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In multi-cloud computing, securing sensitive data remains a paramount challenge. This 

paper presents a novel steganographic methodology, Product Cipher-Based Distributed 

Steganography (PCDS), designed to securely hide data within a multi-cloud environment. 

This approach, addressing the intricacies of decentralized data concealment, utilizes 

unaltered cover media as benchmarks for fragmenting and disguising data. The PCDS 

scheme, by distributing hidden data dynamically across multiple cloud platforms, 

successfully evades detection through the absence of file modifications or the use of 

special characters. An in-depth security analysis of this method demonstrates its resilience 

against unauthorized access; even with complete access to all cloud accounts involved, 

the extraction of the concealed message remains computationally unfeasible. The 

utilization of an undisclosed key, alongside a base encoding value and the inherent 

computational complexity of the scheme, fortifies its defense against brute-force attacks, 

significantly elevating its security profile compared to existing methods. This paper 

contributes substantially to the field of cloud security and steganography by offering an 

undetectable and innovative approach for data hiding. It effectively counters prevailing 

vulnerabilities in multi-cloud storage and sets a new precedent for advanced secure data 

concealment strategies. Contrasting with conventional methods susceptible to brute-force 

attacks requiring substantially fewer computations, the PCDS framework ensures a higher 

level of security, providing robust protection for confidential data in cloud environments. 
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1. INTRODUCTION

In the digital landscape of today's interconnected world, our 

reliance on the internet has grown exponentially, permeating 

diverse facets of our lives through online services. However, 

this widespread interconnectivity has exposed us to 

heightened security risks, compelling the development of 

innovative tools to protect sensitive information. In response, 

the synergy of cryptography and steganography has emerged 

as a formidable defense. Cryptography involves the intricate 

transformation of data into an unreadable format using 

complex algorithms, while steganography conceals 

information within other data, reducing its detectability. 

The enduring significance of cryptography in ensuring data 

confidentiality and integrity is undeniable. Nevertheless, 

steganography offers a captivating approach by obfuscating 

hidden data and embedding confidential messages within 

innocuous cover messages guided by cryptographic keys. The 

essence of steganography lies in the formidable challenge it 

poses to unauthorized entities attempting to retrieve hidden 

messages without the proper key, adding an additional layer of 

security [1-7]. 

The potency of steganography hinges on several critical 

factors, encompassing the effectiveness of message 

concealment within cover data, the data's capacity to 

seamlessly host concealed messages, and the technique's 

resilience against potential adversarial attacks. The selection 

of an appropriate carrier medium is paramount in 

steganography. The ubiquity, transparency, and accessibility 

of cloud computing position it as an optimal candidate for this 

role [8]. 

Cloud computing, a cornerstone of distributed computing, 

provides access to versatile computational resources, boasting 

advantages such as cost-efficiency, enhanced data 

accessibility, and accelerated computational speeds [9-14]. 

Despite these benefits, the paramount challenge of ensuring 

data security within cloud environments persists. To confront 

this challenge, the amalgamation of cryptography and 

steganography has emerged as a robust approach, enhancing 

the security of sensitive information and mitigating potential 

threats [15-17]. 

Steganography's operation involves covertly embedding 
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crucial information within different data types, such as images 

or audio files. This covert process ensures that even if visible 

data undergoes minor alterations, hidden information remains 

secure and retrievable. The steganography realm can be 

broadly categorized into two primary classifications: classical 

and distributed steganography [18]. Classical steganography 

conceals data within a single cover medium, while distributed 

steganography fragments and disseminates data across 

multiple mediums, substantially amplifying the complexity of 

detecting or accessing the concealed message. 

In the historical context of classical steganography, an 

intriguing analogy was introduced by Simmons in 1984—the 

"prisoner's problem." This analogy depicts a scenario where 

two individuals, Alice and Bob, communicate secretly under 

close surveillance [19]. This metaphor underscores the 

intricate challenge of establishing covert communication 

channels that evade detection. Classical steganography 

employs sophisticated techniques to conceal confidential 

messages within various media types, leveraging Secret keys 

for clever insertion and extraction. The primary objective is 

utmost discretion, thwarting potential adversaries from 

deciphering the process and exposing the messages. However, 

as adversaries become more sophisticated and capable of 

detecting hidden messages and meticulously analyzing 

exchanged data, the necessity to establish robust defenses 

intensifies. This interplay between secrecy and detection holds 

critical importance, particularly in the context of cloud 

computing, where secure information exchange fuels the 

evolution of steganography techniques. Advanced statistical 

tools are employed to reveal intricate patterns of data 

concealment and revelation in the digital realm [20, 21]. 

The realm of distributed steganography introduces a novel 

paradigm, building on classical steganography's foundations 

[22-26]. This approach involves fragmenting sensitive 

messages into discreet segments, which are then distributed 

across an array of covert communication channels. This 

strategy adds a layer of complexity, significantly enhancing 

the challenge of detecting and reconstructing the concealed 

message [27-32]. This technique finds utility in scenarios 

where multiple independent parties collaborate covertly. For 

instance, Liao et al. [33] introduced a model wherein different 

participants possess distinct covert messages, with the 

intended recipient having all hidden messages to reconstruct 

the original content. This Secret-sharing strategy entails three 

main steps: creating a target key, distributing share keys, and 

ultimately reconstructing the Secret. The delicate balance 

between security and accessibility is at the core of this process. 

Distributed steganography's security is fortified by 

distributing the Secret across various media types. However, 

introducing subtle changes to accommodate a hidden message 

may inadvertently arouse suspicion, exposing the risk of 

steganalysis [34-36]. Amid these complexities, the potential 

for complete loss of secrecy due to media tampering 

necessitates careful consideration. The challenge in distributed 

steganography is striking the right balance between 

complexity for safety and durability in a dynamically changing 

digital realm. 

To address limitations in traditional steganography, a new 

concept has been proposed where the cover media remains 

unchanged and serves as a pointer to fragmented data stored in 

a multi-cloud environment. This approach makes locating and 

extracting the Secret message difficult for attackers. Leonel 

Moyou Metcheka and Ndoundam [37] employ steganography 

to protect the password. It is claimed that the existing covert 

channel's new steganography idea makes it difficult for an 

attacker to figure out how to extract the hidden message. Two 

technical contributions served as the foundation for the current 

system's architecture. First, the cover media are not altered; 

rather, they function as a link to fragmented data. Second, the 

multi-cloud storage environment contains a Secret message. 

Cover media is chosen and uploaded into the cloud based on 

the message that communicating entities desire to keep hidden. 

Here, the method uses files as the cover media and uploads 

them directly into the cloud. Using the Secret message and key 

will allow you to upload the files. The key includes the 

following details: number of clouds, in the following order: C0, 

C1, …… Cn-1 and their login information, file list, such as L0, 

L1, …… Lk-1, each list consisting of a set of files, such as 

( 𝐿0
0, 𝐿0

1, … . . 𝐿0
𝐵−1 ) are composed in L0 and 

(𝐿1
0, 𝐿1

1, … . . 𝐿1
𝐵−1) are composed in L1 and so on with the 

encoding base values. Work presupposed that the 

communication entities would safely share the key 

information. 

To secretly store the Secret in the cloud, the sender 

transcodes the Secret in a certain base and splits it into K 

blocks, i.e., 𝑏0, 𝑏1, ….. 𝑏𝐾−1 with each block consisting of n 

values. The sender then sends these K blocks to the cloud. 

Before the block is uploaded to the cloud for storage, the 

procedure is repeated for a greater number of blocks, during 

which time one of the files from the file lists is substituted for 

each value included inside the block. Each block has its own 

unique file list that has been allocated to it. In addition, copies 

of these are stored in the cloud. The receiver, who has access 

to the cloud, looks through the files to determine how to get 

the data and then produces the Secret by exchanging the 

information in the files with values. 

Despite its suitability for protecting Secrets across multiple 

clouds from unauthorized access, this mechanism has a 

limitation, i.e., file selection and storage follow a predictable 

serial order. This vulnerability exposes the possibility of 

intruders cracking the Secret. Attackers could exploit this 

sequential pattern to deduce the concealed message through 

multiple attempts. Recent work examines this approach's 

security strength against brute force attacks [1]. The analysis 

concludes that despite an attacker's attempts to retrieve the 

Secret value via brute force attacks, the computational effort 

required for unauthorized access is smaller than exponential 

computations. In response, the paper seeks to develop a 

mechanism to make brute-force attacks computationally 

exponential, proposing "Product Cipher-Based Distributed 

Steganography". 

Selecting a product cipher as the underlying mechanism 

introduces complexity and security to address concerns in 

cloud-based communication. The product cipher, a 

cryptographic construction combining multiple substitution 

and transposition methods, offers a robust and multi-layered 

defense against potential attacks. By leveraging this approach, 

the system aims to counter various intrusion forms, including 

brute-force attacks - a significant concern in cloud security. 

Although the paper doesn't explicitly compare the chosen 

Product-Cipher-Based Distributed Steganography with other 

techniques, it primarily focuses on presenting and validating 

this novel approach. It highlights the unique contributions, 

such as maintaining unchanged cover media, leveraging multi-

cloud storage, and addressing traditional steganography 

limitations. Further research could delve into comparative 

studies, evaluating the strengths of the product cipher-based 

method in contrast to other steganography approaches. Such 
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comparisons would provide insights into the specific 

advantages and trade-offs of this technique, situating it within 

the broader landscape of secure cloud communication 

steganography methods. 

The proposed steganography method, termed "Product 

Cipher-Based Distributed Steganography" (PCDS), introduces 

several distinctive features that set it apart from existing 

methods. The unique aspects of PCDS in contrast to traditional 

and distributed steganography approaches are: 

1. Unchanged Cover Media as a Reference: 

• Traditional Steganography: In conventional methods, 

data is hidden in different cover media, introducing 

the risk of detection as alterations to cover media may 

leave traces. 

• Distributed Steganography: Existing distributed 

methods fragment the Secret message across various 

cover media, enhancing security but still susceptible 

to suspicion or loss of the entire Secret in case of 

modifications. 

• PCDS Approach: PCDS innovatively employs 

unchanged cover media as a reference for fragmented 

data. This departure from tradition minimizes the risk 

associated with modifying cover media, reducing the 

potential for detection by attackers. 

2. Multi-Cloud Storage Security: 

• Traditional Steganography: The shift towards cloud 

usage has prompted individuals to hide private 

information in images, but concerns remain about the 

security of sensitive data in the cloud. 

• Distributed Steganography: While distributed 

methods enhance security, they may still face 

challenges such as potential detection and loss of the 

entire Secret. 

• PCDS Approach: PCDS utilizes multi-cloud storage 

to store the hidden message securely. This safeguards 

against unauthorized access and introduces 

mathematical complexity, making it computationally 

infeasible for attackers to retrieve the concealed data. 

3. Computational Infeasibility for Attackers: 

• Traditional and Distributed Steganography: The 

comment alludes to concerns raised in recent research 

[1] regarding the efficiency of retrieving Secret data 

from multi-cloud storage. Existing methods may face 

vulnerabilities to computational attacks. 

• PCDS Approach: PCDS addresses these concerns by 

introducing a Product Cipher-Based Distributed 

Steganography scheme. The computational 

complexity involved in determining the appropriate 

sequence of Secret distribution and file numbering 

makes brute-force attacks computationally 

exponential, ensuring a significantly higher level of 

security. 

Consider a practical example of the PCDS methodology in 

operation. Consider that Alice wishes to transmit a 

confidential message to Bob via cloud storage in a secure 

manner. By employing conventional steganography, she 

would pose a risk of detection if the image is altered while 

concealing the message within it. Message fragmentation 

across multiple images would result from distributed 

steganography; however, suspicion or alterations could still 

result in the disclosure of the complete Secret. Using PCDS, 

Alice can now securely store the fragmented message in a 

multi-cloud environment while referencing an unchanged 

image. Thus, in the event of a single cloud compromise, the 

assailant will not possess the entirety of the information, and 

the cover media remains unaltered, providing an additional 

level of security. 

The PCDS method not only overcomes traditional and 

distributed steganography limitations by leveraging 

unchanged cover media and multi-cloud storage but also 

establishes a higher level of security through its unique 

product cipher-based approach. The following sections of the 

paper will delve deeper into the specifics of PCDS, 

highlighting its advantages and demonstrating how it 

effectively addresses the identified shortcomings in existing 

steganography methods. 

 

 

2. EXISTING WORK 

 

Steganography, a pivotal component of information 

security, has garnered substantial interest for its ability to 

exchange information through various media channels 

clandestinely. Simmons [19] illuminated the intricacies of 

maintaining covert communication to evade potential 

adversaries [37]. This analogy likens the process to a puzzle 

where Alice and Bob, striving to escape captivity, must 

communicate discreetly without alerting their captor. The 

mechanism employed to achieve this covert communication is 

termed a covert channel, acting as a conduit to shield messages 

from prying eyes. 

Classical steganography is characterized by two essential 

phases: embedding and extraction. During embedding, a 

confidential message is subtly integrated into a regular 

medium, such as text, images, audio, video, or network 

protocols, employing a shared key. This amalgamation of 

concealed data and regular mediums engenders a hidden 

version known as the "stego medium." Subsequently, 

extraction involves retrieving the concealed message from the 

stego medium using both the medium itself and the shared key. 

The primary objective is to remain covert; should an intruder 

uncover and extract the hidden message, the entire 

communication becomes vulnerable. Hence, maintaining 

secrecy is paramount [20, 21]. 

Nevertheless, specific circumstances can undermine the 

effectiveness of steganography. If adversaries become aware 

of the usage of hidden messages through the stego medium, 

suspicions may arise, especially when messages traverse 

insecure channels. Additionally, adversarial investigation into 

message content, often achieved through steganalysis, can 

compromise concealed communication. Such discovery or 

extraction of Secret messages contradicts the core tenets of 

steganography. In severe cases, attackers might manipulate or 

disable the hidden message, eroding the credibility of the 

entire discourse. 

To counteract covert communication, various steganalysis 

tools have emerged, particularly targeting images, audio files, 

and network communications. These tools leverage 

sophisticated statistical tests like higher-order statistics, 

Markov random fields, and wavelet statistics to uncover 

hidden messages [34-36]. Network communications are not 

exempt, with methods like second-order statistical analysis 

uncovering concealed channels. Nevertheless, adversaries 

could still exploit knowledge of communication and delve into 

message contents, posing vulnerabilities. 

To surmount the limitations intrinsic to classical 

steganography, the concept of distributed steganography [22, 

27] has evolved into a sophisticated paradigm. This approach 
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entails fragmenting a Secret message and dispersing it across 

disparate hidden media, significantly heightening the 

challenge of detecting the complete Secret. This strategy 

proves especially valuable in scenarios where multiple 

independent senders intend to communicate with a solitary 

recipient. The advent of cloud technologies has facilitated the 

concealment of sensitive data within an assemblage of cloud-

stored images. Specialized algorithms adeptly disseminate 

these Secret fragments across the images, mitigating the risk 

of detection through dispersion among varied media formats. 

A pioneering model introduced by Liao et al. [33] and 

colleagues envisions a distributed steganography scenario 

where numerous senders interact with a single recipient. Each 

sender exclusively possesses their covert message, and the 

amalgamation of these concealed messages can only be 

deciphered by the intended recipient. This concept closely 

resembles the concept of Secret sharing. The mechanics 

involve generating shared keys, distributing them, and 

subsequently reconstructing the Secret message through these 

distributed shares. The security and efficiency of such schemes 

are finely calibrated through diverse strategies, often aligning 

with cryptographic protocols to ensure robust protection. 

However, it's imperative to recognize that distributed 

steganography confronts its own challenges. While 

distributing Secrets across varied media heightens security, 

manipulating these media to hide Secrets could inadvertently 

attract attention [27]. This vulnerability underscores the 

significance of blind steganalysis, which aims to unveil new 

embedding techniques without prior knowledge. By achieving 

secrecy without altering the original media, a steganographic 

method can remain concealed even from advanced detection 

techniques. 

Classical steganography and its distributed counterpart offer 

distinct avenues for Secret communication. Classical 

steganography conceals messages within individual media, 

while distributed steganography fragments and disperses 

Secrets across multiple media for heightened security. The true 

challenge lies in achieving communication that evades 

detection while preserving message integrity, particularly in 

the face of advanced detection methods. These complexities 

foster innovation, potentially yielding novel steganographic 

approaches capable of circumventing existing detection 

mechanisms. 

Distributed data hiding in the multi-cloud storage 

environment presents a novel approach to secure data 

distribution. Steganography involves concealing confidential 

information within cover media in a manner that is challenging 

for adversaries to discern. The proposed method ensures that 

cover media remain unaltered and act as indicators of 

fragmented data, bolstering distribution security. 

Key Components: 

1. Cover Media Selection and Upload: The sender 

selects cover media for concealing the Secret 

message. These files, resembling typical cloud 

storage items, are uploaded without modification. 

2. Key Sharing: Communicators share a key 

encompassing the number and order of clouds, login 

credentials, file lists, and an encoding base value. 

This key transmission ensures authorized access to 

the hidden data. 

3. Secret Encoding and Distribution: The sender 

transcodes the Secret into a specific base and splits it 

into blocks. Each block value is replaced with a file 

from the corresponding file list. The modified blocks 

are distributed to respective clouds. 

Based on the above key components, recent work designed 

"Distributed Data Hiding in the Multi-Cloud Storage 

Environment." the focus is on hiding a Secret message within 

a multi-cloud storage environment without directly modifying 

the original data (cover media) [37]. The concept is built upon 

two main technical contributions: 

1. Non-modification of Cover Media: The cover 

media, which could be any digital content such as 

images, videos, or files, is not altered in any way. 

Instead, it acts as a pointer or reference to fragmented 

data where the Secret message is hidden. 

2. Secret Message Storage: The Secret message is 

hidden within the multi-cloud storage environment. 

The text suggests that the method used to hide the 

message is complex enough to make it difficult for 

attackers to detect and extract the Secret message. 

The concept claims to provide security against certain 

attacks, particularly brute force attacks. 

Despite its suitability for protecting secrets across multiple 

clouds from unauthorized access, this mechanism has a 

limitation—file selection and storage follow a predictable 

serial order. This vulnerability exposes the possibility of 

intruders cracking the Secret. Attackers could exploit this 

sequential pattern to deduce the concealed message through 

multiple attempts. Recent work examines this approach's 

security strength against brute force attacks [1]. The analysis 

concludes that despite an attacker's attempts to retrieve the 

Secret value via brute force attacks, the computational effort 

required for unauthorized access is smaller than exponential 

computations. In distributed steganography, if an attacker 

identifies and modifies one of the cover media elements, the 

entire Secret may be lost. For instance, if a set of images 

containing fragments of the message is modified or deleted, 

Bob may be unable to reconstruct the original message. 

Additionally, traditional steganography using modified cover 

media might be vulnerable to steganalysis techniques that 

exploit alterations in the carrier file. 

To further enhance security, the paper proposes an 

innovative solution - leveraging "Product Cipher-Based 

Distributed Steganography". Recognizing the imperfections in 

the existing approach, the proposed mechanism seeks to 

transform the landscape of security measures against brute-

force attacks in a more effective way. By incorporating a 

product cipher as the underlying mechanism, the system 

introduces complexity and security measures to address 

concerns prevalent in cloud-based communication. The 

product cipher, a cryptographic construction that artfully 

combines multiple substitution and transposition methods, 

offers a robust and multi-layered defense against potential 

attacks. This strategic approach not only thwarts brute-force 

attacks but also serves as a stalwart guardian against various 

intrusion forms, aligning with the paramount concerns of 

cloud security. 

In advancing the field of secure communication within 

cloud environments, the paper not only acknowledges the 

vulnerabilities posed by predictable patterns but also takes a 

proactive stance to mitigate them. Through the introduction of 

a product-cipher-based approach, the system creates an 

intricate tapestry of protection, ensuring that unauthorized 

access and potential breaches remain distant possibilities. This 

innovative approach speaks to the broader efforts of the 

security community to craft dynamic and resilient safeguards 

that stand up to the ever-evolving landscape of digital threats. 
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Consider a practical example of the PCDS approach in 

action. Suppose Alice wants to securely transmit a confidential 

message to Bob using cloud storage. In traditional 

steganography, she might embed the message in an image, 

risking detection if the image is altered. Distributed 

steganography would fragment the message across multiple 

images, but suspicion or modifications could still lead to the 

loss of the entire Secret. Now, with PCDS, Alice can use an 

unchanged image as a reference and securely store the 

fragmented message in a multi-cloud environment. This 

means even if one cloud is compromised, the attacker won't 

have the complete information, and the unchanged cover 

media serves as an added layer of security. 
 

 

3. PRODUCT CIPHER-BASED DISTRIBUTED 

STEGANOGRAPHY 
 

In today's digital landscape, the need for secure and covert 

communication has become increasingly essential. However, 

ensuring the confidentiality of sensitive information in a 

distributed manner presents significant challenges. Traditional 

encryption techniques provide a level of security but are 

vulnerable to attacks due to their distinguishable patterns and 

metadata. This necessitates the exploration of novel methods 

that go beyond conventional encryption. Covert 

communication involves the exchange of information without 

arousing suspicion from unintended observers. Steganography, 

a subset of covert communication, focuses on hiding Secret 

data within innocuous cover media, such as images or audio 

files. The challenge lies in developing techniques that not only 

embed the data effectively but also ensure that the embedded 

data remains undetectable. 

The prevalence of cloud computing has introduced new 

possibilities for distributed data storage and retrieval. Multi-

cloud environments offer benefits such as increased 

availability and fault tolerance. However, these advantages are 

accompanied by security concerns, including potential 

breaches and unauthorized access. Ensuring the 

confidentiality of data stored across multiple clouds while 

achieving covert communication further complicates the 

problem. Existing methods for distributed covert 

communication often rely on covert channels, which exploit 

the communication paths not originally intended for data 

exchange. While effective to a certain extent, these methods 

have limitations such as susceptibility to detection and 

difficulty in dynamically adapting to changes in the cloud 

environment. address these challenges, we propose the 

Product Cipher-Based Distributed Steganography (PCDS) 

technique. PCDS aims to securely embed and retrieve data in 

a multi-cloud environment using steganography, providing 

both covert communication and resistance against 

unauthorized access. The approach leverages the concept of 

product ciphers, combining substitution and permutation 

operations to achieve secure data hiding. The primary 

objectives of our research are as follows: 

Secure Data Hiding: Develop a technique to dynamically 

embed Secret data into files distributed across multiple clouds 

while maintaining the cover media's authenticity. 

Covert Communication: Ensure that the embedded data 

remains undetectable, achieving covert communication 

between communicating entities. 

Resistance to Attacks: Design the PCDS technique to 

withstand attacks such as statistical analysis and pattern 

recognition, enhancing the security of the covert 

communication. 

Dynamic Adaptability: Create an approach that adapts to 

changes in the cloud environment, providing a reliable and 

secure covert communication channel even in dynamic 

scenarios. 

The proposed Product Cipher-Based Distributed 

Steganography (PCDS) is an extension of the existing covert 

channel-based distributed data hiding mechanism [27], which 

hides the Secret dynamically in the multi-cloud environment 

in a distributed manner. PCDS is transparent to Secret 

communication between the communicating entities. PCDS 

uses multi-clouds to store the files which are derived from the 

corresponding Secret, and further files are uploaded without 

any modification.  

PCDS is a steganographic approach where files are used as 

covert media to carry the Secret information that is to be 

securely shared with the destination. To achieve the goal, 

communication entities agree on the key. The key agreement 

procedure is out of the scope of our work. The key consists of 

a set of information, i.e., a Cloud list and their credentials to 

access them, a Base value, a session key for permutation, and 

the number of files indexed in different lists for substitution, 

Eq. (1) shows the key and its information. 

 

𝐾𝑒𝑦 = { 𝐶𝑙𝑜𝑢𝑑′𝑠 = 𝐶0𝐶1. . 𝐶𝑛, 𝐵𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 =
 𝐵𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 2,4,8. . , 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = 𝐾𝑠 , 𝐿𝑖𝑠𝑡𝑠 =

 𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛, and 𝐹𝑖𝑙𝑒𝑠 𝑖𝑛 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡 =
  𝐿𝑛

0 , 𝐿𝑛
1 , 𝐿𝑛

2 … … 𝐿𝑛
𝐵  , } 

(1) 

 

where, 

1. C0C1…Cn are the number of clouds where Secret 

need to be stored 

2. Bi is the base value, to which secrete value is to be 

converted 

3. Session key (Ks), which is used for applying the 

permutation 

4. 𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛  are the lists, where each list 

consists of 𝐵 files  

𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵  are the number of files in the nthlist. These 

files are in the different format. 

Figure 1 shows the overview of the proposed Product 

Cipher-Based Distributed Steganography (PCDS) approach, 

where the sender converts the Secret into files and dynamically 

embeds the files into multi-cloud.  

In Figure 1, we present a comprehensive overview of the 

Product Cipher-Based Distributed Steganography (PCDS) 

approach, illustrating the process of securely storing and 

retrieving Secret information within a multi-cloud 

environment. The diagram is designed to provide a visual 

representation of the key steps involved in the PCDS technique. 

To facilitate covert communication, the sender initiates the 

process by converting the Secret information into a series of 

files. This conversion involves employing a combination of 

substitution and permutation techniques, transforming the 

original Secret into a format suitable for embedding. 

Once the files are converted, the sender employs dynamic 

embedding strategies. These strategies involve utilizing both 

substitution and permutation operations to ensure that the 

converted files are embedded securely and discreetly across 

multiple cloud platforms. Upon successful embedding, the 

receiver, possessing authorized access to the multi-cloud 

infrastructure, undertakes the process of retrieving the 

embedded files. The retrieved files are then subjected to the 

reverse of the conversion process, where permutation and 
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substitution operations are applied in the opposite order to 

reconstruct the original Secret information.  

The working procedure of PCDS, i.e., securely stores the 

Secret to multi-cloud and retrieves the Secret from multi-cloud, 

is explained as follows On the other hand, the receiver with 

access to the cloud retrieves the files from the cloud and 

converts them back to Secret by applying substitution and 

permutation techniques in reverse order.  

The proposed PCDS aims to store and retrieve Secrets 

in/from multi-cloud securely. To achieve the goal, PCDS split 

into two phases, i.e., 1). Secure Secret storage in the multi-

cloud environment, and 2). Secure Secret retrieval from the 

multi-cloud environment. Consider the two communicating 

entities, where one entity wants to store the Secret securely, 

and another wants to retrieve it with the help of the PCDS 

algorithm securely. To achieve the goal, both entities agree on 

the key. The key elements are given in Eq. (1). The First phase 

of the PCDS, i.e., Secure Secret storage in the multi-cloud 

environment, is explained as follows.  

A. Secure Secret storage in the multi-cloud 

environment 

Secure Secret storage in the multi-cloud environment aims 

to store the Secret in multi-cloud securely by following the 

steps.  

1. Base Conversion: - The Secret is converted in the 

base value B.  

2. Permutation choice 1: The Secret represented in base 

B undergoes the permutation. 

3. Substitution: Permuted output of the Secret 

represented in base B is substituted with the files 

available in the different lists. Thus, each Secret 

value is represented by different files. 

4. Permutation choice 2: The Secret represented by 

various files undergoes the permutation. 

5. Allocation: Permuted output is allocated to different 

clouds. 

This initial step involves the user providing the Secret key 

'S' that needs to be securely stored. Additionally, the user 

specifies the number of clouds involved, which is a critical 

parameter for distributing the Secret information effectively. 

Consider communicating entity-1, who wants to securely 

store the Secret S=1111101101000001 in a multi-cloud 

environment, with a pre-agreed key between communicating 

entities is; 

 

𝐾𝑒𝑦 = { 𝐶𝑙𝑜𝑢𝑑′𝑠 = 𝐶0, 𝐶1,𝐶2, 𝐶3. 𝐵𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 (𝐵𝑖) =

𝐵2 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = (3 1 2 5 4 ), 𝐿𝑖𝑠𝑡𝑠 =  𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛, 

and 𝐹𝑖𝑙𝑒𝑠 𝑖𝑛 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡 =  𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵  , }. 

 

Entity-1 has the Secret value S=1111101101000001 and 

wants to securely store into four clouds, say 𝐶 = 𝐶0, 𝐶1,𝐶2,𝐶3. 

with base value B=2 and 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦(𝐾𝑠) = (3 1 2 5 4) for 

permutation and a list of files for substitution, which are shown 

in Table 1. To store the Secret in the cloud securely, entity-1 

applies algorithm-1. The working of algorithm-1 is composed 

of the following steps. 

 

➢ Base conversion  

The Secret key 'S' undergoes a conversion process utilizing 

a specified base value 'B.' This conversion is a fundamental 

aspect of the key agreement between communicating entities, 

adding an extra layer of security to the process 

Initially, algorithm 1 sets the base value (B) as per the 

agreed pre-shared key information, here, base value B=2 and 

applies base conversion to the Secret value. The output of the 

base conversion is placed into an array list L1[N] as shown in 

Table 1. 
 

Table 1. Array L1[N] 

 
Index L1[N] 

0 1 

1 1 

2 1 

3 1 

4 1 

5 0 

6 1 

7 1 

8 0 

9 1 

10 0 

11 0 

12 0 

13 0 

14 0 

15 1 

 
 

Figure 1. Product cipher based Secret storage in multi-cloud 
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➢ Permuted choice-1 

Permutation choice-1 is applied to the converted Secret key 

using a session key ′𝐾𝑠
′ .It's crucial that the session key's length 

surpasses the number of clouds involved, enhancing the 

resistance against potential cryptographic attacks. 

Algorithm-1 applies permuted choice-1 on an array L1[N]. 

It selects the session key ′𝐾𝑠
′  from the pre-shared key. It 

ensures that the session key length is greater than the number 

of clouds. If not, increase the key length size. The session key 

value in the pre-shared key is, i.e., Ks=31254. To apply 

permuted choice 1, the values of an array L1[N] converted into 

the table, as shown in Table 2. If the last row is left with empty 

cells, fill it with agreed bogus values, i.e., in the example filled 

with ′0′ . For permutation, read the column-wise as per 

increment order of key ′𝐾𝑠′.  
 

Table 2. Permuted choice –1 

 
3 1 2 5 4 

1 1 1 1 1 

0 1 1 0 1 

0 0 0 0 1 

1 0 0 0 0 

 

The permuted output is 𝑆′ = [110𝟎110𝟎1001111𝟎100𝟎]. 

 

➢ Substitution  

The permuted output is divided into groups, and substitution 

is applied to each group based on corresponding lists. These 

lists play a key role in determining which files represent each 

value, adding a layer of complexity to the encryption process. 

The permuted output is divided into groups, each assigned to 

the list. The list information is available in the pre-shared key, 

and here, it is shown in Table 3. Eq. (2) is used to form the 

groups from the permuted output S'. Then each group's values 

are substituted with lists; each list index values are substituted 

with files. 

 

𝐿𝑛
𝑆′[𝑛𝐶] ≤  𝐿𝑛[𝑚 < 𝐿𝑛

𝑆′[(𝑛+1)𝐶]] (2) 

 

where, 

𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆′

𝐶
− 1),   

𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠,  
𝑆′ = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 permuted output of 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦  

𝐿𝑛 = 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡  

𝑚 = (𝑛 + 1)𝐶  

𝐿𝑛[𝑚] = 𝑛𝑡ℎ 𝑔𝑟𝑜𝑢𝑝, 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑚 𝑣𝑎𝑙𝑢𝑒𝑠  

𝑛𝑡ℎ𝑔𝑟𝑜𝑢𝑝: 𝐿𝑛[𝑚] =

{𝐿𝑛
𝑆′[𝑛𝐶],, 𝐿𝑛

𝑆′[𝑛𝐶+1]
, 𝐿𝑛

𝑆′[𝑛𝐶+2]
… … 𝐿𝑛

𝑆′[((𝑛+1)𝐶)−1]
}  

Here, 𝐶 = 4, 𝑆′ = 20, and if we apply Eq. (2) then it divides 

the Secret into groups. 

 

𝑆′′ = {𝐿0 [4], 𝐿1[4], 𝐿2[4], 𝐿3[4], 𝐿4[4]} 

 

If we apply the corresponding values of each group then, we 

get: 

 

𝑆′′ = {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎, 𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎, 𝐿2
1 , 𝐿2

0 , 

            𝐿2
0 , 𝐿2

1 , 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎, 𝐿4
1 , 𝐿4

0 , 𝐿4
0 , 𝑳𝟒

𝟎} 

 

As per Eq. (2), four lists are created. Those lists names as 

𝐿0 [ ], 𝐿1[ ], 𝐿2 [ ], 𝐿3[ ] . Each list contains a group of four 

values, i.e., 

 

𝐿0 [4] =  {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎} 

𝐿1 [4] = {𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎} 

𝐿2 [4] =  { 𝐿2
1 , 𝐿2

0 , 𝐿2
0 , 𝐿2

1 } 

𝐿3 [4] =  { 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎} 

𝐿0 [4] = {𝐿0
1 , 𝐿0

0 , 𝐿0
0 , 𝑳𝟎

𝟎} 

 

𝐿4 [4] is converted as 𝐿0 [4] as the pre-shared key consist of 

4 lists. Further, these array values are substituted with files 

from the corresponding list based on the index values. The 

files substitution is shown as follows. 

 

𝐿0 [4] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠} 

𝐿1 [4]
= {𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥} 

𝐿2 [4]
= {𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥} 

𝐿3 [4]
= {𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓} 

𝐿0 [4] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠} 

 

Later substituted file are placed into an array L2[N] as: 

 

𝐿2[𝑁] = 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 
      𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 

     𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥,  
     𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓,  

             𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠} 

 

Table 3. Substituted files in array L2[N] with corresponding indexes 
 

Index 0 1 2 3 4 

L2[N] 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 

Index 5 6 7 8 8 

L2[N] 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥  𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 

Index 10 11 12 13 14 

L2[N] 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 

Index 15 16 17 18 19 

L2[N] 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

 

Table 4. Array O[N] after permuted choice – 2 

 
3 1 2 5 4 

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥  𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

53



Table 3 is the array L2[N] representation in the tabular form. 

 

➢ Permuted choice-2 

Another permutation operation is applied to the substituted 

values, providing an additional level of security to the process. 

This step contributes to the robustness of the algorithm against 

various cryptographic vulnerabilities 

Further, algorithm-1 Applies permuted choice-2 on an array 

L2[N] same as the permuted choice-1 

Table 4 filled in a rectangle row-wise from an array L2[N]. 

For permutation, read the column-wise as per increment order 

of key ′𝐾′ the permuted output  

 

𝑂[𝑛] =
[𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠,  

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 
𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓, 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 
𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠]. 

 

Compare with Table 5 indexes remain the same, but files 

are changed, which is shown in Table 5. 

 

➢ Allocation 

The allocated permuted output is distributed across different 

clouds based on pre-shared key information. This strategic 

allocation is designed to ensure that the Secret information is 

dispersed securely across multiple clouds, preventing a single 

point of compromise. The final step of algorithm 1 is to 

allocate the O[N] values into the four clouds 𝐶0, 𝐶1,𝐶2, 𝐶3, as 

per the pre-shared key cloud information. Eq. (3) is used to 

allocate the O[N] values into the different clouds.  

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶  𝑂[𝑁] = 𝐶𝑖,𝑗 (3) 

 

where, 

𝑗 = 𝑁 𝑚𝑜𝑑 𝐶,  

𝑖 =
𝑁 − 𝑗

𝐶
, 

𝑁 = 0,1,2 … 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆). 

If 𝑁 equal to 0 indexed value, then after substituting in Eq. 

(3) the position of a 0 indexed value, i.e., 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥  is 

allocated in 𝐶0,0 of n*n matrix. Similarly, all the indexed file 

positions are computed and allocated their respective positions. 

Here is the example of 0 indexed valued file and 19 indexed 

file: 

 

𝑂[0] = 𝐶0,0 → 𝑗 = 0 𝑚𝑜𝑑 4 = 0, 𝑖 =
0−0

4
= 0 

𝑂[19] = 𝐶4,3 → 𝑗 = 19 𝑚𝑜𝑑 4 = 3, 𝑖 =
19−3

4
= 4 

 

Table 5. Permuted output array O[N] with modified files from array L2[N] 

 
𝐼𝑛𝑑𝑒𝑥 0 1 2 3 4 

𝑂[𝑁] 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

𝐼𝑛𝑑𝑒𝑥 5 6 7 8 9 

𝑂[𝑁] 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓  𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 

𝐼𝑛𝑑𝑒𝑥 10 11 12 13 14 

𝑂[𝑁] 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 

𝐼𝑛𝑑𝑒𝑥 15 16 17 18 19 

𝑂[𝑁] 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

 

Table 6. n*n matrix for cloud allocation 

 
𝐶𝑖,𝑗  𝑗 

𝑖 

 0 1 2 3 

0 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 

1 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓  𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

2 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 

3 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

4 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

 

Table 7. Column-wise files allocation into multi-clouds 

 
C0 C1 C2 C3 

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓  𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

 

Table 8. Files reallocation in n*n matrix 

 
𝐶𝑖,𝑗  𝑗 

𝑖 

 0 1 2 3 

0 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 

1 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓  𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

2 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 

3 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

4 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 
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Algorithm-1: Multi-Cloud Secret Key Storage 

Step 1: Submit the Secret key ′𝑆′ and set the no. of clouds. 

Step 2: Secret key ′𝑆′ converted through Base value ′𝐵′. 
 

𝐵2𝐵4𝐵9𝐵16 … . . 𝐵𝑛 

 

Step 3: After conversion into ′𝐵′, ‘S’ values placed in array 

𝐿1[𝑁] and apply permutation. 

Step 4: Choose key ′𝐾′ for permutation, where ′𝐾′ length size 

is greater than no. of clouds. 

 

𝐶ℎ𝑒𝑐𝑘 𝑘𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝐾 > 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠  
𝑖𝑓 𝐾 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑖𝑧𝑒 <  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑𝑠  

𝑡ℎ𝑒𝑛 𝐾 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑖𝑧𝑒 + +  

 

Step 5: Substitute a group of permuted results with 

corresponding lists. The group formed by using 𝑛𝐶 < 𝐿𝑛 ≤
(𝑛 + 1)𝐶, 
 

𝑤ℎ𝑒𝑟𝑒, 𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆

𝐶
− 1) , 𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠, 𝑆

= 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦  
𝐺𝑟𝑜𝑢𝑝′𝑠: 𝐿0 [ ] 𝐿1[ ] 𝐿2 [ ] 𝐿3 … . 𝐿𝑛[ ] 

𝐺𝑟𝑜𝑢𝑝: 𝐿𝑛[𝑚] = {𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝑚−1} 𝑤ℎ𝑒𝑟𝑒 𝑚
= 𝑛𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑠𝑡 𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 

 

Step 6: Grouped lists are substituted with corresponding files 

𝑓1𝑓2𝑓3 … . . 𝑓𝑛. 

Step 7: Files are placed in an array 𝐿2[𝑁] and apply 

permutation. 

 

𝐿2[𝑁]  = [𝑓1𝑓2𝑓3 … . . 𝑓𝑛] 
 

Step 8: Permuted files, i.e., 𝑂[𝑁] = [𝑓1𝑓2𝑓3 … . . 𝑓𝑛] are placed 

in 𝑛 ∗ 𝑛 matrix by computing the position.  

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶  𝑂[𝑁] = 𝐶𝑖,𝑗   

𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑁 𝑚𝑜𝑑 𝐶 , 𝑖

=
𝑁 − 𝑗

𝐶
 , 𝑁 (𝑓𝑖𝑙𝑒𝑠 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)

= 0,1,2, … . . 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆) 

 

Step 9: Each column of 𝑛 ∗ 𝑛 matrix is stored in the selected 

cloud.  

 

𝐶1𝐶2𝐶3𝐶4 … … . 𝐶𝑛 

 
Algorithm 1. Multi-Cloud Secret Key Storage Algorithm 

 

Table 6 shows the position of each Secret key value 

allocation in the n*n matrix by indexing with different files. 

Attackers 𝑎𝑟𝑒 unable to notice that Secret values are covered 

with the file. After file position allocation, select the four 

clouds C0C1C2C3 to store the part of the Secret key. Each 

column of n*n matrix is stored in the selected cloud, and it is 

shown in Table 7. 

The step-by-step working procedure of secure Secret 

storage in a multi-cloud environment is shown in Algorithm 1 

and Figure 2. 

 

B. Secure Secret retrieval from the multi-cloud 

environment 

The algorithm initiates by identifying and selecting the 

multi-cloud storage where the Secret information is distributed. 

This step is critical for initiating the retrieval process. Secure 

Secret retrieval from the multi-cloud environment aims to 

retrieve the Secret in the multi-cloud securely by following the 

steps. 

1. Extraction: - Retrieve the files from multiple clouds 

and place them into the array. 

2. Inverse Permutation choice-2: The Secret 

represented in the array undergoes the inverse 

permutation with the help of the session key. 

3. Substitution: The files available in the output of 

Inverse Permutation choice-2 are substituted with the 

list and index values. 

4. Inverse Permutation choice-1: The outvalue of the 

substitution phase undergoes the Inverse Permuted 

Choice 1 with the help of the session key. 

5. Decoding: The Secret value retrieved from Inverse 

Permutation choice-1 is decoded by the agreed base 

value from the pre-shared key. 

 

➢ Extraction  

Retrieve the files from multiple clouds and organize them 

in a matrix form. Each file occupies its designated location in 

the matrix, forming the basis for subsequent decryption steps. 

The information available in the multi-clouds in a matrix form, 

with size n*m. The user browses the multi-clouds and fetches 

the stored information from the cloud, and stores it in the array 

O[N]. The location in which the fetched information is stored 

in array O[N], is computed by Eq. (4). 

 

𝑁 = 𝑖 ∗ 𝐶 +  𝑗 (4) 

 

where, 

𝑗 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑖 = 𝑟𝑜𝑤 𝑛𝑢𝑚𝑏𝑒𝑟 

𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑𝑠 

In our example, the extracting entity (entity-2) browses the 

multi-clouds i.e., 𝐶0𝐶1𝐶2𝐶3 , where the files are stored in a 

matrix form of size 5*4, as shown in Table 8. The files are stored 

in the matrix with index values (𝑖, 𝑗) =
(0,0)(0,1)(0,2) … … … … (4,3). Then entity-2 pic files one by 

one from the matrix and computes the index value using the Eq. 

(4), and then placed them into the array O[N].  

 

𝑂[𝑁]
= [ 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 
 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓, 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,  
𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠] 

 

➢ Inverse permuted choice-2  

Apply the inverse of permutation choice-2 to the retrieved 

files. This step involves reversing the permutation operation 

applied during the storage phase, an essential part of the 

decryption process. 

Apply inverse permuted choice-2 on an array O[N] using 

Ks=31254. In the process of inverse permutation, array values 

O[N] placed in the column-wise as per increment order of key 

′𝐾′ by using Eq. (5) 

 

𝐶𝑜𝑙𝑢𝑚𝑛 𝑙𝑒𝑛𝑔𝑡ℎ =
array 𝑂[𝑁] 𝑙𝑒𝑛𝑔𝑡ℎ

𝐾𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ
=  

𝑆

𝐾
  (5) 

55



Table 9. Inverse permuted choice-2 

 
𝟑 𝟏 𝟐 𝟓 𝟒 

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥  𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 

 

 
 

Figure 2. Flowchart of the Secret key storage in multi-clouds 

 

 
 

Figure 3. Secret key extraction in multi-clouds 
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𝐶𝑜𝑙𝑢𝑚𝑛 𝑙𝑒𝑛𝑔𝑡ℎ =
20

5
 = 4 

 

In our example, the length of array O[N] is 20 from 16 

length of key K=5. Column length is computed by substituting 

the values of array length, and key length in Eq. (5), and 

obtained depth of the column is 4.  

Insert the first four files of the array O[N] into the column 

of the key labeled 1, next four files of the array O[N] are 

inserted into the column of the key labeled 2, and so on, as 

shown in the Table 9. 

The output values of inverse permuted choice-2 are stored 

in an array L2[N]. The values of L2[N] are fetched from Table 

9 as left to right and top to bottom. 

 
𝐿2[𝑁] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 
𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 

𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓, 
𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠}. 

 

➢ Substitution 

Substitute the files with list and index values based on pre-

shared key information. This step is a reversal of the 

substitution process applied during the storage phase, restoring 

the original representation of the Secret information. 

The files available in the output of inverse permutation 

choice-2 are substituted with the list and index values from the 

pre-shared Secret key. The values of L2[N] array, i.e., files are 

substituted by the list numbers and index numbers from Table 

1 as follows. 

 

𝐿2[𝑁] =  {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎, 𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎, 𝐿2
1 , 𝐿2

0 , 

                      𝐿2
0 , 𝐿2

1 , 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎, 𝐿4
1 , 𝐿4

0 , 𝐿4
0 , 𝑳𝟒

𝟎 } 

 

Further, the elements in the L2[N] the just index values 

replace array, i.e., remove the lists information and store it in 

the array L1[N] as follows. 

 

L1[N]=[11001100100111101000] 

 

➢ Inverse permuted choice-1 

Apply the inverse of permutation choice-1 to further decrypt 

the retrieved information. This step is crucial for unraveling 

the encryption layers applied during the storage phase. 

Apply inverse permuted choice-1 on an array L1[N] using 

session key Ks=31254. In the process of inverse permutation, 

array values of L1[N] are placed in the column-wise as per 

increment order of key ′𝐾′ by using Eq. (5), as follows; and 

shown in Table 10. 
 

Table 10. Inverse permuted choice-1 

 
3 1 2 5 4 

1 1 1 1 1 

0 1 1 0 1 

0 0 0 0 1 

1 0 0 0 0 

 

The output of the inverse permuted choice-2 are stored in 

list S. The values of list S are fetched from Table 10 as left to 

right and top to bottom, as follows: 

 
S=11111011010000010000 

 

Remove agreed-on bogus values and place the values in 

row-wise order from the Table 10 to get the Secret key. 
 

S=1111101101000001 

 

➢ Decoding:  

Decode the retrieved information using the agreed base 

value from the pre-shared key. This final step transforms the 

information back to its original form, completing the secure 

retrieval process. The agreed base value decodes the Secret 

value retrieved from Inverse Permutation choice-1. The agreed 

base value is B=2. Thus the decoded value is 

S=1111101101000001. 

The step-by-step working procedure of secure Secret 

extraction in a multi-cloud environment is shown in Algorithm 

2 and Figure 3. 

 

Algorithm:2 Multi-Cloud Secret Key Extraction 

Step 1: Browse and find selected multi cloud storage. 

Step 2: Extract all permuted files from multi clouds and 

allocate them in their respective locations in 𝑛 ∗ 𝑛 matrix 

 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶  𝐶𝑖,𝑗 = 𝑂𝑖,𝑗  𝑤ℎ𝑒𝑟𝑒 {𝑖, 𝑗} =

(0,0) (0,1) (0,2) … … … … (𝑝, 𝑞)  

𝑤ℎ𝑒𝑟𝑒 𝑖 =
𝑁−𝑗

𝐶
, 𝑗 =

𝑁 𝑚𝑜𝑑 𝐶, 𝑁 (𝑓𝑖𝑙𝑒𝑠 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) =
0,1,2, … . . 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆)  

𝑁 = 𝑖 ∗ 𝐶 +  𝑗  

 

Step 3: Select the files row wise from n*n matrix and place 

into array L2[N]. 

Step 4: Apply inverse permutation on L2[N]. 

Step 5: Group of files [𝑓1 =  𝐿𝑛
0 , 𝑓2 = 𝐿𝑛

0 , 𝑓3 = 𝐿𝑛
0 … . . 𝑓𝑛 =

𝐿𝑛
𝐵 ] substitute in a list. 

 

𝐿𝑛[𝐵] = 𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵  

 

Step 6: Arrange list Ln[B] in a row wise by 

 

𝑛𝐶 < 𝐿𝑛 ≤ (𝑛 + 1)𝐶 

𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆

𝐶
− 1) , 𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠, 𝑆

= 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦  
 

Step 7: Indexed files are replaced with corresponding values 

and placed into array L1[N] and apply inverse permutation for 

decryption. 

L1[N]=B values 

 

Step 8: B values convert into base value S. 

 

Algorithm 2. Multi-Cloud Secret Key Extraction Algorithm. 

 

 

4. RESULTS AND DISCUSSION 
 

The paper presents a Product Cipher-Based Distributed 

Steganography scheme designed to dynamically hide Secrets 

in a multi-cloud environment. This undetectable Secret 

distribution system relies on steganography, a method of 

concealing information to make it hard to find. In contrast to 

related steganographic work, our approach to Secret extraction 

in a multi-cloud storage environment does not depend on 
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modifying files to hide the presence of a covert channel 

between communicating entities. The scheme facilitates 

efficient Secret distribution in a multi-cloud environment 

without modifying cover files, ensuring the original files 

remain unchanged. This minimizes overhead and avoids any 

suspicious content that could attract adversaries' attention. 

Additionally, our method refrains from using special 

characters, such as space, ASCII code letter A0, character 

coloring, or text justification, to conceal information. As a 

result, inspecting the file content reveals no questionable 

elements, preventing the file content from drawing the 

adversary's attention. This enhances the scheme's efficiency by 

eliminating the need for sophisticated encoding or decoding 

methods, reducing computational cost, and ensuring faster and 

more effective Secret extraction.  

PCDS is a secure method for storing and retrieving Secrets 

in a multi cloud environment. Its security can be assessed 

using the following criteria: 

1. Confidentiality: PCDS seeks to protect the secrecy of 

the stored Secret by converting it to files and 

embedding them in multiple clouds. The use of 

permutation and substitution techniques incorporate 

the added layer of security. The secrecy of cloud list, 

base value, session key, and file lists is essential to 

provide the confidentiality. 

2. Covert Channel Detection: The maintenance of an 

undetectable covert channel between communicating 

entities is prioritized by PCDS. The technique 

decreases the risk of an attacker discovering the 

presence of a covert channel by using existing cover 

files without modification and avoiding suspicious 

material. This improves the overall security of the 

system. 

3. Computational Complexity: PCDS's security is based 

on the computational complexity required for an 

attacker to extract the Secret. Permutations, 

substitutions, and several files in distinct lists are 

used in the method, making it computationally 

difficult for an adversary to establish the precise 

distribution and numbering of Secret information. 

Even if all cloud accounts are available, recovering 

the Secret is computationally unfeasible due to its 

complexity. 

Lemma: By maintaining the secrecy of crucial elements and 

employing strong encryption, the PCDS scheme ensures it is 

computationally impossible for an attacker to recover the 

original Secret without the encryption key. 

Proof: The PCDS scheme achieves confidentiality through 

two key features: 

1. Secrecy of Key Elements: The PCDS scheme 

protects the cloud list, base value, session key, and 

file lists from unauthorized access. These crucial 

elements remain hidden to prevent attackers from 

learning about encryption or file delivery across 

clouds. Without these confidential key pieces, an 

adversary cannot decrypt the Secret. 

2. Robust Encryption Techniques: The PCDS scheme 

uses product cipher-based encryption to store the 

original Secret in encrypted files distributed across 

multiple clouds. Even if an adversary gains access to 

encrypted files, these encryption methods render the 

Secret information unreadable. The encryption key is 

kept Secret from attackers. The complexity of 

encryption makes it computationally impossible to 

interpret encrypted data and retrieve the original 

Secret without the correct encryption key. 

The PCDS approach safeguards the Secret by keeping 

essential aspects hidden and employing strong encryption. 

This strategy, which combines maintaining key secrecy and 

using robust encryption, creates significant computational 

obstacles for attackers, thereby protecting multi-cloud Secret 

information  
Lemma: The PCDS mechanism maintains an undetectable 

covert channel by using existing cover files without 

modification and avoiding suspicious content. 

Proof: The PCDS scheme ensures covert channel detection 

through two techniques: 

1. Utilization of Existing Cover Files: The scheme 

leverages existing cover files in the multi-cloud 

environment without modifying them. By utilizing 

these legitimate files for a genuine purpose, the 

scheme avoids arousing suspicion and effectively 

conceals the presence of a Secret channel. 

2. Avoidance of Suspicious Content: The PCDS 

scheme refrains from using special characters, space, 

ASCII code letter A0, character coloring, or text 

justification to conceal information. This approach 

eliminates any questionable content that may attract 

attention during file inspection, enhancing 

performance, reducing computational overhead, and 

ensuring efficient Secret extraction. 

By using unmodified cover files and avoiding suspicious 

content, the PCDS scheme ensures an undetectable covert 

channel. Adversaries analyzing the file content will find no 

indications of a Secret channel, making it highly improbable 

for them to detect the hidden communication. 

Lemma: The PCDS scheme's computational complexity 

makes it computationally infeasible for an attacker to retrieve 

the Secret, even with full access to all cloud accounts. 

Proof: The PCDS scheme employs permutations, 

substitutions, and multiple files in different lists to distribute 

the Secret across the multi-cloud environment. The 

computational cost required for an attacker to discover the 

correct Secret distribution and numbering is greatly increased 

by these elements. Using permutations and substitutions, the 

scheme generates a large number of possible combinations. 

This makes it extremely difficult for an attacker to predict the 

correct Secret distribution without the key. In addition, the 

Secret's distribution across numerous files and distinct lists 

increases the computational complexity. The attacker must 

accurately identify the sequence of Secret distribution and the 

numbering of files within each list. This involves a vast 

number of possibilities 

Considering these factors, the total number of computations 

required for the attacker to retrieve the Secret value is given 

by B! * k! * n!, where B represents the number of potential 

permutations, k represents the number of substitutions, and n 

represents the number of files within each list. 

This computational complexity is exponential and grows 

rapidly as the number of permutations, substitutions, and files 

increases. As a result, it becomes computationally infeasible 

for the attacker to retrieve the Secret, even with full access to 

all cloud accounts. 

The existing approach in distributed data hiding in the 

multi-cloud storage environment focuses on two technical 

contributions: the cover media acting as a pointer to 

fragmented data and the storage of a Secret message in the 

multi-cloud environment. It claims to make it complicated for 
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an attacker to detect and extract the Secret message. However, 

upon analysis of the security strength of this approach, it has 

been concluded that it is vulnerable to brute force attacks that 

require computations significantly smaller than the 

exponential complexity of B!*K!*n!. 

In contrast, the proposed PCDS scheme offers a more robust 

solution for the secure distribution of Secrets in a multi-cloud 

environment. The PCDS scheme employs permutations, 

substitutions, and multiple files in distinct lists, which 

substantially increases the computational complexity required 

for an attacker to discover the Secret. Due to the large number 

of possible combinations introduced by permutations and 

substitutions, it is extremely difficult for an attacker to predict 

the correct Secret distribution without the key. In addition, 

dispersing the Secret across multiple files in distinct lists 

increases the computational difficulty. The total number of 

computations necessary to retrieve the Secret is given by 

B!*K!*n!, where B represents potential permutations, k 

represents substitutions, and n represents the number of files 

contained within each list. This complexity increases 

exponentially with the number of permutations, substitutions, 

and files, making it computationally impossible for an attacker 

to retrieve the Secret, even if they have access to all cloud 

accounts. 

Unlike the existing technique, which is vulnerable to brute-

force attacks with computations less than B!*K!*n!, the PCDS 

provides significantly higher security assurances. Its 

computational complexity exponentially increases with the 

number of permutations, substitutions, and files. This ensures 

secrecy in the multi-cloud environment, providing a robust 

defense against brute-force attacks. 

Overall, the PCDS ensures strong security by employing 

steganographic techniques, maintaining an undetectable 

covert media, and making it challenging for potential attackers 

to perform computations. It offers a realistic and efficient 

solution for Secret storage and retrieval in a multi-cloud 

context. 

The existing paper analyzes security through two attack 

hypotheses: Hypothesis 1 involves adversaries without cloud 

account access, and Hypothesis 2 involves adversaries with 

varying levels of cloud account access. The existing analysis 

concludes that adversaries lacking access remain unaware of 

Secret communication, and even those with access are 

impeded by the exponential complexity of permutation-based 

attacks. 

In contrast, our proposed work provides a more 

encompassing security analysis, delving deeper into the 

scheme's resilience across diverse attack scenarios. This 

analysis revolves around three pivotal lemmas: confidentiality, 

preservation of an undetectable covert channel, and 

computational complexity. Rigorous proofs support each 

lemma, showcasing the scheme's robustness. 

The confidentiality lemma safeguards crucial elements like 

cloud lists and session keys, ensuring unauthorized decryption 

is infeasible. The maintenance of an undetectable covert 

channel is achieved through the use of existing cover files and 

the avoidance of suspicious content. Notably, the 

computational complexity lemma underscores the scheme's 

resilience against adversaries with full access 

Comparing the security strengths of both analyses, the 

proposed work's analysis excels in breadth, rigor, and a 

dynamic approach. Unlike the existing analysis, which focuses 

on limited attack scenarios and vulnerabilities, our analysis 

explores the scheme's resilience from multiple dimensions. 

The thorough examination of core lemmas demonstrates the 

scheme's strength against diverse attacks, reinforcing its 

security. 

Addressing theoretical facets like encryption strength, 

covert channel integrity, and computational complexity, the 

proposed work establishes a more compelling basis for secure 

Secret distribution in a multi-cloud environment. 

While maintaining an undetectable Secret channel without 

modifying existing cover files is a noteworthy aspect of our 

approach, it's crucial to recognize that this feature results from 

the underlying research principles forming the basis of our 

scheme. Our fundamental contribution is the development of 

a novel Product Cipher-Based Distributed Steganography 

scheme, specifically designed for secure and dynamic Secret 

distribution within a multi-cloud environment. 

It's essential to emphasize that our security argument goes 

beyond the concealment of the channel itself. Our extensive 

security analysis adopts a holistic approach, thoroughly 

examining key security elements, including confidentiality, 

preservation of an undetectable covert channel, and 

computational complexity. Through rigorous proofs, we 

establish the scheme's resilience against a wide range of 

potential attack scenarios. This comprehensive analysis 

reinforces our claim that our proposed scheme provides a 

robust and secure framework for Secret distribution and 

retrieval in multi-cloud contexts. 

By encompassing these broader security dimensions, we 

offer a comprehensive and robust justification for the 

effectiveness of our approach. 

 

 

5. CONCLUSION 

 

The paper introduces a Product Cipher-Based Distributed 

Steganography for secure Secret distribution in a multi-cloud 

environment. This approach conceals the Secret by 

fragmenting it into smaller parts and placing each fragment 

within separate cover files, utilizing multi-cloud storage 

without modifying them. Our strategy, validated through a 

comprehensive security analysis, demonstrates the 

computational infeasibility for attackers to decipher the hidden 

message, even with complete access to all cloud accounts. 

Striking a balance between efficient Secret distribution and 

robust security, our method eliminates the need for complex 

encoding, reducing computational overhead and ensuring 

unaltered original files, mitigating potential suspicion from 

adversaries. 
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