 

2 0.999778 0.999845 0.999778 0.999778 

3 0.999836 0.999836 0.999836 0.999836 

4 0.999758 0.999759 0.999758 0.999758 

5 0.999642 0.999643 0.999642 0.999642 

6 0.999836 0.999836 0.999836 0.999836 

7 0.999816 0.999816 0.999816 0.999816 

8 0.999623 0.999623 0.999623 0.999623 

9 0.999826 0.999826 0.999826 0.999826 

10 0.999826 0.999826 0.999826 0.999826 

𝝁 0.999779 0.999786 0.999779 0.999779 

𝝈 0.000082 0.000084 0.000082 0.000082 

 

 
 

Figure 5. Accuracy and loss curves of the proposed model 

over the NCC2 dataset 

 

Accuracy and loss curves are presented in Figure 5. The 

proposed model presents a stable curve over epochs. Accuracy 

increases to 0.999 around epochs ranging from 0 to 20. Loss 

curves decrease in the first 20 epochs and remain stable near 

0.1. The observed patterns demonstrate that the proposed 

model learns effectively and converges efficiently throughout 

the training process, resulting in high accuracy with minimal 

loss. 

 

4.3 Evaluation of feature extraction technique 

 

Preprocessed data is subjected to feature extraction and 

reduction. In the proposed model, an LSTM-based AE is used 

to compute an optimal latent representation. To demonstrate 

the importance of relevant feature extraction methods for 

attack detection and their ability to affect classification 

performances, we compared the performances of feature 

extraction method to efficient used in IDS. 

For comparison, the LSTM-AE is compared to LSTM and 

random forest (RF)-based techniques. The XGBoost classifier 

is trained using different feature sets, while the preprocessing 

step is unchanged for the three techniques. The RF-based 

method selects features based on their importance. The 

optimal feature set is generated by retaining relevant features 

based on a high score [13]. 

Figure 6 shows an evaluation of classification metrics and 

indicates that the LSTM-AE technique achieves the best 

results in comparison to other feature extraction techniques. 

The XGBoost classifier exhibits a high precision of 0.999 over 

the LSTM-AE set, implying a low missed identification. The 

lowest results are given using LSTM-based extracted features 

set with a precision of 0.913. 

 

 
 

Figure 6. Evaluation of different feature extraction 

techniques 

 

4.4 Evaluation of attack detection and identification 

 

IDS intends to increase the number of detected malicious 

activities and reduce the number of reported attacks. Hence, 

precision and F1-score metrics are considered accurate 

indicators of model performance and efficiency. For further 

evaluation, we compare the results obtained by the proposed 

model with three classifiers. 

Using the computed latent representation, we trained 

random forest (RF), CNN-LSTM, and multi-layer perceptron 

(MLP) for simultaneous parallel botnet attack detection and 

identification. Table 5 lists metrics comparisons of different 

classifiers over the NCC2 dataset. Figure 7 presents the con- 

fusion matrix of four classifiers over the test set. 

 

Table 5. Metrics comparison of proposed model with other 

classifiers using LSTM-AE features over the NCC2 dataset 

 

Classifier 
Class 

Name 
Pre Rec F1 

CNN-LSTM 

Normal 0.999 0.997 0.998 

Neris 0.997 0.998 0.997 

Rbot 0.962 0.983 0.973 

Virut 0.968 0.948 0.958 

Nsis.ay 0.974 0.978 0.976 

RF 

Normal 0.932 0.999 0.965 

Neris 0.946 0.990 0.968 

Rbot 0.721 0.435 0.542 

Virut 0.768 0.401 0.527 

Nsis.ay 0.977 0.775 0.864 

MLP 

Normal 1.000 0.999 0.999 

Neris 0.995 0.999 0.997 

Rbot 0.976 0.917 0.945 

Virut 0.947 0.986 0.966 

Nsis.ay 0.989 0.990 0.989 

Proposed LSTM-AE-

XGB 

 

Normal 1.000 1.000 1.000 

Neris 1.000 1.000 1.000 

Rbot 0.999 0.998 0.999 

Virut 0.998 0.999 0.999 

Nsis.ay 1.000 1.000 1.000 
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Most classifiers demonstrate high performance for the 

detection of “Normal” and “Neris” traffic activities, with a 

precision ranging from 0.932 to 1.0, a recall score of 0.917 to 

0.999, and a F1-score of about 0.970, indicating their ability to 

successfully detect both benign patterns and common attack 

behaviors. However, the CNN-LSTM, RF, and MLP show 

difficulties in identifying “Rbot” and “Virut” activities. The 

lowest F1-score is achieved by RF on “Nsis.ay” class 

indicating detection difficulties for less frequent attacks. The 

proposed LSTM-AE-XGB model achieves the best overall 

performance across different classes, demonstrating its 

capacity to identify different traffic types. A precision, recall, 

and F1- score of 1.00 for “Normal” and “Neris” and up to 

0.999 for the rest of the classes showcase its efficiency for 

identification of various traffic activities and its generalization 

ability to capture complex and unknown botnet patterns. 

 

 
 

Figure 7. The confusion matrix resulting from the proposed 

model and other classifiers 

 

 

5. CONCLUSIONS 

 

In this study, we proposed a DL-based model to effectively 

analyse and detect botnet activities from IoT network traffic 

data captured by three parallel sensors. Long-short-term 

memory-based autoencoders are used for simultaneous 

characteristics. Traffic type is identified through a multiclass 

classification using the XGboost classifier over the NCC-2 

dataset. The obtained results indicate that the proposed model 

is able to accurately detect botnet activity by achieving 

accuracy and precision up to 0.999. A comparative analysis 

with state-of-the-art ML and DL techniques for both feature 

extraction and classification demonstrates that the proposed 

LSTM-AE-XGBoost model presents a superior generalization 

ability. 

In the future direction, the proposed model will be evaluated 

for detecting unknown botnet attacks and other cyber-attack 

patterns. Additionally, we envisage examining the proposed 

LSTM-AE-XGB-based IDS deployment into real-time IoT 

network. 
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