
Enhancing Medical Image Security with FPGA-Accelerated LED Cryptography and LSB 

Watermarking 

Wajdi Elhamzi1,2

1 Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz 

University, Al-Kharj 11942, Saudia Arabia 
2 Department of Computer Engineering, Higher School of Sciences and Technology of Hammam Sousse, University of Sousse, 

Hammam Sousse 4011, Tunisia  

Corresponding Author Email: wajdi.elhamzi@essths.rnu.tn

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410107 ABSTRACT 

Received: 5 September 2023 

Revised: 13 January 2024 

Accepted: 2 February 2024 

Available online: 29 February 2024 

In telemedicine, the safeguarding of medical images is important, necessitating systems that 

uphold patient privacy, ensure image integrity, and verify authenticity. Addressing the 

challenge of processing time disparities in existing algorithms, this study introduces a novel 

field-programmable gate array (FPGA)-based crypto-watermarking system for medical 

image applications. The system integrates a least significant bit (LSB) watermarking 

technique with the Lightweight Encryption Device (LED) cryptography algorithm. The LSB 

technique, known for its minimal impact on image quality, is utilized to embed a concealed 

message, subsequently encrypted by the LED algorithm for enhanced security. Traditional 

software implementations of such algorithms have been hampered by significant processing 

delays, with times ranging up to 34 seconds for smaller images and extending to 30 minutes 

for larger ones. The predominant factor in these delays, the encryption/decryption process, 

occupies 98% of the total processing time. To address this, the LED algorithm has been 

accelerated using Vitis High-Level Synthesis (HLS) for hardware implementation, 

effectively reducing time to market. The proposed architecture, subjected to rigorous 

examination, testing, and evaluation, demonstrates superior performance in throughput and 

processing speed compared to previous works. An extensive range of digital images was 

employed to assess the coprocessor's efficacy. The results reveal an average Peak Signal-to-

Noise Ratio (PSNR) of 86.98 dB, indicating superior imperceptibility without attacks when 

compared to earlier studies. Furthermore, under various attack scenarios, the system 

maintains high imperceptibility, with an average PSNR of 53.68 dB, surpassing previous 

methods in robustness. Comparative tests confirm that the proposed FPGA-based crypto 

watermarking outstrips Real-Time Logic (RTL) implementations, achieving a PSNR above 

82 dB. This indicates a marked improvement in imperceptibility relative to prior research. 

Additionally, the system boasts a throughput of 449.35 Mbps and a speed enhancement of 

77% over traditional software implementations, underscoring its effectiveness in the secure 

processing of medical images. 
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1. INTRODUCTION

In the last decade, the Internet of Things (IoT) field has 

grown enormously. Most domestic gadgets now have sensors, 

are linked to the internet, and are well integrated into our daily 

habits. For example, GPS tracking allows you to find a service 

near where you are or locate a location by showing you the last 

route to follow. There are also thermostats and lighting 

systems that can be operated remotely from an application. In 

short, the Internet is developing more and more of a multitude 

of everyday objects. Some automobiles can now warn you of 

danger and recommend remedies for the situation. 

From a health perspective, the internet can track your 

movements and heart rate with smartwatches, as well as take 

your body temperature or blood sugar index, a significant 

feature for people with diabetes. IoT solutions for healthcare 

plans will make healthcare centers smarter and enable them to 

be more successful at what they do. The IoT has the 

opportunity to reshape the interaction and connection between 

users, technology, and equipment in healthcare environments, 

making it easier to promote better care, reduce costs, and 

improve outcomes. As well as linked medical devices, such as 

sonography, computed tomography (CT) scans, magnetic 

resonance imaging (MRI), and nuclear medicine imaging. 

These devices create massive amounts of data that interact 

with other IT infrastructures within the network, providing 

processing such as analysis and visualization. 

Moreover, the hacking act of the hacker known as MedJack 

allowed attackers to inject malware into medical devices, 

which then spread through the healthcare network 

infrastructure. 

Medical images are vulnerable to attacks like unauthorized 
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access, tampering, or interception, posing a significant threat 

to patient privacy and medical diagnosis integrity, hence the 

need for robust security measures in eHealth networks. 

Attacks on secured images are defined differently than attacks 

on any transmitted data in general. The objective of such 

attacks is not only to decipher information but rather to corrupt 

data and distort encrypted media. These medical image attacks 

can be categorized into geometric attacks [1], like image 

scaling, rotation, and clipping; image processing attacks, like 

filtering and compression; and cryptographic attacks, and 

signal processing attacks like histogram equalization [2], 

contrast adjustment, gamma correction, and adaptive 

histogram. 

Medical data stolen in these types of attacks has been used 

for tax evasion or identity theft practices, and it has even been 

used to track prescription drugs, allowing hackers to order 

medicines online for resale on the dark web. The medical 

images acquired in imaging centers and hospitals can be 

exchanged among several healthcare staff members to enhance 

patient care and medical information management. As 

presented in Figure 1, shared medical images are always done 

on insecure networks, creating several security risks and 

exposing medical images to threats such as data loss, 

manipulation, errors, and attacks. The digital version of 

medical images offers several benefits over their analog 

counterparts, including ease of storage and transmission. 

To protect patient privacy, digital medical photographs 

must be maintained in a secure setting. It is also necessary to 

identify changes to the image. Watermarking in medical 

images achieves these goals. 

 

 
 

Figure 1. General architecture of medical imaging 

communication system 

 

The present manuscript is structured as follows: Section 2 

provides contextual information about medical image 

safeguarding and cryptographic watermarking frameworks. 

Section 3 delineates the proposed approach for watermarking 

medical images and the algorithms used. Section 4 presents the 

software implementation of the proposed solution, along with 

the hardware acceleration technique that will be applied. 

Section 5 provides an elaborate exposition of the hardware 

design and a diverse range of experiments that employ 

optimization techniques. Section 6 presents the results and 

discussion of the hardware architecture for HLS and RTL. The 

conclusion is ultimately presented in Section 7. 

 

 

2. RELATED WORKS 

 

The medical image may be disseminated through networks 

for various reasons, including consultation and review with a 

second medical expert, giving medical images to students and 

researchers, letting patients examine their records, and many 

more. Several devices, like smartphones, PCs, and tablets, 

among others, may all be used to access medical data that is 

shared through networks and servers. The primary concern is 

whether the information received is authentic, secure, and 

integrated. Following the issuance, the medical images may be 

inspected for examination, processed for research reasons, 

shared with others, and so on. The general architecture of the 

medical image transmission system is illustrated in Figure 1. 

The procedure of exchanging medical images via an 

unprotected connection may expose them to unexpected 

modifications. There is a possibility that they might be 

changed inadvertently besides the harmful attacks [3, 4]. 

The Internet of Medical Things (IoMT), which is a subset 

of the Internet of Things technologies, includes all the 

connected devices and apps used in medical and health 

information technology. The IoMT devices link patients, 

doctors, and medical devices over a secure network. Following 

the Deloitte [5] report for medical devices and transformation 

in health care, it was estimated that the IoMT market would be 

worth 41.2 billion and 158.1 billion, respectively, in 2017 and 

2022. The IoMT’s linked medical equipment sector is 

predicted to grow from 14.9 billion in 2017 to 52.2 billion by 

2022. Today, this estimate seems to be relatively low. Because 

of the COVID-19 pandemic, IoMT has grown by a factor of 

ten. Quarantine and lockdown orders have sped up the growth 

of telemedicine and telehealth. In this context, Hasan et al. [6] 

developed a safe image security approach using an efficient, 

lightweight cipher algorithm for the healthcare field. The 

suggested lightweight cryptographic system combines two 

permutation techniques to secure medical images. Regarding 

security and processing time, the proposed approach is 

examined, validated, and compared to regularly used 

encryption methods. The suggested algorithm’s performance 

was evaluated using a variety of test images. 

Existing encryption systems have used the Advanced 

Encryption Standard (AES), Data Encryption Standard (DES), 

and Rivest-Shamir-Adleman (RSA) [7-9] algorithms to deal 

with low-level efficiency matters while considering small data 

sizes and high redundancy [10, 11]. As a result, these methods 

are challenging to manage and assure adequate security for 

healthcare images in the IoMT paradigm [12, 13]. 

Watermarking is the process of modifying data to 

incorporate information about it. According to the definition, 

it has two main aspects. The first step lets you insert a message 

or brand into the image without anyone noticing. In the second 

step, based on the watermark key, watermark algorithms can 

detect and/or extract the previously inserted mark. 

Watermarking methods are essentially divided into three 

categories [14]. The first approach is called “watermarking by 

region,” which uses the presence of zones of zero or minimal 

interactions in the image to provide relevant diagnostic 

information in Regions of Interest (ROI). They usually put the 

mark on the image’s black background. Second, the reversible 

or lossless method involves removing the watermark from the 

image while keeping the gray levels of the original image. 

These strategies also enable the updating of brand data. One 

drawback is that the recovered image is no longer safe when 

we remove the watermark. Finally, in this situation, the 

watermark is very subtle and can’t be erased, with a focus on 

how hard it is to see. 

According to the available literature, recent research has 

shown the feasibility of implementing digital watermarking 
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architectures using FPGA boards. The hardware and real-time 

implementation of digital watermarking systems are exciting 

topics. In recent years, several new works have been proposed 

and developed. The researchers focused on the different parts 

of the hardware design, such as how it had to work in real-time 

and use less power while still being able to do a lot of work. 

Zhang et al. [12] developed a fast image encryption system 

based on the CBC mode of the AES algorithm. This paper 

looks at AES-based image encryption to show that it is not 

suitable for image encryption. But digital images can be 

encrypted with the help of the AES used in CBC mode. The 

chaotic system generates the initial vector, and the look-up 

table approach creates AES in the tested method. Images can 

be encrypted using the same AES key. The sampled image 

cryptosystem is secure since AES is extremely secure. 

Moreover, simulation results suggest that the AES-based 

crypto-image approaches outperform those based on chaotic 

systems. Thus, the tested method can be utilized as a 

benchmark for emerging images. Image cryptosystems must 

be improved to keep up with base-based schemes on the same 

computer. 

Khashan and AlShaikh [15] proposed a chaotic map for 

building a vast key space that can be used to identify various 

blocks. The critical image blocks are encrypted using a one-

time pad technique. Several tests were run on different images 

to show the proposed architecture’s reliability and usefulness. 

Based on the results of the security and performance 

evaluations, the suggested approach may offer a high level of 

security with less computational complexity, making it 

suitable for real-time image encryption. 

Das et al. [16, 17] developed a novel reversible image 

watermarking technique based on embedding bit rate control 

and contrast mapping. The suggested approach is validated 

using MATLAB and Xilinx tools. The results show that an 

FPGA Zynq-7000 board can be used to implement a low-

resource, power-optimized solution that works in real-time. 

The suggested architecture can operate at a 100 MHz 

frequency and 46 Mbps throughput. In the same context, 

Arumugham et al. [18] have designed an integrated chaos-

watermarking encryption system. Based on chaotic algorithms, 

IWT and SVD were used to add a watermark with a patient’s 

name to a DICOM image that had been encrypted. The Altera 

Startix FPGA platform implements a medical image 

encryption system. A trade-off between power consumption 

and security level perpetually exists. The proposed algorithm 

also beats the FPP, a problem with other methods for 

watermarking medical images.  

Similarly, Hazra et al. [19] implemented a reversible 

watermarking algorithm using FPGA circuits. This technique 

is dedicated to medical image applications. The Xilinx System 

Generator tool ensures the proposed design will work in 

hardware. The results obtained are very encouraging and show 

very high performance. The maximum frequencies are around 

445 and 201 MHz, and the power consumption is about 1.215 

and 0.104 W for embedding and extraction blocks, 

respectively. Also, the hardware could be built into medical 

diagnostic tools like CT and MRI scanners and X-ray 

machines to make the images more secure. 

Maity et al. [20] showed how to control the quality of 

grayscale images by hiding data in a way that can be undone. 

A user-defined secret key makes a watermark that depends on 

the content, which controls access to the scheme’s quality. The 

system exhibits high PSNR and MSSIM values, increased 

embedding capacity, and resilience to different signal 

processing processes. The hardware architecture takes up only 

986 slices with a low power consumption of around 55 mW 

when operating at 130 MHz as its maximal frequency. In this 

context, Phadikar et al. [21] suggested an efficient hardware 

architecture for implementing a quality access control method 

based on the discrete cosine transform. Parallel processing 

makes the VLSI architecture implied, which is based on an 

FPGA circuit, better. Compared to similar approaches 

described in the literature, the technique reduces power use by 

90%. It can run at a maximum speed of 131.16 MHz and 

process a 512×512 image at a throughput of 1.34 GB/s for both 

the encoder and the decoder. 

Using phase congruency and singular value decomposition, 

Nayak et al. [22] developed an image watermarking method 

that can be changed to make it more effective as a multi-

parameter optimal solution to hide metadata. The algorithm’s 

performance is evaluated in MATLAB using several criteria, 

such as the Normalized Cross-Correlation (NCC) index, 

PSNR, and structural similarity. A high-performance FPGA 

board was used to implement the proposed design. 

Kaibou et al. [23] proposed a real-time FPGA 

implementation of a secure chaos-based digital crypto-

watermarking system in the DWT domain using a codesign 

approach. The suggested crypto watermarking system’s 

performance has been assessed using various metrics and 

statistical/differential analyses in terms of watermarked image 

quality, robustness, and information security level. These 

results showed how well the methods worked and proved that 

the overall Hardware/Software (HW/SW) codesign method 

was suitable. The crypto watermarking system that was made 

can be used for images and videos, especially in the medical 

field. 

To improve the crypto watermarking system, Borra and 

Thanki [24] suggest a non-blind, fragile DCT domain 

watermarking scheme based on CS-based cryptography that is 

proposed for invisibly hiding encrypted watermark images. 

The simulation results indicate that the proposed scheme has a 

maximum payload capacity of 1 bpp and a high 

imperceptibility of 92 dB. 

An approach for image watermarking based on LSB and 

image gradients was introduced by Faheem et al. [25]. After 

dividing the original image into nonoverlapping blocks, the 

gradient was computed for each block. Ultimately, LSB was 

employed to incorporate watermarked bits. This method 

operated within the temporal domain, offering computing 

efficiency and superior perceptual quality. It demonstrated 

substantial resilience to image processing and geometrical 

attacks. 

The present research [26] investigates the incorporation of 

the LSB technique with the quantum Haar wavelet transform. 

The proposed approach utilizes a quantum wavelet transform 

to include a binary image in the LSB of the quantum image. 

The quantum Haar wavelet process guarantees that the 

watermark is evenly distributed throughout the entire image, 

enhancing its resistance against attacks. To sum up, using both 

LSB and the quantum Haar wavelet transform together in 

watermarking for quantum images is a safe and reliable way 

to keep private quantum information safe. 

 

 

3. LIGHTWEIGHT CRYPTO-WATERMARKING 

SYSTEM 

 

It is well known that encryption and watermarking may be 

87



 

blended. Two categories may be made based on how they are 

combined. The first type is watermarking, followed by the 

encryption process (WFE). This method puts the watermark 

into the host image before the watermarked data is encrypted. 

On the receiving end, the encrypted data with the watermark 

is first decrypted, and then the data with the watermark is 

retrieved. The second type is encryption followed by the 

watermarking process (EFW), which involves inserting the 

encrypted watermark into the original encrypted data. It has 

the advantage of homomorphic encryption. The most frequent 

approach to watermark embedding is to include the watermark 

in the cover object’s LSB pixel. Despite its simplicity, LSB 

substitution has several downsides. Because that can survive 

changes like cropping, adding unwanted noise, or lossy 

compression, a more advanced attack that sets the LSB bits of 

each pixel to one will completely destroy the watermark 

without damaging the cover object. Once a hacker understands 

the technique, he may readily modify the encoded watermark. 

For this reason, the encryption process is still fundamental to 

strengthening security and avoiding hackers. 

Several algorithms, like the well-known AES, DES, and 

RSA, have been made and suggested for encrypting images. 

But using these algorithms with the Internet of Medical 

Objects is not a good idea for hardware systems because it 

could go against the real-time rule and use a lot of power. So, 

a crypto-watermarking process that works must use the least 

amount of hardware resources possible. In this work, we 

developed a lightweight cryptography algorithm to get around 

problems with power use, security level, and processing time. 

The WFE approach is the main design of the proposed system. 

To protect data, it uses a lightweight cryptography algorithm 

called LED [27-30] after using the LSB watermarking 

technique to hide a secret message, as illustrated in Figure 2. 

 

 
 

 

Figure 2. Architecture of the proposed crypto-watermarking 

system 

 

3.1 Watermark embedding/extraction process 

 

This process consists of two steps. First, using the 

watermark image, the LSB technique is applied to the medical 

image. The image comprises three components (R, G, B). 

Each pixel in the image is composed of 3 unsigned 8-bit 

values (red, green, and blue), with a range between 0 and 255 

represented by 8-bit values (b7b6b5b4b3b2b1b0). b7 is the most 

significant bit (MSB), and b0 is the LSB. For example, if we 

assume that the pixel candidate is equal to 254 (11111110), 

changing the MSB state from 1 to 0 becomes 126 (01111110), 

causing a drastic change. On the other hand, if we change the 

LSB from 0 to 1, we obtain 255 (11111111), like nothing’s 

changed. This LSB technique hides the message or image into 

the candidate image. 

Figure 3 presents the embedding process based on the LSB 

watermarking scheme. The transformation process is applied 

to the input image.  

 

 
 

Figure 3. The LSB embedding process 

 

The inserted message can contain several pieces of 

information about the patient and his associated information, 

such as the folder number, the attending doctor, the date, etc. 

Indeed, a logo could be hidden in the original image, proving 

that the shared medical image is authentic. 

 

3.2 Watermark encryption/decryption process 

 

If the watermark is already embedded, the second step 

encrypts the watermarked image based on the LED algorithm 

1 [22]. The LED cipher uses the fewest chips compared to 

other cryptosystems of similar strength. As a block cipher, the 

LED belongs to the S-PN category. Two variations exist, one 

for each possible key size. Compared to LED128, whose key 

length is 128 bits, LED64’s key length is just 64 bits. The 

LED64 has 32 rounds, while the LED128 has 48. In this 

analysis, the LED64 was used to encrypt and decrypt 

information. Remember that from now on, you should be using 

LED64 instead of LED. The four fundamental operations that 

constitute the LED algorithm are known as AddConstants, S-

Box, ShiftRows, and MixColumns, as illustrated in Figure 4. 

AddConstants: In this function, bitwise XOR operations 

are used to add more round constants to the state. The round 

constants of a linear feedback shift register (LFSR) are given 

as 6-bit values in the RC [5:0] format. 

S-box: The LED algorithm employs the same S-box table 

as the PRESENT algorithm [31]. This table contains 16 

nibbles (4-bit) of elements from 0x0 to 0xF as inputs and their 

corresponding hexadecimal values as outputs. The substitution 

box for LED is given in Table 1. 

 

Table 1. Substitution box of LED cipher 

 
X 0 1 2 3 4 5 6 7 

S (X) C 5 6 B 9 0 A D 

X 8 9 A B C D E F 

S (X) 3 E F 8 4 7 1 2 

 

ShiftRows: For i= 0; 1; 2; 3; row i of the array state is 

rotated i cell positions to the left. 

MixColumns: Each array state column is identified as a 

column vector and is replaced by the vector multiplied by the 

matrix M given by Eq. (1). 

 

𝑀𝐷𝑆 = (

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

)

4

= (

4 1 2 2
8 6 5 6
𝐵 𝐸 𝐴 9
2 2 𝐹 𝐵

) (1) 

 

Here is a description of LED encryption algorithm 1, as the 

crypto module uses it in the form of pseudo-code. 
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The plaintext and the constant matrix will be XOR’d 

together as part of the work that the AddConstants function is 

expected to do. An 8-byte representation of the key size was 

used to generate the matrix, beginning with Ks7 and ending 

with Ks0. 

To generate the first column of the matrix, an XOR 

operation was performed on the key bytes while they were in 

their respective places. The second column’s six-round 

constant bits (RC5 to RC0) started with zero and underwent a 

one-bit left shift for each round, with RC0 being the outcome 

of a Xor between RC5, RC4, and one. The last bit, RC0, 

resulted from an XOR between RC5 and RC4. To begin, we 

will provide the constant matrix, which is represented in 

Figure 4. 

 
Algorithm 1. LED Encryption procedure with 64-bit and r = 32. 

1 Require: A 64-bit plaintext P, 64-bit key K. 

2 Output: A 64-bit ciphertext C.  

3 S ← P 

4 SK ← GenerateSubkey (K) 

5 S ← AddRoundKey (S, SK) 

6 For j = 1 to (r/4) do 

7  For i = 1 to 4 do 

8  S ← AddConstants (S, (i*4+j)) 

9  S ← S-Box (S) 

10  S ← ShiftRows (S) 

11   For v =1 to 4 do 

12    S ← MixColumns (S) 

13   End for 

12  End for 

13  S ← AddRoundKey (S, SK) 

14 End for 

15 C ← S  

16 Return C 

 

 
 

Figure 4. The LED algorithm 

 

The same function, AddRoundKey, is used with the 

decryption procedure. However, S-Box, ShiftRows, and 

MixColumns are reversed to InvSubBytes, InvShiftRows, and 

InvMixColumns. 

 

 

4. THE PROPOSED IMPLEMENTATION 

 

4.1 Performance metrics 

 

In order to evaluate the efficiency of an algorithm adopted 

for watermarking, performance measures are implemented. 

Different metrics can be applied to evaluate an algorithm's 

performance, including its robustness to attacks, the quality of 

the watermarked image (referred to as imperceptibility), its 

capability to process the watermark, the time required for 

embedding and extraction operations, and more.  

The proposed scheme's performance is assessed using 

metrics like PSNR, structural similarity (SSIM) index, and 

Normalized Correlation (NC) to evaluate the robustness of 

watermarked images and to find the correlation between two 

vectors or images.  

the similarity between original and watermarked images, 

and the accuracy of the embedded watermark. These metrics 

help researchers determine the strengths and weaknesses of 

different watermarking algorithms, enabling informed 

decisions for specific applications. 

 

4.1.1 PSNR 

PSNR is a term frequently employed in the domains of 

image and video processing. It is the ratio between the original 

and watermarked images and is utilized in the watermarking 

field to find the similarity between the two. The PSNR 

presented by Eq. (2) is a metric utilized to assess the 

imperceptibility attributes of watermarking techniques. 

 

𝑃𝑆𝑁𝑅(𝐶,𝑊) =
∑ ∑ 𝐶(𝑥, 𝑦)𝑊(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

∑ ∑ [𝐶(𝑥, 𝑦)]2𝑁
𝑦=0

𝑀
𝑥=0

 (2) 

 

4.1.2 SSIM index 

The SSIM between the embedded image W and the original 

image C is computed using this metric. A SSIM value in 

proximity to 1 indicates a higher degree of similarity between 

the two images, suggesting that their structures are identical. 

The imperceptibility characteristics of the watermarking 

scheme are substantiated with the aid of SSIM. The calculation 

is performed using Eq. (3). 

 

𝑆𝑆𝐼𝑀(𝐶,𝑊) =
∑ ∑ 𝐶(𝑥, 𝑦)𝑊(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

∑ ∑ [𝐶(𝑥, 𝑦)]2𝑁
𝑦=0

𝑀
𝑥=0

 (3) 

 

4.1.3 NC 

The NC measures the similarity between the extracted and 

inserted watermarks by calculating the correlation coefficient. 

The NC value varies between 0 and 1. A higher correlation 

factor indicates a more robust watermarking system, as it 

signifies a stronger resemblance between the original and 

extracted watermarks. While a smaller value shows the 

dissimilarity between two images. Eq. (4) defines the NC 

calculation. 

 

𝑁𝐶(𝑊,𝑊′) = 

∑ ∑ [𝑊(𝑥, 𝑦)𝑊′(𝑥, 𝑦)]𝑁
𝑦=0

𝑀
𝑥=0

√∑ ∑ 𝑊(𝑥, 𝑦)𝑁
𝑦=0

𝑀
𝑥=0 . √∑ ∑ 𝑊′(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

 (4) 

 

4.2 Software implementation 

 

We have implemented the LED64 algorithm. The 

measurements were performed on an Intel (R) Core (TM) i7 

CPU Q 720 clocked at 1.60 GHz. As a first step in our research, 

we used the Python programming language to make a rough 

architecture for the crypto-watermarking module. Two 

components define the top level of this design: LSB-

Watermarking and LED64 algorithms. As described in 

Subsection 3.1, the LSB process consists of replacing the LSB 

in each pixel with the bit of message to be hidden. The LED 

algorithm encrypts and decrypts the entire image that has been 

watermarked and will be sent over the network. With 

encryption, the hacker can’t see the original medical image or 

any other hidden information. 

We used different types and sizes to test the crypto-

watermarking system. 

The grayscale medical images from Kaggle [32-34] are used 
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for testing the crypto watermarking scheme to determine the 

effectiveness and robustness of the scheme against various 

image processing techniques and attacks. 

A set of X-rays [32] sized 768×768 and 2496×2048, MRI 

[33], and CT [34] sized 512×512 and 296×296 respectively, as 

shown in Figure 5, the input is the original image. We got the 

watermarked image, which is too close to the original after we 

put the watermark into it. After that, we ensure the protection 

of the whole image based on the LED cipher. 

The generated image is too evident to doubt that it is 

encrypted, so be ready to send it via any communication tool 

or protocol with no risk of being susceptible to attacks. 

The person who gets the image can decrypt it immediately 

and use the embedded watermark to check if it is authentic. 

The results show that the reconstructed images have very high 

quality and a slight degradation of information that is not 

remarkable to the naked eye and cannot harm the details of the 

valuable information. During these tests, the processing time 

becomes more interesting with high resolutions. For that, we 

think of analyzing the functions used to extract the block, 

which causes the slowing down of the system in the following 

experiment. 

 

 
 

Figure 5. (a) Original image (b) Watermarked image (c) 

Encrypted image (d) Decrypted image 

Table 2. Software processing time for watermarking functions 

 
Image Size Embedding (s) Encryption (s) Total (s) Decryption (s) Extraction (s) Total (s) 

X-ray 296×296 0.09 15.37 15.46 18.37 0.23 18.6 

MRI 512×512 0.26 45.76 46.02 55.62 0.65 56.27 

CT 768×568 0.4 76.67 77.07 90.71 1.1 91.81 

X-ray 2496×2048 4.4 889.46 893.86 1061.79 19.81 1081.6 

 

As can be seen from Table 2, the embedding process is 

faster compared to the encryption process. Processing time 

increases or decreases proportionally to the image size. These 

results clearly indicate that the encryption and decryption 

processes are the most time-consuming operations for both 

forward and inverse crypto-watermarking systems. The 

encryption operation consumes 98% of the processing time. 

Also, when image size increases, the crypto-watermarking 

system happens more slowly, which is a design flaw since it 

must operate in real time. We are considering how to speed up 

the LED encryption algorithm with a hardware accelerator to 

solve this problem. The solution suggested in this paper is to 

keep implementing the LSB-based embedding process into 

software and translate the block cipher into an FPGA-based 

hardware solution. So, using the Xilinx FPGA, we can follow 

two flow designs: RTL code written manually or high-level 

language based on the HLS tool. 

This could make the FPGA design process less complicated 

and reduce the time spent on engineering development, which 

means reducing the time to market. 

 

4.3 Hardware implementation 

 

4.3.1 High level synthesis tool 

At the beginning of the digital era, the design of digital 

circuits went through a behavior description of the system’s 

architecture in the form of logic gates. As the circuits get more 

complicated, describing them with logic gates gets more 

challenging and expensive. For more than 20 years, hardware 

description languages have made people more productive by 

making it easier to describe digital circuits. This means that, 

compared to the traditional method of drawing the circuit 

layout by hand, the designers might have to give up some 

performance (area, power consumption, and speed). But it is 

expected that the increase in productivity will more than make 

up for these problems. Embedded systems are getting 

increasingly complicated, which means they need to be 

described at a higher level of detail. This makes creating HDL 

code more expensive as the design process goes on. So, 

behavioral synthesis (HLS) comes along, which lets HDL code 

be made from a description in C, C++, or System C. Because 

digital systems are getting increasingly complicated, there is a 

lot of research in HLS. 

The process, which is still in its early stages, entails doing 

automatic hardware synthesis (through a description in a very 

low-level language known as RTL, which is commonly used 

for Verilog and/or VHDL) through the translation of a higher-

level language such as Java, C, or C++, which is then 

annotated. Several microelectronics companies, including 

those that excel at producing FPGA and ASIC circuits, 

perform HLS. Xilinx introduced the Vitis HLS tools [35], Intel 

presented the Intel HLS compiler [36], and Synopsys 

developed Symphony HLS [37].  

 

 
 

Figure 6. Vitis HLS flow 
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To speed up the process of making prototypes and make 

them competitive, we have adopted Xilinx Vitis HLS tools. 

Figure 6 shows that Vitis HLS can make an RTL design from 

a function written in a high-level programming language like 

C, C++, or System C. This is because it works faster and is 

more flexible than other C-to-FPGA tools of the same type. 

The design flow followed to get an RTL-HLS IP is illustrated 

in Figure 6. 

The first step starts by developing an HLL code design, a 

testbench, and a golden reference, representing the estimated 

outputs for a defined output vector. The second step consists 

of the functional simulation of the main HLL using the 

testbench. 

 

4.3.2 LED HLS-IP 

For this paper, we used the C/C++ programming language 

to implement the LED lightweight encryption method. We 

used Vitis HLS to make the algorithm and test its performance 

in the RTL design by co-simulating it. The design was then 

examined and adjusted to enhance throughput. 

The LED-64 encryption algorithm comprises 32 rounds, as 

described in Figure 7, and each round is a set of functions, as 

described in Section 3.2. The HLS-C tool simulated the LED-

64 principal function to check the outputs generated compared 

to the golden reference. Indeed, we use an image sized 

512×512 to obtain the encrypted image. After that, with the 

decrypted image, as soon as the functional simulation step is 

successfully validated, we go to the synthesis step, which 

represents the most sensitive step of the design flow since 

several refinements of the C/C++ code are carried out. After 

studying the hardware’s performance, the necessary 

optimizations must be devised. The LED-64 top function was 

synthesized into an RTL block using the HLS tool, and each 

sub-function was synthesized into a sub-block that was 

instantiated into the top-level design. 

 

 
 

Figure 7. Encryption LED HLS-IP description 

 

Figure 7 illustrates the LED algorithm code in C/C++. As 

shown, the HLS model consists of several loop instructions. 

The first loop is the SK loop, which reads 8 bytes of plaintext 

and 8 bytes of input keys and separates each byte into two 

nibbles. We obtain 16 nibbles of the state and 16 nibbles of the 

key. Afterward, the function AddRoundKey is applied once, 

which applies the AR loop. The third loop block comprises 

two nested loops: L rounds and L steps. The L steps loop 

presents all steps involved during one round of AR loop, SB 

loop, SR loop, and MC loop. In fact, this inner loop is iterated 

four times. The L rounds loop describes the 32 rounds 

performed with LED64 and comprises the LL steps followed 

by a reminder of an AR loop. In the last loop, the CP loop, all 

the state nibbles are added to make a ciphertext byte. The LED 

encryption was simulated with a golden reference and a 

testbench file. The HLS model is synthesized using the Vitis 

HLs C synthesis tool to make the RTL description. This will 

then be exported as hardware intellectual property (IP) so it 

can be added to the Pynq Project. Once the synthesis step is 

completed, we proceed to the analysis of design 

implementation. To improve the performance of our design, 

we need to analyze and interpret it to find the flaws in how it 

is currently being used and think of ways to fix them. So, the 

Xilinx Vitis HLS tool has an option for implementation 

analysis that lets us check the scheduling of tasks, data routing, 

and any potential problems like data dependency violations. 

 

 

5. HARDWARE IMPLEMENTATIONS AND 

OPTIMIZATIONS 

 

This section will discuss how we used Vitis HLS to build 

and optimize the crypto-watermarking algorithms. 

After finishing the LED block cipher synthesis process, we 

got a Pynq-Z1-based hardware implementation (xc7z020-

clg400-1). The Vitis HLS tool makes and builds the HDL 

model based on the target platform. The synthesis results are 

detailed and organized according to the chosen performance 

criterion. As a result, we find performance estimates, 

utilization estimates, and interface results. We will explore 

three different implementations of the LED algorithm: 1) 

initial implementation; 2) unrolled-based optimization; and 3) 

pipelined-based optimization. During HLS optimization, the 

LED top function goes through synthesis into an RTL block. 

At the same time, each subfunction is transformed into a sub-

block that is subsequently instantiated into the top-level design. 

Furthermore, the arguments of the top function are 

transformed into input/output (I/O) ports. The HLS tool 

facilitates the selection of the handshaking protocol to be 

integrated into the input/output (I/O) ports of the designated 

block(s). Input/output (I/O) ports can be realized through two 

methods: streaming data from or to a first-in, first-out (FIFO) 

buffer or reading and writing data to or from memory. The 

design may call for the implementation of various 

handshaking protocols. 

 

5.1 Naive implementation 

 

We start with an initial Naive Implementation (NI) 

according to the software solution without optimization. A 

primary way to use the LED algorithm has yet to be optimized. 

In this version, all loops are rolled, and no optimization is 

applied. As illustrated in Figure 8, already generated by the 

Xilinx Vitis HLS tool, the overall latency of the LED-

decryption circuit is 8988 clock cycles. This considerable 

delay is because the code was written without any parallelism, 

pipeline, or duplication of functions. Without optimization, all 

loops require full processing time to execute their operations. 

The computation of loop latency involves the multiplication of 

the iteration latency by the trip count. In order to establish a 
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loop, it is necessary to have one cycle for initiation and another 

for leaving the loop. This rationale accounts for the inclusion 

of two additional cycles for all loops. The L-steps loop is 

examined in the current research, which shows that the four 

functions are implemented in accordance with the 

recommended method as mentioned. The L steps are a round 

comprising the SB, SR, MC, and AR loops. The delay for each 

loop is calculated by multiplying the iteration latency by the 

trip count, as shown in Figure 8. We see that 270 clock cycles 

are needed to complete 1 iteration of L steps, giving 1080 

clock cycles to complete 1 step, which equates to 4 rounds. 

One step needs a total of 1115 cycles to be completed since 

each loop requires two extra cycles for input and output during 

execution. The LED encryption HLS-IP exhibits a global 

execution latency of 8988 for processing a 64-bit block since 

it is a sequential implementation. Some optimization 

techniques may be performed to reduce the global latency. In 

the subsequent implementation, our focus lies on unrolling 

these functions, intending to mitigate latency. 

 

 
 

Figure 8. Vitis HLS report of the naive implementation 

synthesis 

 

5.2 Unrolled-based optimization 

 

By default, loops are rolled. Each loop iteration corresponds 

to a “sequence” of states. This sequence will be repeated 

multiple times based on the loop trip count. The Unrolling 

Loops (UL) option is a compelling and exciting way to show 

more parallelism and get a shorter latency. It decreases loop 

overhead, increases scheduling parallelism, and enables array-

to-scalar promotion and continual propagation. However, UL 

increases operation counts, which may negatively impact the 

area. The optimization directives were applied to the 

AddRoundkey, SubBytes, ShiftRows, and MixColumns 

functions in order to achieve encryption with high throughput 

and low latency. This technique prioritizes enhancing 

performance through the utilization of the unrolling loops 

option. According to its nomenclature, the UNROLL pragma 

expands a loop by duplicating its core in the Register Transfer 

Level (RTL) design. This directive enables the concurrent 

execution of multiple iterations of the loop. The unrolling 

process can be executed entirely or partially by modifying the 

duplication factor. In the following subsection, we detail the 

results of the two solutions, entirely and partially unrolled. 

 

5.2.1 Partially unrolled-based optimization 

The present study evaluates the initial implementation, 

deemed naive, by analyzing the implementation results 

utilizing the Xilinx Vitis scheduler. This analysis aims to 

determine which functions can be unrolled and to what extent. 

Multiple experiments were conducted, wherein the primary 

setup involved unrolling the SB loop by a factor of 4, while 

the SR, MC, and AR loops were unrolled by a factor of 2. The 

results obtained from the Partially Unrolled Implementation 

(PUI) are illustrated in Figure 9. Focusing on the nested loops 

with L rounds and L steps, we see that every sub-loop has a 

delay of 16 cycles, which facilitates the usage of the pipeline 

technique in the following subsection. The L-step latency is 

reduced to 632 clock cycles instead of 1080 in the initial 

implementation. Therefore, the global latency improved by 

42%. The reduction factor obtained with partial unrolling 

depends on the loop structure and the degree of unrolling 

applied. Generally, increasing the degree of unrolling leads to 

a higher reduction in latency, which could be even more 

fascinating. In the next experiment, we will focus on 

increasing the factor of unroll to achieve higher parallelism 

and reduce the number of cycles required for execution, which 

will ultimately lead to faster processing times and improved 

performance. We will also explore the impact of different 

unrolling factors on power consumption and resource 

utilization. The best latency achieved with this optimization 

was 0.150 ms, which is acceptable compared to our target of 

0.4 ms. 

 

 
 

Figure 9. Vitis HLS report of the PUI-based optimization 

synthesis 

 

5.2.2 Entirely unrolled-based optimization 

We use a parallel architecture when applying Entirely 

Unrolled Implementation (EUI), which reduces the latency to 

256 clock cycles, as shown in Figure 10. The presence of 

nested loops is the underlying cause of the latency or interval 

being experienced. The L-step inner loop exhibits a latency of 

7 clock cycles per iteration, resulting in a cumulative total of 

28 clock cycles for all iterations. The loop, denoted as L 

Rounds, exhibits a latency of 30 clock cycles for each iteration. 

These latencies should be considered when designing the 

pipeline stages for the processor, as they can significantly 

impact the system’s overall performance. Additionally, 

optimizing these loops may reduce the number of clock cycles 

required for their execution. The speedup compared to partial 

unrolling and the naive implementation is equal to 52% and 

98%, respectively. 

 

 
 

Figure 10. Vitis HLS report of the entirely unrolled-based 

implementation optimization synthesis 

 

Using a parallel architecture is an effective way to optimize 

the system’s performance. However, it requires carefully 

considering hardware resources and trade-offs between speed 

and cost. 
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5.3 Pipelined-based optimization 

 

Indeed, one of the required optimization methods for HLS 

is Loop Pipelining (LP). Before the previous iteration is 

finished, the LP permits a new one to start processing. The top 

loop also uses a wholly pipelined loop architecture to reduce 

latency and hardware costs. This approach allows for more 

efficient use of resources and faster processing times, making 

it particularly useful in high-performance computing 

applications. Additionally, the pipelined architecture allows 

for better scalability, as more iterations can be added without 

significantly increasing hardware requirements. We attempt to 

pipeline the basic implementation (PNI) in this first 

experiment, as described in Figure 11, the Pipelined-Naive 

Implementation (PNI). The inner loop L steps with a minimum 

initiation interval (II) of 24 are subject to the pipeline approach. 

The new increased latency is 96 clock cycles, which is 

approximately 91% less latency compared to the 1080 cycles 

required by the primitive architecture. 

 

 
 

Figure 11. Vitis HLS report of the PNI-based optimizations 

synthesis 

 

In the second experiment, we based the partial unrolling 

solution on the fact that all subloops (L rounds and L steps) 

have equal latencies of 16 clock cycles. By doing so, we were 

able to reduce the number of cycles required to execute the 

loop by 80%. This optimization can significantly improve the 

performance of the co-processor. Figure 12, which presents 

the Pipelined-Partially Unrolled Implementation (PPUI), 

shows a global latency of 1066. This improvement in global 

latency can be attributed to the pipeline’s ability to process 

multiple instructions simultaneously. However, it is essential 

to note that this reduction may vary depending on the specific 

task being performed. 

 

 
 

Figure 12. Vitis HLS report of the PPUI-based optimization 

synthesis 

 

 

6. RESULTS AND DISCUSSION 

 

In this section, we evaluate the performance of the 

suggested approach. The Python 3.8 in a computer Intel(R) 

Core (TM) i7 CPU Q 720 clocked at 1.60 GHz was used to 

perform tests on a grayscale standard image and a watermark 

sized 512×512 and 32×32, respectively. 

According to a subjective visual comparison between the 

watermarked images and the original images in Table 3, the 

crypto watermarking technique has achieved high 

imperceptibility. proposed algorithm. As an objective 

imperceptibility criterion, we computed the PSNR for the 

cover and watermarked images. The PSNR values are 86.6, 

88.9, 90.26, 87.18, and 82.18 for X-ray, MRI, CT, and X-ray 

high-definition images. These high PSNR values suggest that 

the images have minimal distortion and are of excellent quality 

across different categories. For SSIM, the proposed crypto 

watermarking method also performs well. The NC is equal to 

1, which indicates that the extracted watermark is the same as 

the embedded. 

 

Table 3. Performance results without attack for the proposed 

method 

 
Image Size PSNR SSIM NC 

X-Ray 296×296 86.6 0.9999653 1 

MRI 512×512 88.9 0.9999785 1 

CT 768×568 90.26 0.9999845 1 

X-Rya 2496×2048 82.18 0.9999261 1 

 

Various voluntary and involuntary image processing attacks 

may later alter watermarked, decrypted medical images. 

Therefore, it is crucial to assess the robustness of our 

suggested approach in an under-attack environment. For these 

tests, we select the MRI 512×512 medical image against the 

following attacks: Salt and Pepper noise (SP) with variance 

0.02, Gaussian Noise (GN), Median Filter (MF) 3×3, and 

cropping (CR). 

 

Table 4. Performance results with different attacks for the 

MRI 512×512 image 

 
Attack PSNR SSIM NC 

SP 65.42 0.99976 0.9678 

GN 58.51 0.99853 0.9472 

MF 51.33 0.75931 0.8857 

CR 39.46 0.69702 0.8545 

 

According to the results in Table 4, the suggested scheme 

has successfully reached a satisfactory outcome. A PSNR 

average of around 53.68 dB indicates the higher quality of the 

original and the watermarked image. For SSIM, the proposed 

crypto watermarking performs well with SP and GN attacks; 

however, it seems a little degraded for MF and CR attacks, 

which indicates a little degradation on the extracted watermark. 

The robustness is assessed by comparing the original and 

extracted watermarks' similarity using the NC factor. These 

show good robustness against SP and GN attacks but are not 

good for MF and CR attacks. Despite this, the NC values 

obtained remain superior to 0.75. 

 

Table 5. Comparison of proposed methods 

 

Studies Ref. [24] 
Ref. 

[25] 

Ref. 

[26] 
Proposed 

Method DCT+DWT 
LSB-

HWT 
HWT LSB 

Encryption 
CS based 

encryption 
-- - LED 

PSNR 91.30 57.58 58 90.26 

SSIM 1 1 0.9990 0.9999 

NC 1 0.9993 - 1 

 

To confirm the effectiveness of the proposed crypto 

watermarking, the comparison of performance with other 

methods [24-26] is shown in Table 5. The results of this table 

prove that our scheme has better imperceptibility in 
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comparison with [25, 26]. Furthermore, the performance of the 

proposed scheme is equivalent to literature [24]. In addition, 

our scheme also outperforms [25, 26] in terms of robustness 

against various attacks, as demonstrated in Table 5. This 

highlights the superiority of our crypto watermarking method 

not only in imperceptibility but also in its ability to withstand 

malicious attempts to remove or alter the watermark.  

This part evaluates, discusses, and compares the 

implemented solution’s hardware utilization and performance 

criteria for the LED encryption/decryption algorithm. To 

examine the functionality of the RTL design, the Vitis HLS 

tool synthesized and co-simulated the algorithms. Then, the 

design was analyzed and optimized to achieve higher 

throughput. The throughput Tp in this paper is calculated as 

given in Eq. (5), and the efficiency is calculated by the 

throughput-to-area ratio as given in Eq. (6). 

 

𝑇𝑝 =
𝐵𝑙𝑜𝑐𝑘 ∗ 𝐹𝑚𝑎𝑥

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 (5) 

 

𝐸𝑓𝑓 =
𝑇𝑝

𝑆𝑙𝑖𝑐𝑒𝑠
 (6) 

 

In this work, we implemented five HLS versions for the 

LED cipher as described in Section 5. Table 6 presents a 

detailed report for all design implementations. We note that 

the maximum frequency achieved with HLS approaches 

around 178.49 for the NI, PUI, and EUI architectures. When 

applying the pipeline technique, the maximal frequencies 

increase to 208.4 and 231.7 MHz with PNI and PPUI 

architectures, respectively. For RTL approaches, the maximal 

frequencies are around 83.8, 98.67, and 167.34 MHz [29, 30], 

respectively. 

So, when using the Vitis HLS tool, the frequency is doubled 

compared to the manual RTL design [28]. Nevertheless, the 

initial unsophisticated implementation exhibits significant 

latency, fivefold more remarkable than the RTL 

implementation. Optimization techniques, such as unrolling 

and pipelines, were applied to attain optimal latencies. The 

PPUI and EUI implementations yielded latencies of 1132 and 

256 clock cycles, respectively. Regarding resource utilization, 

it is observed that the manual RTL version [30] and the 

pipeline-optimized versions exhibit superior performance. 

Meanwhile, the unrolled versions are characterized by higher 

logic consumption. This observation suggests that pipeline 

optimization can effectively improve resource utilization in 

HLS designs, while unrolling may not always be the best 

approach due to its higher logic consumption. Further 

exploration and experimentation could help determine the 

optimal design strategy for a given application. On the other 

hand, EUI, PNI, and PPUI HLS methods show better 

throughput efficiency when compared to RTL, NI, and PUI 

hardware implementations. These findings suggest that HLS 

approaches may be more suitable for high-performance 

computing applications that require fast and efficient 

processing. However, it is crucial to consider the trade-offs 

between hardware implementation methods and choose the 

one that best fits the application’s specific requirements. 

The throughput and latency achieved by each solution 

determine the efficiency of the implementation, favoring the 

throughput-optimal solutions. Throughput refers to the 

amount of work that can be completed in a given period, while 

latency refers to the time it takes to complete a task. Therefore, 

the most efficient implementation is a solution that can achieve 

high throughput and low latency. 

 

Table 6. FPGA round-based implementation results of LED block cipher with RTL and Vitis HLS approaches 

 
Design 

Implementation 
Device Fmax (MHz) Latency (Clock Cycles) 

Resources Utilization Tp 

Mbps 

Eff 

Tp/Slices BRAM FF LUT(s) 

RTL 

[28] Spartan-3 XC3S50-5 98.67 32 - 77 456 197.34 0.1 

[29] Xilinx Spartan 6 83.8 32 - 211 549 167.6 0.07 

[30] Spartan-3 XC3S50 -5 167.34 32 - 70 274 334.68 0.3 

Vitis HLS 

(Our) 

NI 

Pynq Z1 

177.49 280 3 853 720 40.56 0.015 

PUI 177.49 164 0 795 715 69.26 0.025 

EUI 177.49 8 0 683 701 1415 0.5 

PNI 208.4 35 1 494 658 381.07 0.15 

PPUI 231.7 33 1 547 669 449.35 0.16 

 

Table 7. LED encryption/decryption processing time in second (S) based on Pynq Z1 

 

Image Size SW (Pynq Z1) 

HW 

RTL Vitis HLS (Our) 

[28] [29] [30] NI PUI EUI PNI PPUI 

X-ray 296×296 16.87 0.11 0.13 0.067 0.55 0.32 0.015 0.06 0.0002 

MRI 512×512 50.69 0.34 0.40 0.20 1.65 0.96 0.045 0.17 0.15 

CT 768×568 83.69 0.56 0.67 0.33 2.75 1.60 0.078 0.29 0.25 

X-ray 2496×2048 975.62 6.67 7.85 3.89 32.26 18.81 0.91 3.47 2.93 

 

Table 8. Crypto-watermarking Processing time (s) based Pynq Z1 

 

Image Size 
SW Pynq Z1 

Total 
LSB (SW)+LED (HW) Pynq Z1 

Total 
ENC/EMB DEC/EXT ENC/EMB DEC/EXT 

X-ray 296×296 15.46 18.6 34.06 0.15 0.29 0.44 

MRI 512×512 46.02 56.27 102.9 0.43 0.82 1.25 

CT 768×568 77.07 91.81 168.88 0.48 1.39 1.87 

X-ray 2496×2048 893.86 1081.6 1975.46 5.31 23.3 28.61 
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Figure 13. Vivado block design of crypto-watermarking system 

 

The last phase of our work involves conducting processing 

time measurements and examining the hardware acceleration 

that was initially intended. This will help us evaluate the 

efficiency of the hardware acceleration and determine if it 

meets our performance goals. We can make the necessary 

adjustments to improve the overall system’s performance 

based on the results. The various implementations synthesized 

RTL designs were exported to Vivado, where we achieved the 

design implementation in preparation for further study. Figure 

13 presents the block design of the watermarking system 

following the Xilinx Viviado tool. 

We used the Xilinx Pynq Z1 board, the Xilinx Vivado 

Design Tool version 2022.2, and Jypiter to conduct the tests 

and validations. Table 7 summarizes the LED processing time 

according to all implementation software and hardware. It is 

evident that the utilization of hardware implementation is 

more efficient in comparison to software solutions. 

The processing time of the crypto-watermarking system is 

presented in Table 8. The present study explores the utilization 

of a pure software implementation, namely based on the ARM 

processor, within an FPGA chip. Additionally, a hybrid 

implementation approach is investigated, combining the LSB 

software technique with a hardware solution including LEDs. 

The obtained results prove the superiority of hardware 

implementation over software implementation. Hardware 

implementation offers faster and more efficient processing 

than software optimization designed to carry out a particular 

task without additional programming or interpretation. 

Additionally, hardware implementation can reduce the risk of 

errors, improve system reliability, and ensure adherence to the 

real-time constraint. HLS methods have faster processing 

times and higher throughputs than RTL versions. This is why 

users choose to implement their designs at the HLS level. 

 

 

7. CONCLUSIONS 

 

This paper presents a novel hardware/software 

implementation of crypto-watermarking that utilizes LSB and 

LED methodologies. This study showcases the acceleration of 

the LED cipher on an FPGA by implementing unrolling and 

pipeline optimization techniques, which were used to expedite 

the entire system. HLS can potentially lead to better 

throughput in hardware designs because it allows for more 

efficient optimization and exploration of design alternatives. 

The present study comprehensively analyzes the proposed 

architecture, highlighting its impressive imperceptibility, 

high-speed, and low-power performance features. The results 

of this study could have significant implications for 

developing more efficient and cost-effective LED cipher 

systems in various applications, such as secure medical 

communication, data encryption, and IoMT. Further research 

can be conducted to explore the potential of this architecture 

in real-world scenarios. 
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