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With the rapid development of communication technology, the complexity of the 

electromagnetic environment is increasing, making the detection and classification of 

electromagnetic signal anomalies a crucial task for ensuring communication quality and 

security. Deep learning technologies offer new perspectives and methodologies for 

addressing this issue. However, traditional models often display limited adaptability in 

complex electromagnetic scenarios, particularly under coherent noise and multi-source 

interference, and they require extensive labeled data. To overcome these challenges, this 

paper proposes a novel approach for electromagnetic signal anomaly detection and 

classification. Initially, an adaptive mechanism for coherent noise suppression is studied to 

enhance detection performance in complex environments. Subsequently, by integrating deep 

Q-net (DQN) technology, an intelligent recognition and classification strategy is developed.

Through self-learning, this method effectively identifies and classifies abnormal signals,

reducing reliance on large volumes of labeled data while improving the system's adaptability

to dynamic environments and processing accuracy. This research demonstrates the potential

application of deep learning in modern electromagnetic signal processing and holds

significant implications for advancing electromagnetic environment monitoring and

management technologies.
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1. INTRODUCTION

In the context of digitalization and networking, 

electromagnetic signals, as carriers of information 

transmission and detection, are playing an increasingly 

important role [1-4]. With the rapid development of wireless 

communication technology, the electromagnetic environment 

has become increasingly complex, and the quality and security 

of electromagnetic signals have faced unprecedented 

challenges [5, 6]. The detection and classification of abnormal 

signals, especially in noisy environments, have significant 

practical significance in the fields of communication security, 

electromagnetic compatibility testing, and spectrum 

management [7]. Accurately and effectively identifying and 

processing abnormalities in electromagnetic signals is a key 

technology to ensure a clean electromagnetic environment and 

smooth communication. 

With the rapid development of deep learning technology, its 

application in the field of electromagnetic signal processing 

has gradually unfolded [8, 9]. Deep learning methods have 

shown great potential in feature extraction, pattern recognition, 

and other aspects, providing new solutions for the detection 

and classification of electromagnetic signal anomalies [10-14]. 

Through deep learning models, we can more accurately 

identify the abnormal parts of signals, effectively suppress 

interference in complex electromagnetic environments, and 

classify features, thus improving the efficiency and accuracy 

of electromagnetic signal processing. 

However, existing deep learning methods still have certain 

limitations in the detection and classification of 

electromagnetic signal anomalies [15-18]. Firstly, traditional 

deep learning models have insufficient adaptability to 

dynamically changing electromagnetic environments, and 

their performance in detection and classification is 

significantly reduced when facing multi-source interference 

and non-stationary noise in the electromagnetic field [19, 20]. 

Secondly, training deep learning models requires a large 

amount of labeled data, but in practical applications, it is very 

difficult to obtain a large amount of accurately labeled 

electromagnetic signal data, which limits the model's 

generalization ability and practicality [21]. 

In response to the shortcomings of existing methods, this 

paper proposes a new method for electromagnetic signal 

anomaly detection and classification. Firstly, an adaptive 

coherent noise suppression algorithm is designed, which can 

effectively improve signal detection performance in complex 

electromagnetic environments by dynamically adjusting the 

noise suppression mechanism. Secondly, this paper introduces 

the DQN technology, which achieves precise identification 

and classification of electromagnetic signal anomalies through 

an intelligent decision-making learning process. This method 

not only improves the accuracy of anomaly detection but also 

optimizes the classification process, enabling the system to 

adapt to complex and variable electromagnetic environments 
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without the need for a large amount of labeled data. This 

research not only expands the application of deep learning in 

the field of electromagnetic signal processing but also 

provides new technical means for electromagnetic 

environment monitoring and management, with significant 

theoretical value and practical application prospects. 

 

 

2. ELECTROMAGNETIC SIGNAL ANOMALY 

DETECTION BASED ON ADAPTIVE COHERENT 

NOISE SUPPRESSION 

 

In the application scenarios of electromagnetic signal 

anomaly detection and classification, existing problems often 

include high noise levels caused by complex electromagnetic 

environments, mutual interference between different signal 

sources, and the insufficient recognition accuracy of 

traditional detection methods in multi-signal scenarios. To 

address these challenges, this paper proposes an 

electromagnetic signal anomaly detection algorithm based on 

adaptive coherent noise suppression. This algorithm can more 

effectively extract and separate target signals from noisy 

backgrounds, reducing noise interference while preserving 

signal integrity, thereby improving detection accuracy in 

multi-signal, dynamically changing environments. 

The proposed algorithm first focuses on the electromagnetic 

signals measured by sensors. These signals typically contain 

both the target signals and background noise. The target 

signals are the useful information we wish to detect and 

analyze, while the background noise may include various 

interferences, such as natural environmental noise and man-

made electronic device interference. The sensor captures the 

superposition of these two components. Based on this, the first 

step of the algorithm is to process the captured electromagnetic 

signals to assess their coherence. The coherence here refers to 

the phase relationship between different frequency 

components, indicating whether there is a fixed time delay 

relationship between signal components. Subsequently, the 

algorithm infers the background noise transfer function based 

on the coherence calculated in the previous step. The transfer 

function is a mathematical model describing the relationship 

between system input and output, defined by the system's 

response to different frequency components. In the context of 

electromagnetic signal detection, the transfer function helps us 

understand how background noise affects the received signals 

under specific sensor configurations and environmental 

conditions. By analyzing the relationship between signal 

coherence and frequency, the impact of noise on the signal at 

different frequencies can be estimated, thus constructing a 

background noise model for the current environment and 

sensor setup. Finally, the algorithm uses the derived transfer 

function to specifically filter out the background noise in the 

electromagnetic signals to be detected. This step essentially 

implements signal frequency domain filtering through the 

transfer function. For the detected signals, the algorithm 

suppresses those frequency components that match the noise 

characteristics by adjusting the signal's gain at different 

frequencies, thereby weakening the noise impact and 

highlighting the target signal. Figure 1 shows the flowchart of 

the proposed electromagnetic signal anomaly detection 

method. 

 

 
 

Figure 1. Flowchart of the proposed electromagnetic signal anomaly detection method 

 

Specifically, first analyze the historical electromagnetic 

signal data collected through sensors. This paper uses the 

complex coherence function to analyze these historical data. 

The complex coherence function is a complex function that 

characterizes the frequency domain correlation of signals, 

providing amplitude and phase information of signal 

coherence. By analyzing the electromagnetic signal historical 

data collected under different time periods and conditions 

through the complex coherence function, researchers can 

identify changes in signal patterns, providing important prior 

information for subsequent anomaly detection and 

classification. This step is the basis for understanding signal 

behavior and determining subsequent processing strategies. 

Assuming the auto-power spectral density and cross-power 

spectral density of two electromagnetic historical signals b1(μ) 

and b2(μ) collected at different times and under different 

conditions are represented by θbu,bk(μ), where u, k=1,2. 

Analyzing the collected signal data with the complex 

coherence function, we have:  
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Let one segment of electromagnetic historical signal be 

represented by b1, collecting only normal signals and 

background noise signals, represented by r(v). Further, set up 

a sensor, the collected signal represented by b2(v), including 

abnormal signals y(v) and the sum of normal signals with 

background noise signals r(v), represented by v for the number 

of sampling points, the transfer function between the two 

signals represented by g(v), the two signals represented as:  

 

( ) ( )1b v r v=  (2) 

 

( ) ( ) ( ) ( )2b v y v g v r v= +   (3) 

 

After identifying the signal patterns in the historical data, 

the algorithm will perform Discrete Fourier Transform (DFT) 

on the reference electromagnetic signal historical data and 

electromagnetic signal data containing abnormal signals and 

noise. DFT can convert time-domain signals to frequency-

domain, revealing the frequency components of the signal. 

Performing DFT on both the reference and the signal to be 

detected, their spectra can be obtained, in preparation for 

calculating the transfer function and cross-spectral 

relationship in the next steps, and also providing the basis for 

the characteristic frequency of the abnormal signal. Assuming 

the frame index is represented by j, μm=2πm/M, m=0,1,2,...,M. 

If the length of a frame in the sample is represented by M, then 

the discrete form after the DFT is:  

 

( ) ( )1 , ,m mB j R j =  (4) 

 

( ) ( ) ( ) ( )2 , , , ,m m m mB j Y j G j R j   = + •  (5) 

 

After obtaining the signal's spectrum, the algorithm will use 

the data of the reference signal and the abnormal noise-

containing signal to generate the transfer function. The 

generation of the transfer function relies on the cross-spectral 

relationship between the data of two signals, which is the 

correlation in the frequency domain of the two signals, 

combining power spectral density and phase information, and 

can characterize the linear relationship between signals. 

Through the cross-spectral relationship, the algorithm can 

construct a mathematical model describing how the signal is 

transferred from input to output. Assuming the auto-spectrum 

and cross-spectrum of b1(μ) and b2(μ) are represented by TBuBk, 

u,k=1,2, and the auto-spectrum of r(μ) by TRR(μ,j). Specifically, 

using the cross-spectral relationship between b1(v) and b2(μ), 

the transfer function can be obtained:  

 

( ) ( ) ( ) ( )
1 2

, , , ,B B YR RRT j T j G j T j   = +  (6) 

 

Because the abnormal signal is incoherent with the 

background signal, TRR(μ,j)=0, thus a simplified form is:  

 

( ) ( ) ( )
1 2

, , ,B B RRT j G j T j  =  (7) 

 

In order to more accurately filter out background noise and 

abnormal signals, the algorithm needs to adaptively adjust the 

transfer function. This adjustment is based on the estimation 

of the auto-spectrum and cross-spectrum of the signals, which 

can reflect changes in noise and abnormal signals. The auto-

spectrum provides the strength information of a single signal 

at various frequencies, while the cross-spectrum provides the 

correlation information between two signals. Combining this 

information, the algorithm can automatically adjust the 

transfer function to adapt to changes in the signal, ensuring 

that while filtering out noise, the target signal is preserved to 

the greatest extent. Let the transfer function be represented by 

G(μ), then we have:  
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After completing the processing in the frequency domain, 

the algorithm will perform an inverse Fourier transform on the 

processed frequency domain signal, converting it back into a 

time-domain signal. This step is to re-obtain a signal that can 

be analyzed on a time series. Since the signal may be processed 

in segments in the frequency domain, at this time, the overlap-

add method is used to reconstruct the complete time-domain 

signal. Overlap-add is a technique of overlapping and adding, 

used to seamlessly splice segmented signals that have been 

filtered in the frequency domain, thereby restoring a 

continuous time-domain signal. Thus, the final output is the 

purified target signal, providing accurate basic data for the 

subsequent anomaly detection and classification stage. The 

following formula gives the expression for reconstructing the 

time-domain target signal y(v): 

 

( ) ( ) ( ) ( )( )1

2 1y v D B G B  −= −  (9) 

 

In the context of electromagnetic signal anomaly detection 

and classification, even after the preliminary processing of 

electromagnetic signals using an adaptive coherence noise 

suppression method, signals often still contain residual noise 

and interference. These unstable factors can lead to a decrease 

in the performance of the detection algorithms, manifested as 

indistinct signal features, decreased classification accuracy, 

and insufficient sensitivity to weak signal variations. To 

address these issues, it is necessary to smooth the processed 

signals. In order not to interfere with the learning process of 

deep learning models and to improve the accuracy and 

reliability of signal classification, this paper chooses to use the 

Savitzky-Golay filter for signal smoothing. The Savitzky-

Golay filter smooths the signal by fitting a polynomial to the 

data within a moving window of the signal, and using the 

evaluation result of this polynomial as the smoothed signal. 

This method can effectively preserve the characteristics of the 

signal, such as peaks, width, and height, and compared to other 

smoothing techniques, it can maintain important structural 

features of the signal while reducing noise, thereby improving 

the performance of deep learning models in the detection and 

classification of electromagnetic signal anomalies. 

The Savitzky-Golay filter smooths a signal by fitting a 

polynomial to the data in a local window of the signal and 

replacing the value at the center point of the window with the 

value of the polynomial. Specifically, taking the 5-point 

quadratic construction method as an example, where the five 

points are a[-2], a[-1], a[0], a[1], a[2], the following equation 

provides the quadratic parabolic expression constructed based 

on these five points:  
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The objective of the method is to find the optimal 

coefficients x0 that satisfy the least squares fit, which can be 

expressed as:  

 

( ) ( )( )
2
, 2, 1,0,1,2R d u a u u= − = − −  (11) 

 

If the value of the above equation is minimized, equivalent 

to the minimization of R's partial derivatives, then:  

 

0
o

R
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=


 (12) 

 

The three coefficients can be determined based on the 

equations of partial derivatives. After smoothing, further 

calculations of the square of the signal are weighted, and 

adaptive weights are computed. Squared weighting is to 

amplify potential features in the signal, making the abnormal 

part more prominent for easier identification. Adaptive 

weights are dynamically adjusted based on the local 

characteristics of the signal, enhancing the model's sensitivity 

to important features in the signal while reducing the impact 

of less important parts. Subsequently, normalization is 

performed to ensure the numerical stability of the feature 

signals. Finally, the Neyman-Pearson criterion is used to 

determine the alert threshold, based on which the final 

judgment result of the signal is obtained. The Neyman-Pearson 

criterion is a decision-making criterion that maximizes the 

detection probability by choosing a threshold. In the task goal 

of electromagnetic signal anomaly detection, this means that 

the system can detect as many real anomalies as possible while 

maintaining a low false alarm rate. Through this step, the 

system can convert the smoothed feature signal into the final 

judgment result based on the set threshold, thereby completing 

the task of signal anomaly detection and classification. 

 

 

3. ELECTROMAGNETIC SIGNAL ANOMALY 

DETECTION AND CLASSIFICATION BASED ON 

DQN 

 

The existing problems in the classification and 

identification of electromagnetic signal anomalies primarily 

include the traditional methods' tendency to confuse 

modulation modes in noisy environments, difficulty adapting 

to dynamic changes, and the high cost of obtaining labeled 

data. To adapt to the complexity and variability of the 

electromagnetic signal environment, while avoiding the 

limitations of existing supervised learning methods when 

facing unknown or interfering signals, this paper chooses to 

implement electromagnetic signal anomaly detection and 

classification based on DQN. The DQN algorithm, which 

integrates the feature extraction capability of deep learning 

and the decision-making learning capability of reinforcement 

learning, can learn effective strategies through interaction with 

the environment under partially supervised conditions. The 

advantage of DQN lies in its ability to effectively classify 

various modulation methods through self-exploration and 

learning, without relying on a large amount of labeled data, 

and to continuously optimize the identification strategy 

through cumulative rewards, especially for finely 

distinguishing easily confused signals. Therefore, the method 

based on DQN is expected to solve these problems present in 

traditional algorithms, improving the accuracy and robustness 

of electromagnetic signal anomaly detection and classification, 

and meeting the demand for intelligent analysis of 

electromagnetic signals in practical applications. 

 

 
 

Figure 2. Design of electromagnetic signal anomaly detection and classification system based on DQN 

 

In the application scenario of electromagnetic signal 

anomaly detection and classification, the misidentification of 

certain signals may have more severe consequences than 

others. For example, in the field of communication security, 

unrecognized abnormal signals may lead to security 

vulnerabilities, while in the medical field, the misjudgment of 

certain key signals may affect the diagnosis of diseases. 

Therefore, for those signals that are easily confused and of 

high criticality, the DQN needs to increase their identification 

accuracy through imbalanced classification. If an imbalanced 

classification mode is not set, meaning the agent adopts a 

balanced recognition strategy for all types of signals, the 

system may not provide sufficient attention to those more 

important signals, leading to a low overall system recognition 
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accuracy, especially in situations where tolerance for errors is 

extremely low. By adjusting the reward mechanism, providing 

higher rewards for the correct identification of those key 

signals, and possibly setting greater penalties for incorrect 

identifications, the DQN can be motivated to focus more on 

these signals, improving their recognition accuracy, thereby 

enhancing the overall system performance and reliability. 

Figure 2 shows the design principle of the electromagnetic 

signal anomaly detection and classification system based on 

DQN. 

The electromagnetic signal anomaly detection and 

classification system based on DQN can be likened to a 

strategy game where the agent's goal is to identify non-

standard or anomalous signals in the electromagnetic spectrum 

by learning, focusing particularly on signals that appear 

infrequently, are unknown, or may indicate interference and 

threats. In this game, the agent analyzes electromagnetic signal 

samples to predict whether they belong to an anomalous 

category. When the agent's prediction matches the actual label, 

i.e., successfully detecting an anomalous signal, it receives 

positive points; conversely, if it fails to correctly identify an 

anomaly, or incorrectly classifies a normal signal as 

anomalous, it is penalized by score deduction. To reinforce the 

identification of high-risk signals, the system sets higher 

rewards and penalties for types of anomalous signals that are 

usually harder to detect. Through this incentive mechanism, 

the DQN model is trained to focus on accurately identifying 

and classifying anomalous patterns in electromagnetic signals. 

This paper formulates the task of anomaly signal detection 

and classification as a series of sequential decision problems 

and uses a DQN-based approach to solve these problems. The 

design steps are as follows: 

(1) Constructing the DQN environment. In this environment, 

the state space T consists of a collection of signal samples 

captured from the electromagnetic environment, which can be 

represented as Q={<qu,au>|u=1,2,3,...}, where qu represents a 

signal sample, and au represents the features of the sample. 

Each signal sample qu corresponds to a label indicating 

whether the signal is anomalous. At any given moment s, the 

current state Ts reflects a signal sample from a new dataset and 

its corresponding features. The agent's task is to accurately 

determine whether these samples are anomalous signals. This 

process involves a continuous decision-making framework, 

where the agent must use limited historical information to 

continually optimize its strategy for detecting anomalous 

signals. This is achieved by processing feedback signals from 

the environment to improve recognition and response to 

potential threats in the electromagnetic environment.  

(2) The task at hand involves processing a shuffled dataset, 

which randomly provides a signal sample at each time step. 

Unlike other traditional signal detection and classification 

systems, the agent's goal here is to determine whether a signal 

is anomalous, rather than identifying its signal processing type. 

Suppose at time s, the current state Ts presented by the 

environment corresponds to the signal sample qs, which comes 

with a label as indicating whether the sample is anomalous. 

The agent observes this signal sample qs and generates a 

classification action bs based on its learned strategy, aiming to 

categorize the signal as normal or anomalous. If the agent's 

classification action bs matches the actual label as (i.e., 

correctly identifies the signal's anomaly status), the agent 

receives a positive reward; if it does not match, the agent is 

penalized, receiving a negative return. Through such feedback, 

the agent is motivated to accumulate a higher total score, 

thereby enhancing its accuracy in discriminating anomalous 

signals. The agent stores the data from each interaction with 

the environment in an experience pool F, and when taking 

actions, it selects an action randomly with a certain probability 

based on a linear annealing ɛ-greedy strategy, or chooses the 

action estimated to be optimal with probability 1-ε, i.e., the 

action that maximizes the state-action value function. This 

process continues, with the agent continually learning through 

interactions with the environment, not only accumulating 

experience of individual signals but also enhancing its 

recognition capability of the entire electromagnetic signal 

environment's anomalous states. 

 

 
 

Figure 3. Flowchart of electromagnetic signal anomaly binary classification based on DQN 
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(3) Setting of the reward function. The setting of the reward 

function directly influences the behavior guidance during the 

agent's learning process. This paper focuses on whether 

signals are anomalous, thus all signals can be divided into two 

major categories: normal signals (Q1) and anomalous signals 

(Q2). Anomalous signals may include some subclasses with 

similar features, which are more prone to misjudgment in 

practical applications, thus requiring more precise recognition 

by the agent. In this context, when the agent correctly 

identifies a normal signal, it is given a base positive reward; 

when it correctly identifies an anomalous signal, considering 

the importance and difficulty of anomaly signal detection, it is 

given a higher positive reward. Conversely, if the agent 

incorrectly classifies a normal signal as anomalous, or an 

anomalous signal as normal, a negative reward should be 

assigned. Figure 3 provides a flowchart for the binary 

classification of electromagnetic signal anomalies based on 

DQN. To drive the learning process more effectively, this 

negative reward can be differentiated based on the specific 

type and importance of the signal, for example, incorrectly 

judging a high-risk anomalous signal as normal should incur a 

more severe penalty. In this way, the reward function not only 

promotes the agent's learning to distinguish between normal 

and anomalous signals but also encourages the agent to 

discriminate between different categories of anomalous 

signals more finely, making the agent tend towards improving 

accuracy throughout the training process, especially when 

classifying those more difficult-to-identify anomalous signals. 

The definition formula for the reward function is as follows: 
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Through efforts to accumulate a higher total score RW, the 

system will undergo continuous training and learning.  
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

As shown in Figure 4, it can be observed that the 

performance trend of Support Vector Machine (SVM), 

Principal Component Analysis (PCA), and the adaptive 

coherent noise suppression algorithm proposed in this paper 

under different Signal-to-Noise Ratio (SNR) conditions. In 

extremely low SNR environments (-20dB to -2dB), the 

accuracy of all three methods is low, due to the high level of 

noise making it difficult to distinguish signal features. 

However, as the SNR increases, the accuracy of all methods 

increases. The proposed method surpasses SVM and PCA in 

accuracy starting from -10dB, and in the high SNR 

environment of 0dB to 30dB, the proposed method shows a 

more stable and higher accuracy. Especially in the range of 

10dB to 18dB, the accuracy of the proposed method reaches 

the peak value of 0.64, while in this range, the accuracy of 

SVM and PCA is maintained between 0.51 to 0.52 and 0.57 to 

0.61, respectively. Analyzing the above experimental data, it 

can be concluded that the adaptive coherent noise suppression 

algorithm proposed in this paper has significant performance 

advantages for signal detection in complex electromagnetic 

environments. Especially in the medium to high SNR range, 

the proposed method not only has high accuracy but also 

shows higher robustness and stability compared to SVM and 

PCA. This result indicates that by dynamically adjusting the 

noise suppression mechanism, the proposed method can more 

effectively adapt to changes in different SNRs, improve the 

accuracy of signal detection, especially in better SNR 

conditions, it can effectively overcome the interference of 

coherent noise, and provide more reliable detection 

performance.  

 

 
 

Figure 4. Comparison of accuracy of electromagnetic signal 

anomaly detection methods under different SNR conditions 

 

 
 

Figure 5. Comparison of accuracy of electromagnetic signal 

anomaly detection methods under different dataset sizes 

 

Figure 5 shows the impact of different sizes of datasets on 

the accuracy of SVM, PCA, and the adaptive coherent noise 

suppression algorithm proposed in this paper. Initially, on a 5k 

dataset, the accuracy of the proposed method is 0.56, slightly 

higher than SVM's 0.48 and PCA's 0.54. As the size of the 

dataset increases, the accuracy of all methods gradually 

increases, indicating that more data have a positive impact on 

model performance. Especially when the dataset size reaches 

160k, the accuracy of the proposed method reaches 0.81, 

surpassing SVM's 0.78 and PCA's 0.8. When the dataset size 

further increases to 740k, the accuracy of the proposed method 

reaches 0.99, while SVM and PCA reach 0.96 and 0.98, 

respectively. These results show that as the amount of data 

increases, the proposed method can better learn and adapt to 

signal features, achieving higher detection accuracy. The 

above experimental results clearly show that the adaptive 
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coherent noise suppression algorithm proposed in this paper 

can effectively handle large-scale datasets and show 

significant performance improvement as the dataset size 

increases. In all tested dataset sizes, the proposed method 

always maintains performance equal to or better than SVM 

and PCA, especially in large datasets, the accuracy of the 

proposed method is nearly perfect. This highlights the 

efficiency and accuracy of the adaptive algorithm in learning 

signal features in complex electromagnetic environments. 

 

 
 

Figure 6. Electromagnetic signal anomaly detection results 

using traditional coherent noise suppression algorithm 

 

 
 

Figure 7. Electromagnetic signal anomaly detection results 

using adaptive coherent noise suppression algorithm 

 

In simulated complex electromagnetic environments, the 

adaptive coherent noise suppression algorithm proposed in 

this paper was compared with traditional algorithms, and the 

experimental results are shown in Figures 6 and 7. In the 

experiments, the background signal was simulated through 

direct superposition, causing the normal signal and 

electromagnetic anomaly signal to have extremely high 

coherence in the frequency domain, almost close to 1, except 

at specific moments (at 50 seconds). When processing such 

data, the traditional coherent noise suppression algorithm, 

affected by non-Gaussian white noise, failed to effectively 

detect the weak electromagnetic anomaly signals. However, 

when the same set of data was processed using the adaptive 

algorithm designed in this paper, the results showed significant 

fluctuations at the moments when the target appeared, 

indicating that the electromagnetic anomaly signals were well 

preserved and the SNR was improved. This marks the superior 

detection capability of the adaptive algorithm over traditional 

methods. It can be concluded that although the adaptive 

coherent noise suppression algorithm demonstrated an 

advantage in detecting weak electromagnetic anomaly signals 

in the experiments, it also has some limitations. Especially 

near the appearance of the target signal, the algorithm 

produced significant fluctuations, which may lead to the risk 

of false positives. Also, small spikes were observed in non-

target signal areas, which might be the result of over-

adjustment in the algorithm's adaptive process. These issues 

reveal that while the adaptive algorithm is superior to 

traditional algorithms, there is still room for improvement in 

accuracy and stability. Therefore, future research should focus 

on reducing false positives and spikes, further refining and 

optimizing the adaptive mechanism to achieve more accurate 

and robust anomaly detection in various complex 

electromagnetic environments. 

 

Table 1. Performance comparison of different 

electromagnetic signal anomaly identification classification 

methods 

 
Model Acc Sp Sc MAcc 

Stacked Autoencoders 0.9325 0.9451 0.8451 0.9154 

DenseNet 0.8895 0.8562 0.8956 0.8754 

GRU 0.8745 0.9231 0.8874 0.9126 

BiLSTM 0.8623 - 0.9236 - 

TRPO 0.9125 0.74 0.9362 0.8326 

DDPG 0.9784 0.925 0.9415 0.9354 

CVAE - 0.911 0.825 0.865 

GAN 

CGAN 0.9315 0.9451 0.9362 0.9356 

RGAN 0.9316 0.9532 0.9356 0.9451 

WGAN 0.9235 0.9236 0.9254 0.9123 

CycleGAN 0.9254 0.9125 0.9215 0.9235 

The proposed method 0.9653 0.9654 0.9635 0.9658 

 

The performance comparison of different electromagnetic 

signal anomaly identification classification methods presented 

in Table 1 shows that the method based on DQN significantly 

outperforms other models. Specifically, the method achieved 

an accuracy (Acc) of 0.9653, specificity (Sp) and sensitivity 

(Sc) of 0.9654 and 0.9635 respectively, and a mean accuracy 

(MAcc) of 0.9658. Compared to traditional models such as 

Stacked Autoencoders, DenseNet, GRU, BiLSTM, and other 

reinforcement learning-based models like TRPO and DDPG, 

our method demonstrated higher overall classification 

performance. Moreover, even in comparison with various 

Generative Adversarial Network (GAN) variants, including 

CGAN, RGAN, WGAN, and CycleGAN, our method still 

showed superior identification and classification capability. It 

can be concluded that the electromagnetic signal anomaly 

identification classification method proposed in this paper 

based on DQN, stands out among all compared methods with 

its high accuracy and balanced specificity and sensitivity 

performance. This result proves that the proposed method is 

not only capable of effectively identifying and classifying 

electromagnetic signal anomalies but also demonstrates 

significant robustness and adaptability in dealing with 

uncertainties and dynamic changes in electromagnetic 

environments. Compared to traditional models, the application 

of DQN reduces the dependency on large volumes of labeled 

data, enhancing the model's generalization ability in detecting 

unknown signals. 

Table 2 presents a performance comparison of different 

DQN frameworks in the task of electromagnetic signal 

anomaly recognition and classification. The DQN method 

proposed in this paper achieved the best performance in terms 

of accuracy (Acc), specificity (Sp), sensitivity (Sc), and mean 

accuracy (MAcc), with an accuracy rate of 0.9689, specificity 
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and sensitivity both at 0.9687, and mean accuracy reaching 

0.9765, significantly higher than other DQN variants such as 

Double DQN, Multi-step DQN, and Distributed DQN. These 

data fully demonstrate the superior performance of the 

proposed method in the detection and recognition of 

electromagnetic signal anomalies, setting a new benchmark 

for adaptability and accuracy in electromagnetic environments. 

The reason why the proposed method outperforms other DQN 

frameworks in multiple performance metrics is attributed to its 

innovative algorithmic design, including but not limited to 

more refined state space design, efficient reward function 

construction, and optimized network structure. These 

optimizations allow the DQN algorithm to better understand 

the characteristics of complex electromagnetic signals, 

thereby achieving more precise identification and 

classification. Moreover, the high performance of this method 

indicates that it can effectively process a large amount of 

unlabeled data, which is of great significance for the 

frequently encountered problem of scarce labeled samples in 

practical applications. In summary, the DQN method proposed 

in this study has demonstrated excellent performance in the 

task of electromagnetic signal anomaly recognition, proving 

its potential as an effective electromagnetic signal processing 

tool. 

 

Table 2. Performance comparison of different DQN 

frameworks in electromagnetic signal anomaly recognition 

and classification task 

 
Model Acc Sp Sc MAcc 

Double DQN 0.9362 0.9354 0.9351 0.9365 

Multi-step DQN 0.9584 0.9562 0.9548 0.9512 

Distributed DQN 0.9362 0.9361 0.9368 0.9368 

The proposed method 0.9689 0.9687 0.9687 0.9765 

 

 

5. CONCLUSION  

 

This study proposes a novel method for electromagnetic 

signal anomaly detection and classification, effectively 

addressing the deficiencies of existing methods in complex 

electromagnetic environments. The unique adaptive coherent 

noise suppression algorithm significantly improves signal 

detection performance, capable of dynamically adjusting the 

noise suppression level according to the real-time SNR, thus 

adapting to the variable electromagnetic environment. 

Furthermore, the application of DQN technology further 

enhances the system's ability to precisely identify and classify 

electromagnetic signal anomalies, maintaining high accuracy 

even in situations with limited data labeling resources. 

Experimental results show that the proposed method exhibits 

outstanding detection and classification performance under 

different SNR conditions and dataset sizes, and performs 

better than traditional methods under various DQN 

frameworks. 

The approach not only improves the accuracy and 

robustness of anomaly detection but also provides an efficient 

way to handle unlabeled electromagnetic data, offering 

significant practical application value. However, the 

limitations of the study include the potential need to adjust the 

adaptive noise suppression algorithm and reinforcement 

learning model for specific scenarios to ensure optimal 

performance. Additionally, the high computational 

complexity of deep learning models may limit their 

deployment in real-time or resource-constrained scenarios. 

Future work could explore optimizing computational 

efficiency and reducing model complexity to accommodate a 

wider range of application demands. Integration of more types 

of signal processing techniques and advanced machine 

learning algorithms to further enhance the system's detection 

and classification capabilities can also be considered. 

Exploring the generalizability of the adaptive algorithm in 

different electromagnetic environments and how to quickly 

adapt to new signal types or interference patterns are also 

important future directions. Furthermore, research on the 

security and interpretability of data-driven methods is a critical 

future direction to ensure the reliability of electromagnetic 

signal processing systems.  
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