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 To investigate the causes of accidents during the construction phase of wind power 

projects and to prevent their occurrence, this study draws on accident investigation reports 

and the "2-4"Model to summarize unsafe behaviors and actions. It selects causative 

variables from four aspects: human, equipment, environment, and management. 

Integrating fault tree analysis, a Bayesian network (BN) model for analyzing the causes 

of accidents during wind power engineering construction is constructed using the BN 

software, GeNie. The model undergoes structural and parameter learning, calculating the 

conditional probability distribution and posterior probabilities of each node. Through 

variable sensitivity and analysis of the most significant causative chains of accidents, the 

key factor paths leading to accidents are identified, contributing to reducing the accident 

rate during the construction phase of wind power projects. The results indicate that 

inadequate personal protection and violations of regulations are prevalent among human 

factors. In terms of management factors, insufficient safety management and supervision 

are the main contributors to accidents, with a probability value exceeding 70%. Geological 

conditions, road conditions, limited workspace, exceptional environmental changes, 

proximity to energized machines, and safety protection equipment failures are significant 

factors in accidents during the construction phase. 
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1. INTRODUCTION 

 

In recent years, countries around the world have largely 

reached a consensus on reducing carbon dioxide emissions. 

With the continuous improvement of integrated utilization 

technologies for renewable energy, wind energy, alongside 

solar energy, has become a major source of renewable energy. 

To further enhance the utilization rate of wind resources and 

energy capture efficiency, the wind power industry is trending 

towards the construction of larger units and the development 

of wind power projects in areas with high altitude, low wind 

speed, and distant offshore locations [1]. The high demand for 

reliability in the wind power industry is reflected in the safety 

analysis of wind turbine units, and research on engineering 

safety is critical not only during the operation and maintenance 

phase but also during the preliminary design and construction 

phases to ensure the safety of the engineering systems. To 

ensure the safety of wind power construction, reduce the 

accident rate during the construction period, and protect the 

lives and property of personnel involved in wind power 

engineering construction, this paper focuses on the causal 

factors of accidents during the construction period. It 

incorporates human unsafe behaviors and unsafe states of 

objects as basic events into the fault tree structure, 

transforming these into a fault tree-BN model through GeNie 

for visualization, reverse diagnosis, and accident cause 

analysis. This lays the foundation for subsequent risk analysis 

and assessment, playing a significant role in preventing 

accidents. 

Currently, many accident models are based on systems 

theory, describing the accident process as a complex, 

interrelated network of events rather than just simple causal 

chains. In 2005, scholar Lyu et al. [2] proposed the "2-4" 

Model of accident causation, combining personal behavior 

(human factor analysis) and organizational behavior 

(organizational analysis) based on previous studies and the 

current state of safety management in China. This research 

aims to establish a safety accident causation model for wind 

power engineering based on the "2-4" Model, analyzing its 

feasibility and effectiveness in the analysis of accidents during 

the construction phase of wind power projects, and 

summarizing unsafe actions and states from accident samples. 

The "2-4" Model has been applied in various fields including 

coal mine safety, construction electrical fire accidents, gas 

explosion accidents, high-altitude fall accidents, general 

aviation accidents, food and chemical accident statistical 

analysis, highway traffic accidents, and urban underground 

space pipeline collapses. Lyu et al. [2] compared ten different 

accident causation models, with the description of accident 

pathways evolving from linear to networked systems, although 

the "2-4" Model lacks in probabilistic analysis. 

Scholars like Zhou et al. [3] have used dynamic BN models 

for risk assessment of offshore wind farms, establishing 

dynamic BN models in GeNie, and evaluating their 
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effectiveness in risk analysis at different lifecycle stages of 

offshore wind farms. Other researchers, such as Zhang, have 

designed a complete Engineering, Procurement, and 

Construction (EPC) project management system covering 

project risk identification, analysis, response, and risk control 

management, proposing a Bayesian fault tree-based 

engineering risk assessment strategy for intelligent risk 

management and control of wind power projects [4]. Adedipe 

et al. [5] have systematically reviewed and evaluated the 

existing research on the use of BN models in the wind energy 

field, demonstrating their wide application from wind power 

and weather forecasting to risk management, fault diagnosis 

and prediction, structural analysis, reliability evaluation, and 

maintenance planning and updating. Yu et al. [6] developed a 

semi-qualitative risk model by combining BN with Evidence 

Reasoning (ER) methods to assess the risk of ship-turbine 

collisions, verifying the BN model through sensitivity analysis 

and other methods, indicating that the minimum passing 

distance is a key factor in the risk of collisions between ships 

and offshore wind turbines. 

BN can demonstrate its potential applicability in modeling 

risks and reliability in different complex systems, considering 

different system levels and their interactions through causal 

methods. Thus, BN has significant potential research and 

practical value in the field of wind power engineering safety. 

While researchers have extensively applied BN for diverse 

risk assessments in offshore wind farms and have utilized them 

in fields spanning from wind energy forecasting, project risk 

management, to fault diagnosis of wind turbine equipment, 

structural analysis, reliability evaluation, and maintenance, 

there remains a notable gap in focusing on accident causation 

factors associated with onshore wind power engineering 

construction projects. Specifically, analyses based on the "2-

4" Model, encompassing fault tree-BN modeling and the 

examination of the most critical causation chains, have not 

been sufficiently explored. Therefore, this study on the 

accident causation factors involved in the construction period 

of onshore wind power engineering projects based on BN has 

significant research value and innovation. 

This paper primarily explores the following three issues: (1) 

How to incorporate human unsafe behaviors and unsafe states 

of objects as basic events into the fault tree structure diagram 

during the construction period of wind power engineering 

accidents. (2) To construct a fault tree-BN model, perform 

visualization with the help of GeNie, and analyze and diagnose 

the causes of accidents. (3) What are the key means and 

effective methods to reduce the occurrence of accidents during 

the construction period of wind power projects? 

Given the short construction cycle, high intensity, and high-

quality requirements of wind power engineering projects, 

along with the harsh natural conditions and adverse 

environments of wind farms, the safety management 

capabilities and awareness of construction personnel are 

relatively low, presenting unique challenges and difficulties in 

improving the safety management system of wind power 

projects. Based on the "2-4" Model, this paper establishes a 

fault tree-BN model of safety accident causation for onshore 

wind power engineering during the construction period, 

clarifying the network model of accidents occurring during 

this phase, which has significant theoretical and practical 

significance for improving the safety of wind power 

construction projects, and enhancing the safety level of wind 

power engineering construction. 

 

2. LITERATURE REVIEW 

 

2.1 Theories of accident causation 

 

The theories of accident causation aim to explain the 

mechanisms behind accidents, helping to understand their 

occurrence, development, and formation, as well as to prevent 

and control them. Over the years, research across various 

scientific fields and industries has led to the development of 

numerous theories of accident causation, enabling a deeper 

analysis of the fundamental reasons behind accidents with the 

goal of their control and prevention. 

Internationally, in 1931, William Heinrich published the 

book Industrial Accident Prevention: A Scientific Approach, 

marking a pioneering work in the field of industrial safety. 

This scientific approach to accident prevention was based on 

extensive study and data analysis from insurance company 

databases. However, due to its inability to adequately explain 

accidents in complex socio-technical systems, James Reason 

introduced the "Swiss Cheese" model in his 1990 book Human 

Error. This model suggested that safety barriers, such as 

procedures, training, and equipment, are like slices of cheese 

with holes that can align, allowing errors to pass through and 

cause accidents [7]. This model aimed to explain the causal 

relationships in complex system accidents, leading to the 

development of practical tools like the Human Factors 

Analysis and Classification System (HFACS) and the Incident 

Cause Analysis Method (ICAM). However, the Swiss Cheese 

model, with its linear thinking, fails to describe the dynamic 

and nonlinear interactions between components in complex 

socio-technical systems [2]. Current accident models, based on 

systems theory, describe the accident process as a complex, 

interconnected network of events rather than simple causal 

chains. Lyu et al. [2] compared ten types of accident causation 

models, showing an evolution from linear to networked 

descriptions of accident pathways, such as Rasmussen's 

Hierarchical Model of Socio-technical System (SMSS) [8], the 

Accident Analyse Mapping (AcciMap), the Systems Theoretic 

Accident Model and Processes (STAMP) proposed by 

Leveson [9], the Cognitive Reliability and Error Analysis 

Method (CREAM), the "2-4" Model, and the Functional 

Resonance Analysis Method (FRAM). 

 

2.2 The "2-4" Model 

 

The "2-4" Model specifies management factors, positing 

that the root cause of accidents lies in the deficiencies of the 

safety management system of the organization responsible for 

the accident. A safety management system can be established 

according to Occupational Health and Safety Management 

System standards or can naturally form without following 

these standards. According to the "2-4" Model, accident 

causes or causative factors are divided into two main 

categories: organizational factors and individual factors. 

Organizational factors are further divided into safety culture 

and safety management systems, while individual factors are 

divided into personal safety capabilities and safe actions of 

individuals and objects. This division into two main categories 

and four subcategories, together with the accidents, forms a 

new model of accident causation [2]. The accident causation 

model is also a model for accident prevention, with the "2-4" 

Model highlighting the evolutionary relationships between the 

four causes of accidents, hence it is also known as the 

behavioral safety "2-4" Model [10], and the static structure of 
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the sixth edition of the "2-4" Model is shown in Figure 1. 

Based on previous statistical analysis of accidents, a static 

structure of the causes of safety accidents during the 

construction period of wind power engineering based on the 

"2-4" Model is constructed as shown in Figure 2. From 

previous accident reports, accidents during the wind power 

engineering construction period are classified into five 

categories: vehicle injuries, electric shocks, falls from heights, 

collapses, and object strike accidents, summarizing 17 unsafe 

individual actions, 4 individual capabilities, 6 management 

system defects, and 11 root causes of safety culture 

deficiencies. 

Li et al. [11] proposed the "2-4" Model for risk analysis 

based on coal mine gas explosion injuries, resulting in the 

identification of 6 unsafe conditions, 25 unsafe behaviors, 13 

pieces of safety knowledge, and 13 elements of safety 

management systems. The application of the "2-4" Model and 

analysis methods can help employees clearly see the evolution 

process of injuries and identify the causes of injuries, better 

understand the logical relationship with the causes of injuries, 

and improve the effectiveness of training. Lyu et al. [2] 

developed a conceptual framework for intelligent safety 

management using the "2-4" Model, their study showed that 

the intelligent safety management framework based on the "2-

4" Model could integrate the functionalities of existing 

intelligent safety management, establish management 

sustainability, and improve data quality. An et al. [10] 

analyzed 28,445 miners from 320 coal mines in China, 

showing that unconscious unsafe behaviors are predicted by 

human safety capabilities, while deliberate unsafe behaviors 

should primarily be predicted by psychological driving factors. 

Based on the literature analysis, the "2-4" Model has potential 

applicability in various accident analyses and risk analyses due 

to its ability to elucidate the logical relationships between 

causes and predict accident factors. However, there is less 

research on the application of the model in the field of wind 

power engineering safety accidents, indicating a need for 

further analysis and research to fill the gaps in the application 

of the "2-4" Model in the safety domain of wind power 

engineering. 

 

  
Figure 1. The static structure of the 6th edition of the "2-4" Model  

 

 
 

Figure 2. The static structure of the causes of safety accidents during the construction period of wind power engineering 

based on the "2-4" Model 
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2.3 About the BN 

 

BN, first introduced by Pearl in 1988, also known as 

Bayesian Belief Network (BBN), aims to provide a 

probabilistic framework for addressing and quantifying the 

causal relationships and interactions under uncertainty. The 

overall architecture of a system is modeled using BN, and the 

dynamics of the system are realized through the interactions of 

variables and agents within and between different levels of the 

environment, organization, human, and technical factors of the 

system. A BN is a graphical model consisting of directed 

acyclic graphs, where nodes represent variables, and directed 

links between nodes represent causal relationships. If a 

variable is discrete, the probabilistic relationship of each node 

X to its respective parent nodes is defined by its Conditional 

Probability Table (CPT), and for continuous variables, this 

probabilistic relationship is defined by their conditional 

probability distributions. The joint probability distribution of 

a network with n nodes can be found using the chain rule: 

 

𝑃(𝑥1，𝑥2， … 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑛
𝑖=1 𝑥𝑖) (1) 

 

where, P(x1，x2，… xn)  represents the probability 

distribution of target nodes, P(xi|parent xi) represents the 

conditional probability distribution of nodes, parentxi 

represents the probability distribution of the parent nodes. 

Based on the assumption of conditional independence, all 

nodes xi and the target node x are conditionally independent 

of each other, thus allowing the joint probability distribution 

(Eq. (1)) to be solved using the chain rule [12]. For example, 

in a BN as shown in Figure 3, its joint probability distribution 

can be expressed as: 

 

𝑃(𝑋1, 𝑋2, 𝑋3) = 𝑃(𝑋1|𝑋2, 𝑋3) × 𝑃(𝑋2, 𝑋3) × 𝑃(𝑋3) (2) 

 

Through BN, the paths of accidents can be considered 

retrospectively in a backward manner, and several potential 

scenarios and their impacts on system safety can be predicted 

and analyzed in a forward-looking predictive manner. BN has 

been widely used in various safety research fields due to its 

visualization capabilities and the ability to perform bi-

directional (i.e., forward predictive and backward diagnostic) 

risk analysis. A typical BN model, as illustrated in Figure 1, 

consists of nodes and directed arcs. The nodes represent 

random variables, which can express the score states of risk 

impact factors and the probability of being in different score 

states. Directed arcs represent the logical relationship between 

two connected nodes, with the direction from the parent node 

to the child node, where the child node is assigned a CPT that 

expresses the conditional dependence relationship between the 

two nodes. 

 
 

Figure 3. Example of a BN 

 

Scholars both domestically and internationally have applied 

BN for reliability analysis and fault diagnosis. For instance, Li 

et al. [13] used BN to model and analyze the reliability of 

floating offshore wind turbines, identifying the key systems, 

components, and reliability influencing factors through BN 

diagnostic analysis. Wang et al. [14] developed a data-driven 

BN method with a spatio-temporal vulnerability model to 

study the dependency between lightning strikes and Overhead 

Contact Line (OCL) faults, predicting the risk of OCL failures 

related to lightning strikes. However, the construction of 

complex BN models and the corresponding probabilistic 

reasoning have become a reality and are widely applied in 

engineering management, especially in the field of safety 

engineering. Li et al. [15] utilized fuzzy logic theory combined 

with BN to assess the risk of underground gas explosions in 

coal mines, finding that fan failure and electrical failure are the 

two most significant risk factors. Yan and Wu [16] built a BN 

model for the causation analysis of coal mine roof accidents 

using software GeNie and employed the Expectation 

Maximization (EM) algorithm for model parameter training. 

By using reverse reasoning, sensitivity, and maximum 

causation chain analysis, the most significant causation path 

impacting roof accidents was identified. In 2023, they 

furthered their research on the causation risk of coal and gas 

outburst accidents using Dempster-Shafer (DS) evidence 

theory and BN, applying parameter learning to calculate their 

conditional and posterior probabilities, identifying key factors 

causing accidents [17]. Waskito et al. [18] used BN analysis to 

identify relationships between accident patterns within the 

HFACS framework, showing that driver violations had the 

most significant impact on fatalities and multi-vehicle 

accidents. 

In summary, based on the deficiencies in probabilistic 

analysis described by the "2-4" Model, this paper proposes to 

use BN to analyze specific causation paths and important 

factors in wind power engineering safety accidents. Previous 

applications of BN in the field of wind power have focused on 

risk and reliability analysis and fault diagnosis. This research 

could further expand the practical value of BN in the field of 

wind power engineering safety. 

 

 

3. RESEARCH METHODS 

 

3.1 Fault tree analysis method 

 

Fault tree analysis is a graphical analysis method that 

identifies the causal and logical relationships between various 

factors related to an accident, tracing from the outcome to the 

causes. Starting with a specific accident or failure for analysis, 

it delves into the causes layer by layer until the basic causes, 

or basic events, are found. After constructing the model, the 

fault tree uses Boolean algebra to list its mathematical 

expressions. Boolean algebra is particularly suited to 

describing the accident process that takes two opposite states. 

The structure function describes the system's state, completely 

dependent on the condition of elements or components. It is 

usually assumed that at any time, elements, components, and 

the system can only be in a normal or failure state, and at any 

moment, the system's state is uniquely determined by the state 

of its elements or components. Assuming a fault tree system is 

composed of n basic events, the event state function can be 

defined as: 
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x = (x1, x2, … ,  xn) 
 

where, xi is the state variable of the i-th basic event. 
 

𝑥𝑖 = {
1 indicates that event i occurs (i = 1, 2, … , n)

0 indicates that event i does not occur (i = 1, 2, … , n)
 

 

The state of the top event depends on the state of all basic 

events, i.e., y is a function of x: 

y = φ(x) is referred to as the fault tree's structure function. 

y=1 indicates the occurrence of the top event; y=0 indicates the 

non-occurrence of the top event. The fault tree is composed of 

events and logic gates, with events divided into bottom events, 

intermediate events, and top events. Bottom events are located 

at the lowest end of the fault tree structure diagram, consisting 

of basic events and undetermined events; intermediate events 

are the result events between the top event and bottom events; 

the top event is the target event of study, located at the top of 

the fault tree, with logic gates divided into AND and OR gates. 

By analyzing human unsafe behaviors and unsafe states of 

objects during the construction period of wind power 

engineering through the "2-4" Model as basic events, they are 

categorized into human factors, equipment factors, 

environmental factors, and management factors as 

intermediate events, with accidents during the construction 

period of wind power engineering as the top event, to compile 

a fault tree. 

 

3.2 BN modeling method 
 

Compared to fault tree analysis, BN can perform 

bidirectional reasoning, but its structure learning is relatively 

complex. Converting a fault tree into a BN offers a clearer and 

more convenient approach. The correspondence between the 

bottom events, intermediate events, top events, and logic gates 

in the fault tree and the nodes and logical connections between 

nodes in the BN are as follows: (1) The bottom events of the 

fault tree correspond to the root nodes in the BN; (2) 

Intermediate events correspond to non-root nodes, and top 

events correspond to leaf nodes; (3) The input-output 

relationship of AND and OR gates in the fault tree corresponds 

to the direction of directed edges in the BN. 

By using the above correspondences, the fault tree is 

converted into a BN. This paper utilizes Bayesian theory and 

the software tool GeNie for visualization operations and 

employs the EM algorithm for parameter learning to obtain the 

BN model. GeNie, a BN learning and inference software 

developed by Bayes Fusion, LLC, based on the Decision 

Systems Laboratory at the University of Pittsburgh, is a 

professional tool for BN modeling. 

 

 

4. RESULTS AND DISCUSSION 
 

The general process of BN modeling (as shown in Figure 4) 

includes: 

(1) Selection and definition of network node variables are 

based on the knowledge of experts in the relevant field. The 

chosen variables should be representative and crucial, with a 

strong relevance to the problem being solved. The selection of 

node variables has a significant impact on the model's 

accuracy in representing reality. It is a complex process that 

requires experts to deliberate repeatedly. 

(2) Determination of the domain of network node variables. 

Once node variables are determined, the range of values for 

the variables is defined based on expert knowledge. Typically, 

the values of variables are discrete, such as occurrence or non-

occurrence. 

(3) Analysis of variable correlations. Based on expert 

experience or statistical methods, the correlations between 

variables are analyzed to determine the ranking of variable 

correlations. Variables with lower correlations are excluded to 

further optimize the selection of node variables. 

(4) Structural learning and parameter learning. Using case 

data and referring to different learning algorithms, the 

structure of the model and the learning of parameter 

probability distributions are conducted. The process of 

network construction should fully utilize expert knowledge to 

check the model's effectiveness and logical correctness in 

solving practical problems. 

(5) Model validation and inference. After the BN model is 

established, it is necessary to validate the scientific validity 

and effectiveness of the model with examples. If there is a 

significant deviation from actual situations, the model should 

be corrected promptly to ensure that the inference meets the 

requirements of precision and accuracy. 

 

 
 

Figure 4. BN modeling process 

 

4.1 Data source and variable settings 

 

For the research period from 2013 to 2023, accident 

investigation reports related to the construction period of wind 

power engineering projects were collected and organized from 

the official websites of the National Energy Administration 

and various provincial and municipal emergency management 

bureaus as data sources. A total of 41 cases of wind power 

engineering construction accidents were obtained for analysis 

and investigation reports. Based on expert opinions and the 

analysis of unsafe actions and unsafe states obtained from 

Figure 2, a summary and simplification of names were 

conducted. Variables were considered from four aspects: 

human, equipment, environment, and management, as shown 

in Table 1. 
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Table 1. Variable settings for wind power accident causation 

 

Category Variable Name Variable Symbol Variable Value 

Accident Wind Power Engineering Construction Accident F 1(Occurs)2(Does Not Occur) 

Human Factors 

(H) 

Proper Vehicle Operation H1 1(Yes)2(No) 

Personal Protection H2 1(Adequate)2(Inadequate) 

Distance Judgment H3 1(Correct)2(Mistake) 

Safety Work Skills H4 1(Possessed)2(Lacking) 

Personnel Qualification H5 1(Possessed)2(Lacking) 

Risky Entry H6 1(Yes)2(No) 

Accidental Contact with Charged Body H7 1(Yes)2(No) 

Unauthorized Operation H8 1(Yes)2(No) 

Equipment Misuse H9 1(Yes)2(No) 

Sensitivity to Equipment Changes H10 1(High)2(Low) 

Equipment Factors 

(T) 

Transportation of Wind Turbine Blades, Towers, Gearboxes T1 1(Yes)2(No) 

Lifting Equipment T2 1(Normal)2(Faulty) 

Equipment Carrying Hazardous Voltage T3 1(Yes)2(No) 

Distance to Charged Body T4 1(Close)2(Far) 

Safety Protection Equipment Failure T5 1(Yes)2(No) 

Equipment Installation Compliant with Regulations T6 1(Yes)2(No) 

Failure of Wind Turbine and Its Auxiliary Equipment T7 1(Yes)2(No) 

Environmental Factors 

(E) 

Geological Issues E1 1(Yes)2(No) 

Road Condition Issues E2 1(Yes)2(No) 

Abnormal Weather E3 1(Yes)2(No) 

Limited Working Platform/Space at Height E4 1(Yes)2(No) 

Abnormal Changes in Workplace Environment E5 1(Yes)2(No) 

Management Factors 

(M) 

Safety Management Supervision M1 1(Adequate)2(Inadequate) 

Execution of Safety and Organizational Systems M2 1(Adequate)2(Inadequate) 

Safety Training, Education, and Guidance M3 1(Adequate)2(Inadequate) 

Accident Hazard Investigation M4 1(Adequate)2(Inadequate) 

Safety Risk Level Control System M5 1(Adequate)2(Inadequate) 

Daily Safety Inspection M6 1(Adequate)2(Inadequate) 

Safety Briefing M7 1(Possessed)2(Lacking) 

Staffing M8 1(Sufficient)2(Insufficient) 

 

 
 

Figure 5. Fault tree of wind power engineering construction accident 

 
Figure 6. BN model of causation for wind power engineering construction accident 
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4.2 Model construction 

 

Initially, a fault tree model was constructed with a wind 

power accident (F) as the top event, as shown in Figure 5. The 

relationships between related variables were determined based 

on questionnaires and expert judgments from within the wind 

power engineering industry, as indicated in Table 2. The 

relationship between the bottom events, intermediate events, 

top events, and logic gates in the fault tree is mirrored in the 

BN through the nodes and their logical connections, 

establishing a correspondence that facilitates the 

transformation of these elements into a coherent BN structure. 

The processed structured data is imported into the BN 

software GeNie, where structural learning is conducted with 

the help of relevant algorithms. Based on this, the BN model 

is adjusted and corrected in conjunction with the results of the 

node correlation analysis, resulting in the final construction of 

the BN model for causation of accidents during the 

construction period of wind power engineering, as shown in 

Figure 6, it can be observed that the BN model reflects the 

causes of accidents during the construction period of wind 

power engineering and the causal relationships between these 

causes. The arrows between nodes point from cause to effect, 

indicating the relationships between two variables. The node 

F (wind power engineering construction accident) is the 

subject of the model, showing clear intrinsic causal logical 

relationships with H (human factors), T (equipment factors), E 

(environmental factors), and M (management factors). There 

are also close causal relationships between other nodes, 

studying these relationships can delve into the causes of 

accidents during the construction period of wind power 

engineering, finding the most important causative factors from 

the root. 

 

Table 2. Relationship between related variables 

 

Influencing 

Variable 

Influenced 

Variable 

Direction of 

Relationship 

Expert 

Opinion(Y=1; 

N=0) 

H1 T1 H1→T1 1 

H3 T1 H3→T1 1 

E2 T1 E2→T1 1 

E2 T1 E2→T1 1 

T3 H7 T3→H7 1 

T4 H7 T4→H7 1 

T5 H2 T5→H2 1 

M8 H2 M8→H2 1 

M3 H2 M3→H2 1 

M6 H10 T6→H10 1 

T7 H10 T7→H10 1 

E1 E5 E1→E5 1 

E2 E5 E2→E5 1 

E3 T7 E3→T7 1 

M4 T7 M4→T7 1 

M1 H6 M1→H6 1 

M1 H8 M1→H8 1 

M2 H9 M2→H9 1 

M3 H5 M3→H5 1 

M4 T5 M4→T5 1 

M7 H4 M7→T4 1 

H5 T2 H5→T2 1 

M2 T6 M2→T6 1 

H1 E1 H1→E1 0 

H2 T2 H2→T1 0 

H3 T2 H3→T2 0 

H4 M1 H4→M1 0 

 

5. MODEL VALIDATION AND INFERENCE 

 

5.1 Model validation 

 

To verify the reliability and predictability of the BN model, 

effective cross-validation of the network model is conducted. 

The Leave-One-Out Cross-Validation method is used to 

calculate the effectiveness of the prediction accuracy for each 

node in the model. The validation results are shown in Table 

3. Among the 34 nodes, the precision of node E reached the 

highest at 0.947368, followed by F at 0.938235. Overall, the 

prediction accuracy for most nodes is above 0.8. This indicates 

that the BN model constructed in this paper has a high 

prediction accuracy and is suitable for reasoning and analyzing 

the causation relationships of accidents during the construction 

period of wind power engineering. 

 

Table 3. Cross-validation results of the model 

 

Node Accuracy Node Accuracy 

F 0.938235 H1 0.807018 

E 0.947368 H2 0.807018 

E1 0.824561 H3 0.824561 

E2 0.894737 H4 0.596491 

E3 0.824561 H5 0.824561 

E4 0.859649 H6 0.859649 

E5 0.877193 H7 0.859649 

M 0.877193 H8 0.842105 

M1 0.70175 H9 0.578947 

M2 0.614035 H10 0.631579 

M3 0.894737 T 0.526316 

M4 0.578947 T1 0.894737 

M5 0.561404 T2 0.631579 

M6 0.754386 T3 0.807018 

M7 0.842105 T4 0.859649 

M8 0.807018 T5 0.912281 

H 0.77193 T6 0.684211 

 

5.2 Parameter learning 

 

Parameter learning in BN aims to determine the conditional 

probability distributions of node variables, quantifying the 

degree of dependency relationships between model node 

variables. Currently, the main parameter learning algorithms 

include the Bayesian method, the EM algorithm, and the 

Maximum Likelihood Estimation (MLE) method, etc. In this 

case, the EM algorithm is chosen mainly because it can 

perform MLE of parameters in the presence of missing data, 

making it well-suited for handling various types of incomplete 

data. The basic steps of the EM algorithm are as follows: 

(1) Calculate z(i) = E[Z|y, θ̂(i)]; 
(2) Expand the observed data y to (y, z(i)), maximize 

π(θ|y,𝑧(𝑖)), denoting its maximum value as θ̂(i+1); 

(3) Use θ̂(i+1) and the results from step (1) to obtain z(i+1), 

which is then substituted into step (2), repeating this process 

until convergence criteria are met. 

 

where, y represents the observed data, z represents the missing 

data or latent variable data, p(z|y, θ̂)  is the predictive 

distribution of Z given 𝑦, 𝜃̂ ; θ̂(i) is the estimate at the i-th 

iteration. 

Through parameter learning of the BN, the conditional 

probabilities between nodes can be obtained. Due to the large 

number of nodes and limitations in space, this analysis will 

focus on the conditional probability distributions of key nodes 
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H2 (Personal Protection), M4 (Accident Hazard Investigation), 

and M5 (Safety Risk Level Control). 

From Table 4, it is known that when safety equipment fails, 

if personnel safety training is adequate and personnel are 

sufficiently staffed, then the probability of personal protection 

issues occurring is 0.5. However, even if personnel safety 

training is adequate, if staffing is insufficient when safety 

equipment fails, the probability of inadequate personal 

protection issues occurring is 0.78. If safety equipment fails 

and personnel safety training is inadequate, regardless of 

whether staffing is sufficient, personal protection issues are 

likely to arise. Inadequate personnel education and staffing can 

affect the adequacy of personal protection in wind power 

engineering. 

When safety equipment is functioning properly, and 

personnel safety training is adequate with sufficient staffing, 

the probability of personal protection issues being adequately 

addressed is 0.88. If safety equipment is functioning properly 

but personnel safety training is inadequate, even with 

sufficient staffing, the probability of inadequate personal 

protection issues occurring is 0.84. If safety equipment is 

functioning properly, personnel safety training is inadequate, 

and staffing is insufficient, the probability of inadequate 

personal protection issues occurring is 0.71. 

From Table 5, it is known that during abnormal weather 

conditions, if accident hazards are adequately addressed, the 

probability of failure in the wind turbine and its auxiliary 

equipment not occurring is 0.66; if accident hazards are not 

adequately addressed, the probability of failure occurring is 

0.5. During normal weather conditions, if accident hazards are 

adequately addressed, the probability of failure in the wind 

turbine and its auxiliary equipment not occurring is 1. 

 

Table 4. CPT for node H2 

 
Parent Node State Conditional Probability of Child Node H2 

T5 M3 M8 Y N 

Y Y 
Y 0.5 0.5 

N 0.22 0.78 

Y N 
Y 0 1 

N 0 1 

N Y 
Y 0.88 0.11 

N 1 0 

N N 
Y 0.16 0.84 

N 0.29 0.71 

 

Table 5. CPT for child node T7 

 
Parent Node State Conditional Probability of Child Node T7 

E3 M4 Y N 

Y 
Y 0.33 0.66 

N 0.5 0.5 

N 
Y 0 1 

N 0.1 0.9 

 

Table 6. CPT for child node H7 

 
Parent Node State Conditional Probability of Child Node H7 

T3 T4 Y N 

Y 
Y 0.73 0.27 

N 0.27 0.73 

N 
Y 0 1 

N 0 1 

 

From Table 6, it is known that when equipment carries 

hazardous voltage and is close to a charged body, the 

probability of accidentally touching the charged body is 0.73. 

When equipment does not carry hazardous voltage, the 

distance to the charged body does not affect the occurrence of 

danger from accidentally touching the charged body. 

 

5.3 Reverse inference of BN model nodes 

 

Reverse inference in BN model nodes involves calculating 

the posterior probabilities of other node variables when the 

target node of the network model is known. By constructing a 

BN model and performing reverse inference on variables, the 

posterior probabilities of other node variables can be 

accurately determined, allowing for a more precise assessment 

and prediction of accident situations. Based on the constructed 

BN model, setting the root node "Wind Power Engineering 

Construction Accident (F)" as the evidence node, the posterior 

probability distributions of other nodes related to preventing 

accidents are derived. By analyzing and comparing the 

posterior probability values of various nodes, the most likely 

causes of wind power engineering construction accidents can 

be inferred, as shown in Table 7 and Figure 7. 

 

Table 7. Posterior probability values of key node variables 

 
Rank Node Posterior Probability (%) 

1 M1 70 

2 E 63 

3 M2 61 

4 M3 61 

5 M 56 

6 H2 56 

7 H 53 

8 E5 50 

9 M5 44 

10 T2 42 

 

From Table 7 and Figure 7, it is known that in the event of 

a wind power engineering construction accident, the 

probability of inadequate safety management supervision (M1 

value as N) exceeds 70%, environmental factors (E value as Y) 

exceed 63%; the execution of safety management and 

organizational systems (M2 value as N) exceeds 61%, safety 

training, education, and guidance (M3 value as N) exceed 61%, 

management factors (M value as Y) exceed 56%; the 

inadequacy of personal protection (H2 value as N) exceeds 

56%, human factors (H value as Y) exceed 53%; occurrence 

of abnormal changes in the workplace environment (E5 value 

as Y) exceeds 50%; inadequate safety risk level control (M5 

value as N) exceeds 44%, and failure of lifting equipment (T2 

value as N) is at 42%. 

 

5.4 Node sensitivity analysis and maximum causation 

chain analysis 

 

In the BN model, sensitivity analysis can reflect how 

changes in local parameters of the network model cause 

quantitative changes in the target node, thereby identifying 

sensitive factors within the model. The depth of the red color 

of the nodes is proportional to their sensitivity; the deeper the 

red, the higher the sensitivity. At the same time, the accident's 

maximum causation chain is used to find key risk factors, 

highlighting the risk causation chain, or the most likely key 

risk pathway leading to an accident, with a bold arrow. Setting 

node F as the target node, the variable sensitivity and the 

maximum causation chain analysis were performed, as shown 
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in Figure 8. 

From Figure 8, it is evident that the sensitivity levels of 

network model nodes vary, with nodes such as E1, E2, E4, E5, 

M3, M4, M5, T4, M2, and T5 showing high sensitivity. 

Focusing on these factors for prevention and being vigilant 

against accidents caused by geological reasons, observing road 

conditions before transporting wind turbine blades, avoiding 

operations in limited spaces, staying away from charged 

bodies, maintaining safety protection equipment, 

strengthening safety training, education, and guidance, 

addressing accident hazards in advance, paying attention to 

safety risk level control, and strictly implementing safety and 

organizational systems can effectively enhance the ability to 

resist accidents. In Figure 8, the longest causation chain 

leading to wind power engineering construction accidents 

includes E3 (Abnormal Weather) → T7 (Failure of the Wind 

Turbine and Its Auxiliary Equipment) → H10 (Sensitivity to 

Equipment Changes) → H (Human Factors) → F (Wind 

Power Engineering Accident) and M3 (Safety Training, 

Education, and Guidance) → H5 (Personnel Qualification) → 

T2 (Lifting Equipment) → T (Equipment Factors) → F (Wind 

Power Engineering Accident). Therefore, control measures 

should prioritize these key risk factors to reduce the 

probability of factors occurring in the maximum causation 

chain. During the construction of wind power projects, 

changes in weather or the environment should be closely 

monitored, along with changes in wind turbines and their 

auxiliary equipment. In the management process, personnel 

qualifications and safety training, education, and guidance 

before operations should be strengthened to timely detect 

safety hazards, enhance the safety construction awareness of 

operational and management personnel, ensure the safety of 

personnel and property, and effectively prevent accidents 

during the construction period of wind power engineering. 

 

 
 

Figure 7. Distribution map of reverse inference for nodes in the BN model 

 

 
 

Figure 8. Sensitivity analysis and maximum causation chain analysis of variables in the BN model 
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6. CONCLUSION 

 

The study of safety in wind power engineering construction 

is paramount to ensuring the smooth completion of 

construction and system safety. To ensure the safety of wind 

power construction and reduce the rate of accidents during the 

construction period, this paper, based on the causative factors 

of accidents during the construction period of wind power 

engineering, incorporates human unsafe behaviors and unsafe 

states of objects as basic events into the fault tree structure. By 

transforming these into a fault tree-Bayesian model and using 

GeNie for visualization, it reverse diagnoses and analyzes the 

causes of accidents. 

After organizing and investigating the related materials of 

accidents during the construction period of wind power 

engineering, and summarizing unsafe actions and states based 

on the "2-4" Model, causative variables were selected from 

four aspects: human, equipment, environment, and 

management. Combining expert opinions and experience to 

determine the relationships between factors, the reliability and 

accuracy of the BN model were cross-validated. The accident 

model was constructed using BN software GeNie, and the EM 

algorithm was used for parameter training of the Bayesian 

analysis model to understand the probability distribution 

between variables. Through reverse inference, sensitivity, and 

maximum causation chain analysis, significant causative 

factors impacting wind power engineering construction 

accidents were identified. Nodes E1 (Geological Issues), E2 

(Road Conditions), E4 (Limited Working Space), E5 

(Abnormal Changes in Workplace Environment), M3 (Safety 

Training, Education, and Guidance), M4 (Accident Hazard 

Investigation), M5 (Safety Risk Level Control), T4 (Distance 

from Charged Body), M2 (Execution of Safety and 

Organizational Systems), T5 (Safety Protection Equipment 

Failure) show strong sensitivity. The longest causation chain 

identified is E3 (Abnormal Weather) → T7 (Failure of the 

Wind Turbine and Its Auxiliary Equipment) → H10 

(Sensitivity to Equipment Changes) → H (Human Factors) → 

F (Wind Power Engineering Accident) and M3 (Safety 

Training, Education, and Guidance) → H5 (Personnel 

Qualification) → T2 (Lifting Equipment) → T (Equipment 

Factors) → F (Wind Power Engineering Accident). Preventing 

accidents during the construction period of wind power 

engineering, based on the analysis results, is a key and 

effective method to reduce the occurrence of accidents during 

the construction period of wind power projects. 

In future work, based on the results of the causation analysis 

of accidents during the construction period of wind power 

engineering, dynamic BN will be used for risk assessment to 

build a safety risk assessment system for wind power 

engineering. This aims to address the issue of insufficient 

safety risk identification and assessment during the 

construction period of onshore wind farms. 
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