
Enhancing Data Security in Multi-Cloud Environments: A Product Cipher-Based

Distributed Steganography Approach

Syed Shakeel Hashmi1* , Arshad Ahmad Khan Mohammad2 , Arif Mohammad Abdul2 , Choudapur Atheeq2 ,

Mohammad Khaja Nizamuddin2

1 Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), the ICFAI

Foundation for Higher Education (Deemed to be University), Hyderabad 501203, India
2 Department of Computer Science and Engineering, School of Technology, GITAM (Deemed to be University), Hyderabad

502329, India

Corresponding Author Email: hashmi@ifheindia.org

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140105 ABSTRACT

Received: 21 September 2023

Revised: 26 December 2023

Accepted: 16 January 2024

Available online: 29 February 2024

In multi-cloud computing, securing sensitive data remains a paramount challenge. This

paper presents a novel steganographic methodology, Product Cipher-Based Distributed

Steganography (PCDS), designed to securely hide data within a multi-cloud environment.

This approach, addressing the intricacies of decentralized data concealment, utilizes

unaltered cover media as benchmarks for fragmenting and disguising data. The PCDS

scheme, by distributing hidden data dynamically across multiple cloud platforms,

successfully evades detection through the absence of file modifications or the use of

special characters. An in-depth security analysis of this method demonstrates its resilience

against unauthorized access; even with complete access to all cloud accounts involved,

the extraction of the concealed message remains computationally unfeasible. The

utilization of an undisclosed key, alongside a base encoding value and the inherent

computational complexity of the scheme, fortifies its defense against brute-force attacks,

significantly elevating its security profile compared to existing methods. This paper

contributes substantially to the field of cloud security and steganography by offering an

undetectable and innovative approach for data hiding. It effectively counters prevailing

vulnerabilities in multi-cloud storage and sets a new precedent for advanced secure data

concealment strategies. Contrasting with conventional methods susceptible to brute-force

attacks requiring substantially fewer computations, the PCDS framework ensures a higher

level of security, providing robust protection for confidential data in cloud environments.

Keywords:

multi-cloud computing, data security,

steganography, Product Cipher-Based

Distributed Steganography (PCDS)

1. INTRODUCTION

In the digital landscape of today's interconnected world, our

reliance on the internet has grown exponentially, permeating

diverse facets of our lives through online services. However,

this widespread interconnectivity has exposed us to

heightened security risks, compelling the development of

innovative tools to protect sensitive information. In response,

the synergy of cryptography and steganography has emerged

as a formidable defense. Cryptography involves the intricate

transformation of data into an unreadable format using

complex algorithms, while steganography conceals

information within other data, reducing its detectability.

The enduring significance of cryptography in ensuring data

confidentiality and integrity is undeniable. Nevertheless,

steganography offers a captivating approach by obfuscating

hidden data and embedding confidential messages within

innocuous cover messages guided by cryptographic keys. The

essence of steganography lies in the formidable challenge it

poses to unauthorized entities attempting to retrieve hidden

messages without the proper key, adding an additional layer of

security [1-7].

The potency of steganography hinges on several critical

factors, encompassing the effectiveness of message

concealment within cover data, the data's capacity to

seamlessly host concealed messages, and the technique's

resilience against potential adversarial attacks. The selection

of an appropriate carrier medium is paramount in

steganography. The ubiquity, transparency, and accessibility

of cloud computing position it as an optimal candidate for this

role [8].

Cloud computing, a cornerstone of distributed computing,

provides access to versatile computational resources, boasting

advantages such as cost-efficiency, enhanced data

accessibility, and accelerated computational speeds [9-14].

Despite these benefits, the paramount challenge of ensuring

data security within cloud environments persists. To confront

this challenge, the amalgamation of cryptography and

steganography has emerged as a robust approach, enhancing

the security of sensitive information and mitigating potential

threats [15-17].

Steganography's operation involves covertly embedding

International Journal of Safety and Security Engineering
Vol. 14, No. 1, February, 2024, pp. 47-61

Journal homepage: http://iieta.org/journals/ijsse

47

https://orcid.org/0000-0002-8004-4753
https://orcid.org/0000-0003-3257-4474
https://orcid.org/0000-0002-8188-3807
https://orcid.org/0000-0003-4258-4721
https://orcid.org/0000-0002-1986-0567
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140105&domain=pdf

crucial information within different data types, such as images

or audio files. This covert process ensures that even if visible

data undergoes minor alterations, hidden information remains

secure and retrievable. The steganography realm can be

broadly categorized into two primary classifications: classical

and distributed steganography [18]. Classical steganography

conceals data within a single cover medium, while distributed

steganography fragments and disseminates data across

multiple mediums, substantially amplifying the complexity of

detecting or accessing the concealed message.

In the historical context of classical steganography, an

intriguing analogy was introduced by Simmons in 1984—the

"prisoner's problem." This analogy depicts a scenario where

two individuals, Alice and Bob, communicate secretly under

close surveillance [19]. This metaphor underscores the

intricate challenge of establishing covert communication

channels that evade detection. Classical steganography

employs sophisticated techniques to conceal confidential

messages within various media types, leveraging Secret keys

for clever insertion and extraction. The primary objective is

utmost discretion, thwarting potential adversaries from

deciphering the process and exposing the messages. However,

as adversaries become more sophisticated and capable of

detecting hidden messages and meticulously analyzing

exchanged data, the necessity to establish robust defenses

intensifies. This interplay between secrecy and detection holds

critical importance, particularly in the context of cloud

computing, where secure information exchange fuels the

evolution of steganography techniques. Advanced statistical

tools are employed to reveal intricate patterns of data

concealment and revelation in the digital realm [20, 21].

The realm of distributed steganography introduces a novel

paradigm, building on classical steganography's foundations

[22-26]. This approach involves fragmenting sensitive

messages into discreet segments, which are then distributed

across an array of covert communication channels. This

strategy adds a layer of complexity, significantly enhancing

the challenge of detecting and reconstructing the concealed

message [27-32]. This technique finds utility in scenarios

where multiple independent parties collaborate covertly. For

instance, Liao et al. [33] introduced a model wherein different

participants possess distinct covert messages, with the

intended recipient having all hidden messages to reconstruct

the original content. This Secret-sharing strategy entails three

main steps: creating a target key, distributing share keys, and

ultimately reconstructing the Secret. The delicate balance

between security and accessibility is at the core of this process.

Distributed steganography's security is fortified by

distributing the Secret across various media types. However,

introducing subtle changes to accommodate a hidden message

may inadvertently arouse suspicion, exposing the risk of

steganalysis [34-36]. Amid these complexities, the potential

for complete loss of secrecy due to media tampering

necessitates careful consideration. The challenge in distributed

steganography is striking the right balance between

complexity for safety and durability in a dynamically changing

digital realm.

To address limitations in traditional steganography, a new

concept has been proposed where the cover media remains

unchanged and serves as a pointer to fragmented data stored in

a multi-cloud environment. This approach makes locating and

extracting the Secret message difficult for attackers. Leonel

Moyou Metcheka and Ndoundam [37] employ steganography

to protect the password. It is claimed that the existing covert

channel's new steganography idea makes it difficult for an

attacker to figure out how to extract the hidden message. Two

technical contributions served as the foundation for the current

system's architecture. First, the cover media are not altered;

rather, they function as a link to fragmented data. Second, the

multi-cloud storage environment contains a Secret message.

Cover media is chosen and uploaded into the cloud based on

the message that communicating entities desire to keep hidden.

Here, the method uses files as the cover media and uploads

them directly into the cloud. Using the Secret message and key

will allow you to upload the files. The key includes the

following details: number of clouds, in the following order: C0,

C1, …… Cn-1 and their login information, file list, such as L0,

L1, …… Lk-1, each list consisting of a set of files, such as

(𝐿0
0, 𝐿0

1, … . . 𝐿0
𝐵−1) are composed in L0 and

(𝐿1
0, 𝐿1

1, … . . 𝐿1
𝐵−1) are composed in L1 and so on with the

encoding base values. Work presupposed that the

communication entities would safely share the key

information.

To secretly store the Secret in the cloud, the sender

transcodes the Secret in a certain base and splits it into K

blocks, i.e., 𝑏0, 𝑏1, ….. 𝑏𝐾−1 with each block consisting of n

values. The sender then sends these K blocks to the cloud.

Before the block is uploaded to the cloud for storage, the

procedure is repeated for a greater number of blocks, during

which time one of the files from the file lists is substituted for

each value included inside the block. Each block has its own

unique file list that has been allocated to it. In addition, copies

of these are stored in the cloud. The receiver, who has access

to the cloud, looks through the files to determine how to get

the data and then produces the Secret by exchanging the

information in the files with values.

Despite its suitability for protecting Secrets across multiple

clouds from unauthorized access, this mechanism has a

limitation, i.e., file selection and storage follow a predictable

serial order. This vulnerability exposes the possibility of

intruders cracking the Secret. Attackers could exploit this

sequential pattern to deduce the concealed message through

multiple attempts. Recent work examines this approach's

security strength against brute force attacks [1]. The analysis

concludes that despite an attacker's attempts to retrieve the

Secret value via brute force attacks, the computational effort

required for unauthorized access is smaller than exponential

computations. In response, the paper seeks to develop a

mechanism to make brute-force attacks computationally

exponential, proposing "Product Cipher-Based Distributed

Steganography".

Selecting a product cipher as the underlying mechanism

introduces complexity and security to address concerns in

cloud-based communication. The product cipher, a

cryptographic construction combining multiple substitution

and transposition methods, offers a robust and multi-layered

defense against potential attacks. By leveraging this approach,

the system aims to counter various intrusion forms, including

brute-force attacks - a significant concern in cloud security.

Although the paper doesn't explicitly compare the chosen

Product-Cipher-Based Distributed Steganography with other

techniques, it primarily focuses on presenting and validating

this novel approach. It highlights the unique contributions,

such as maintaining unchanged cover media, leveraging multi-

cloud storage, and addressing traditional steganography

limitations. Further research could delve into comparative

studies, evaluating the strengths of the product cipher-based

method in contrast to other steganography approaches. Such

48

comparisons would provide insights into the specific

advantages and trade-offs of this technique, situating it within

the broader landscape of secure cloud communication

steganography methods.

The proposed steganography method, termed "Product

Cipher-Based Distributed Steganography" (PCDS), introduces

several distinctive features that set it apart from existing

methods. The unique aspects of PCDS in contrast to traditional

and distributed steganography approaches are:

1. Unchanged Cover Media as a Reference:

• Traditional Steganography: In conventional methods,

data is hidden in different cover media, introducing

the risk of detection as alterations to cover media may

leave traces.

• Distributed Steganography: Existing distributed

methods fragment the Secret message across various

cover media, enhancing security but still susceptible

to suspicion or loss of the entire Secret in case of

modifications.

• PCDS Approach: PCDS innovatively employs

unchanged cover media as a reference for fragmented

data. This departure from tradition minimizes the risk

associated with modifying cover media, reducing the

potential for detection by attackers.

2. Multi-Cloud Storage Security:

• Traditional Steganography: The shift towards cloud

usage has prompted individuals to hide private

information in images, but concerns remain about the

security of sensitive data in the cloud.

• Distributed Steganography: While distributed

methods enhance security, they may still face

challenges such as potential detection and loss of the

entire Secret.

• PCDS Approach: PCDS utilizes multi-cloud storage

to store the hidden message securely. This safeguards

against unauthorized access and introduces

mathematical complexity, making it computationally

infeasible for attackers to retrieve the concealed data.

3. Computational Infeasibility for Attackers:

• Traditional and Distributed Steganography: The

comment alludes to concerns raised in recent research

[1] regarding the efficiency of retrieving Secret data

from multi-cloud storage. Existing methods may face

vulnerabilities to computational attacks.

• PCDS Approach: PCDS addresses these concerns by

introducing a Product Cipher-Based Distributed

Steganography scheme. The computational

complexity involved in determining the appropriate

sequence of Secret distribution and file numbering

makes brute-force attacks computationally

exponential, ensuring a significantly higher level of

security.

Consider a practical example of the PCDS methodology in

operation. Consider that Alice wishes to transmit a

confidential message to Bob via cloud storage in a secure

manner. By employing conventional steganography, she

would pose a risk of detection if the image is altered while

concealing the message within it. Message fragmentation

across multiple images would result from distributed

steganography; however, suspicion or alterations could still

result in the disclosure of the complete Secret. Using PCDS,

Alice can now securely store the fragmented message in a

multi-cloud environment while referencing an unchanged

image. Thus, in the event of a single cloud compromise, the

assailant will not possess the entirety of the information, and

the cover media remains unaltered, providing an additional

level of security.

The PCDS method not only overcomes traditional and

distributed steganography limitations by leveraging

unchanged cover media and multi-cloud storage but also

establishes a higher level of security through its unique

product cipher-based approach. The following sections of the

paper will delve deeper into the specifics of PCDS,

highlighting its advantages and demonstrating how it

effectively addresses the identified shortcomings in existing

steganography methods.

2. EXISTING WORK

Steganography, a pivotal component of information

security, has garnered substantial interest for its ability to

exchange information through various media channels

clandestinely. Simmons [19] illuminated the intricacies of

maintaining covert communication to evade potential

adversaries [37]. This analogy likens the process to a puzzle

where Alice and Bob, striving to escape captivity, must

communicate discreetly without alerting their captor. The

mechanism employed to achieve this covert communication is

termed a covert channel, acting as a conduit to shield messages

from prying eyes.

Classical steganography is characterized by two essential

phases: embedding and extraction. During embedding, a

confidential message is subtly integrated into a regular

medium, such as text, images, audio, video, or network

protocols, employing a shared key. This amalgamation of

concealed data and regular mediums engenders a hidden

version known as the "stego medium." Subsequently,

extraction involves retrieving the concealed message from the

stego medium using both the medium itself and the shared key.

The primary objective is to remain covert; should an intruder

uncover and extract the hidden message, the entire

communication becomes vulnerable. Hence, maintaining

secrecy is paramount [20, 21].

Nevertheless, specific circumstances can undermine the

effectiveness of steganography. If adversaries become aware

of the usage of hidden messages through the stego medium,

suspicions may arise, especially when messages traverse

insecure channels. Additionally, adversarial investigation into

message content, often achieved through steganalysis, can

compromise concealed communication. Such discovery or

extraction of Secret messages contradicts the core tenets of

steganography. In severe cases, attackers might manipulate or

disable the hidden message, eroding the credibility of the

entire discourse.

To counteract covert communication, various steganalysis

tools have emerged, particularly targeting images, audio files,

and network communications. These tools leverage

sophisticated statistical tests like higher-order statistics,

Markov random fields, and wavelet statistics to uncover

hidden messages [34-36]. Network communications are not

exempt, with methods like second-order statistical analysis

uncovering concealed channels. Nevertheless, adversaries

could still exploit knowledge of communication and delve into

message contents, posing vulnerabilities.

To surmount the limitations intrinsic to classical

steganography, the concept of distributed steganography [22,

27] has evolved into a sophisticated paradigm. This approach

49

entails fragmenting a Secret message and dispersing it across

disparate hidden media, significantly heightening the

challenge of detecting the complete Secret. This strategy

proves especially valuable in scenarios where multiple

independent senders intend to communicate with a solitary

recipient. The advent of cloud technologies has facilitated the

concealment of sensitive data within an assemblage of cloud-

stored images. Specialized algorithms adeptly disseminate

these Secret fragments across the images, mitigating the risk

of detection through dispersion among varied media formats.

A pioneering model introduced by Liao et al. [33] and

colleagues envisions a distributed steganography scenario

where numerous senders interact with a single recipient. Each

sender exclusively possesses their covert message, and the

amalgamation of these concealed messages can only be

deciphered by the intended recipient. This concept closely

resembles the concept of Secret sharing. The mechanics

involve generating shared keys, distributing them, and

subsequently reconstructing the Secret message through these

distributed shares. The security and efficiency of such schemes

are finely calibrated through diverse strategies, often aligning

with cryptographic protocols to ensure robust protection.

However, it's imperative to recognize that distributed

steganography confronts its own challenges. While

distributing Secrets across varied media heightens security,

manipulating these media to hide Secrets could inadvertently

attract attention [27]. This vulnerability underscores the

significance of blind steganalysis, which aims to unveil new

embedding techniques without prior knowledge. By achieving

secrecy without altering the original media, a steganographic

method can remain concealed even from advanced detection

techniques.

Classical steganography and its distributed counterpart offer

distinct avenues for Secret communication. Classical

steganography conceals messages within individual media,

while distributed steganography fragments and disperses

Secrets across multiple media for heightened security. The true

challenge lies in achieving communication that evades

detection while preserving message integrity, particularly in

the face of advanced detection methods. These complexities

foster innovation, potentially yielding novel steganographic

approaches capable of circumventing existing detection

mechanisms.

Distributed data hiding in the multi-cloud storage

environment presents a novel approach to secure data

distribution. Steganography involves concealing confidential

information within cover media in a manner that is challenging

for adversaries to discern. The proposed method ensures that

cover media remain unaltered and act as indicators of

fragmented data, bolstering distribution security.

Key Components:

1. Cover Media Selection and Upload: The sender

selects cover media for concealing the Secret

message. These files, resembling typical cloud

storage items, are uploaded without modification.

2. Key Sharing: Communicators share a key

encompassing the number and order of clouds, login

credentials, file lists, and an encoding base value.

This key transmission ensures authorized access to

the hidden data.

3. Secret Encoding and Distribution: The sender

transcodes the Secret into a specific base and splits it

into blocks. Each block value is replaced with a file

from the corresponding file list. The modified blocks

are distributed to respective clouds.

Based on the above key components, recent work designed

"Distributed Data Hiding in the Multi-Cloud Storage

Environment." the focus is on hiding a Secret message within

a multi-cloud storage environment without directly modifying

the original data (cover media) [37]. The concept is built upon

two main technical contributions:

1. Non-modification of Cover Media: The cover

media, which could be any digital content such as

images, videos, or files, is not altered in any way.

Instead, it acts as a pointer or reference to fragmented

data where the Secret message is hidden.

2. Secret Message Storage: The Secret message is

hidden within the multi-cloud storage environment.

The text suggests that the method used to hide the

message is complex enough to make it difficult for

attackers to detect and extract the Secret message.

The concept claims to provide security against certain

attacks, particularly brute force attacks.

Despite its suitability for protecting secrets across multiple

clouds from unauthorized access, this mechanism has a

limitation—file selection and storage follow a predictable

serial order. This vulnerability exposes the possibility of

intruders cracking the Secret. Attackers could exploit this

sequential pattern to deduce the concealed message through

multiple attempts. Recent work examines this approach's

security strength against brute force attacks [1]. The analysis

concludes that despite an attacker's attempts to retrieve the

Secret value via brute force attacks, the computational effort

required for unauthorized access is smaller than exponential

computations. In distributed steganography, if an attacker

identifies and modifies one of the cover media elements, the

entire Secret may be lost. For instance, if a set of images

containing fragments of the message is modified or deleted,

Bob may be unable to reconstruct the original message.

Additionally, traditional steganography using modified cover

media might be vulnerable to steganalysis techniques that

exploit alterations in the carrier file.

To further enhance security, the paper proposes an

innovative solution - leveraging "Product Cipher-Based

Distributed Steganography". Recognizing the imperfections in

the existing approach, the proposed mechanism seeks to

transform the landscape of security measures against brute-

force attacks in a more effective way. By incorporating a

product cipher as the underlying mechanism, the system

introduces complexity and security measures to address

concerns prevalent in cloud-based communication. The

product cipher, a cryptographic construction that artfully

combines multiple substitution and transposition methods,

offers a robust and multi-layered defense against potential

attacks. This strategic approach not only thwarts brute-force

attacks but also serves as a stalwart guardian against various

intrusion forms, aligning with the paramount concerns of

cloud security.

In advancing the field of secure communication within

cloud environments, the paper not only acknowledges the

vulnerabilities posed by predictable patterns but also takes a

proactive stance to mitigate them. Through the introduction of

a product-cipher-based approach, the system creates an

intricate tapestry of protection, ensuring that unauthorized

access and potential breaches remain distant possibilities. This

innovative approach speaks to the broader efforts of the

security community to craft dynamic and resilient safeguards

that stand up to the ever-evolving landscape of digital threats.

50

Consider a practical example of the PCDS approach in

action. Suppose Alice wants to securely transmit a confidential

message to Bob using cloud storage. In traditional

steganography, she might embed the message in an image,

risking detection if the image is altered. Distributed

steganography would fragment the message across multiple

images, but suspicion or modifications could still lead to the

loss of the entire Secret. Now, with PCDS, Alice can use an

unchanged image as a reference and securely store the

fragmented message in a multi-cloud environment. This

means even if one cloud is compromised, the attacker won't

have the complete information, and the unchanged cover

media serves as an added layer of security.

3. PRODUCT CIPHER-BASED DISTRIBUTED

STEGANOGRAPHY

In today's digital landscape, the need for secure and covert

communication has become increasingly essential. However,

ensuring the confidentiality of sensitive information in a

distributed manner presents significant challenges. Traditional

encryption techniques provide a level of security but are

vulnerable to attacks due to their distinguishable patterns and

metadata. This necessitates the exploration of novel methods

that go beyond conventional encryption. Covert

communication involves the exchange of information without

arousing suspicion from unintended observers. Steganography,

a subset of covert communication, focuses on hiding Secret

data within innocuous cover media, such as images or audio

files. The challenge lies in developing techniques that not only

embed the data effectively but also ensure that the embedded

data remains undetectable.

The prevalence of cloud computing has introduced new

possibilities for distributed data storage and retrieval. Multi-

cloud environments offer benefits such as increased

availability and fault tolerance. However, these advantages are

accompanied by security concerns, including potential

breaches and unauthorized access. Ensuring the

confidentiality of data stored across multiple clouds while

achieving covert communication further complicates the

problem. Existing methods for distributed covert

communication often rely on covert channels, which exploit

the communication paths not originally intended for data

exchange. While effective to a certain extent, these methods

have limitations such as susceptibility to detection and

difficulty in dynamically adapting to changes in the cloud

environment. address these challenges, we propose the

Product Cipher-Based Distributed Steganography (PCDS)

technique. PCDS aims to securely embed and retrieve data in

a multi-cloud environment using steganography, providing

both covert communication and resistance against

unauthorized access. The approach leverages the concept of

product ciphers, combining substitution and permutation

operations to achieve secure data hiding. The primary

objectives of our research are as follows:

Secure Data Hiding: Develop a technique to dynamically

embed Secret data into files distributed across multiple clouds

while maintaining the cover media's authenticity.

Covert Communication: Ensure that the embedded data

remains undetectable, achieving covert communication

between communicating entities.

Resistance to Attacks: Design the PCDS technique to

withstand attacks such as statistical analysis and pattern

recognition, enhancing the security of the covert

communication.

Dynamic Adaptability: Create an approach that adapts to

changes in the cloud environment, providing a reliable and

secure covert communication channel even in dynamic

scenarios.

The proposed Product Cipher-Based Distributed

Steganography (PCDS) is an extension of the existing covert

channel-based distributed data hiding mechanism [27], which

hides the Secret dynamically in the multi-cloud environment

in a distributed manner. PCDS is transparent to Secret

communication between the communicating entities. PCDS

uses multi-clouds to store the files which are derived from the

corresponding Secret, and further files are uploaded without

any modification.

PCDS is a steganographic approach where files are used as

covert media to carry the Secret information that is to be

securely shared with the destination. To achieve the goal,

communication entities agree on the key. The key agreement

procedure is out of the scope of our work. The key consists of

a set of information, i.e., a Cloud list and their credentials to

access them, a Base value, a session key for permutation, and

the number of files indexed in different lists for substitution,

Eq. (1) shows the key and its information.

𝐾𝑒𝑦 = { 𝐶𝑙𝑜𝑢𝑑′𝑠 = 𝐶0𝐶1. . 𝐶𝑛, 𝐵𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 =
 𝐵𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 2,4,8. . , 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = 𝐾𝑠 , 𝐿𝑖𝑠𝑡𝑠 =

 𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛, and 𝐹𝑖𝑙𝑒𝑠 𝑖𝑛 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡 =
 𝐿𝑛

0 , 𝐿𝑛
1 , 𝐿𝑛

2 … … 𝐿𝑛
𝐵 , }

(1)

where,

1. C0C1…Cn are the number of clouds where Secret

need to be stored

2. Bi is the base value, to which secrete value is to be

converted

3. Session key (Ks), which is used for applying the

permutation

4. 𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛 are the lists, where each list

consists of 𝐵 files

𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵 are the number of files in the nthlist. These

files are in the different format.

Figure 1 shows the overview of the proposed Product

Cipher-Based Distributed Steganography (PCDS) approach,

where the sender converts the Secret into files and dynamically

embeds the files into multi-cloud.

In Figure 1, we present a comprehensive overview of the

Product Cipher-Based Distributed Steganography (PCDS)

approach, illustrating the process of securely storing and

retrieving Secret information within a multi-cloud

environment. The diagram is designed to provide a visual

representation of the key steps involved in the PCDS technique.

To facilitate covert communication, the sender initiates the

process by converting the Secret information into a series of

files. This conversion involves employing a combination of

substitution and permutation techniques, transforming the

original Secret into a format suitable for embedding.

Once the files are converted, the sender employs dynamic

embedding strategies. These strategies involve utilizing both

substitution and permutation operations to ensure that the

converted files are embedded securely and discreetly across

multiple cloud platforms. Upon successful embedding, the

receiver, possessing authorized access to the multi-cloud

infrastructure, undertakes the process of retrieving the

embedded files. The retrieved files are then subjected to the

reverse of the conversion process, where permutation and

51

substitution operations are applied in the opposite order to

reconstruct the original Secret information.

The working procedure of PCDS, i.e., securely stores the

Secret to multi-cloud and retrieves the Secret from multi-cloud,

is explained as follows On the other hand, the receiver with

access to the cloud retrieves the files from the cloud and

converts them back to Secret by applying substitution and

permutation techniques in reverse order.

The proposed PCDS aims to store and retrieve Secrets

in/from multi-cloud securely. To achieve the goal, PCDS split

into two phases, i.e., 1). Secure Secret storage in the multi-

cloud environment, and 2). Secure Secret retrieval from the

multi-cloud environment. Consider the two communicating

entities, where one entity wants to store the Secret securely,

and another wants to retrieve it with the help of the PCDS

algorithm securely. To achieve the goal, both entities agree on

the key. The key elements are given in Eq. (1). The First phase

of the PCDS, i.e., Secure Secret storage in the multi-cloud

environment, is explained as follows.

A. Secure Secret storage in the multi-cloud

environment

Secure Secret storage in the multi-cloud environment aims

to store the Secret in multi-cloud securely by following the

steps.

1. Base Conversion: - The Secret is converted in the

base value B.

2. Permutation choice 1: The Secret represented in base

B undergoes the permutation.

3. Substitution: Permuted output of the Secret

represented in base B is substituted with the files

available in the different lists. Thus, each Secret

value is represented by different files.

4. Permutation choice 2: The Secret represented by

various files undergoes the permutation.

5. Allocation: Permuted output is allocated to different

clouds.

This initial step involves the user providing the Secret key

'S' that needs to be securely stored. Additionally, the user

specifies the number of clouds involved, which is a critical

parameter for distributing the Secret information effectively.

Consider communicating entity-1, who wants to securely

store the Secret S=1111101101000001 in a multi-cloud

environment, with a pre-agreed key between communicating

entities is;

𝐾𝑒𝑦 = { 𝐶𝑙𝑜𝑢𝑑′𝑠 = 𝐶0, 𝐶1,𝐶2, 𝐶3. 𝐵𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 (𝐵𝑖) =

𝐵2 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = (3 1 2 5 4), 𝐿𝑖𝑠𝑡𝑠 = 𝐿0 𝐿1𝐿2𝐿3 … . . 𝐿𝑛,

and 𝐹𝑖𝑙𝑒𝑠 𝑖𝑛 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡 = 𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵 , }.

Entity-1 has the Secret value S=1111101101000001 and

wants to securely store into four clouds, say 𝐶 = 𝐶0, 𝐶1,𝐶2,𝐶3.

with base value B=2 and 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦(𝐾𝑠) = (3 1 2 5 4) for

permutation and a list of files for substitution, which are shown

in Table 1. To store the Secret in the cloud securely, entity-1

applies algorithm-1. The working of algorithm-1 is composed

of the following steps.

➢ Base conversion

The Secret key 'S' undergoes a conversion process utilizing

a specified base value 'B.' This conversion is a fundamental

aspect of the key agreement between communicating entities,

adding an extra layer of security to the process

Initially, algorithm 1 sets the base value (B) as per the

agreed pre-shared key information, here, base value B=2 and

applies base conversion to the Secret value. The output of the

base conversion is placed into an array list L1[N] as shown in

Table 1.

Table 1. Array L1[N]

Index L1[N]

0 1

1 1

2 1

3 1

4 1

5 0

6 1

7 1

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

Figure 1. Product cipher based Secret storage in multi-cloud

52

➢ Permuted choice-1

Permutation choice-1 is applied to the converted Secret key

using a session key ′𝐾𝑠
′ .It's crucial that the session key's length

surpasses the number of clouds involved, enhancing the

resistance against potential cryptographic attacks.

Algorithm-1 applies permuted choice-1 on an array L1[N].

It selects the session key ′𝐾𝑠
′ from the pre-shared key. It

ensures that the session key length is greater than the number

of clouds. If not, increase the key length size. The session key

value in the pre-shared key is, i.e., Ks=31254. To apply

permuted choice 1, the values of an array L1[N] converted into

the table, as shown in Table 2. If the last row is left with empty

cells, fill it with agreed bogus values, i.e., in the example filled

with ′0′ . For permutation, read the column-wise as per

increment order of key ′𝐾𝑠′.

Table 2. Permuted choice –1

3 1 2 5 4

1 1 1 1 1

0 1 1 0 1

0 0 0 0 1

1 0 0 0 0

The permuted output is 𝑆′ = [110𝟎110𝟎1001111𝟎100𝟎].

➢ Substitution

The permuted output is divided into groups, and substitution

is applied to each group based on corresponding lists. These

lists play a key role in determining which files represent each

value, adding a layer of complexity to the encryption process.

The permuted output is divided into groups, each assigned to

the list. The list information is available in the pre-shared key,

and here, it is shown in Table 3. Eq. (2) is used to form the

groups from the permuted output S'. Then each group's values

are substituted with lists; each list index values are substituted

with files.

𝐿𝑛
𝑆′[𝑛𝐶] ≤ 𝐿𝑛[𝑚 < 𝐿𝑛

𝑆′[(𝑛+1)𝐶]] (2)

where,

𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆′

𝐶
− 1),

𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠,
𝑆′ = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 permuted output of 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦

𝐿𝑛 = 𝑛𝑡ℎ 𝑙𝑖𝑠𝑡

𝑚 = (𝑛 + 1)𝐶

𝐿𝑛[𝑚] = 𝑛𝑡ℎ 𝑔𝑟𝑜𝑢𝑝, 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑚 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑡ℎ𝑔𝑟𝑜𝑢𝑝: 𝐿𝑛[𝑚] =

{𝐿𝑛
𝑆′[𝑛𝐶],, 𝐿𝑛

𝑆′[𝑛𝐶+1]
, 𝐿𝑛

𝑆′[𝑛𝐶+2]
… … 𝐿𝑛

𝑆′[((𝑛+1)𝐶)−1]
}

Here, 𝐶 = 4, 𝑆′ = 20, and if we apply Eq. (2) then it divides

the Secret into groups.

𝑆′′ = {𝐿0 [4], 𝐿1[4], 𝐿2[4], 𝐿3[4], 𝐿4[4]}

If we apply the corresponding values of each group then, we

get:

𝑆′′ = {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎, 𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎, 𝐿2
1 , 𝐿2

0 ,

 𝐿2
0 , 𝐿2

1 , 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎, 𝐿4
1 , 𝐿4

0 , 𝐿4
0 , 𝑳𝟒

𝟎}

As per Eq. (2), four lists are created. Those lists names as

𝐿0 [], 𝐿1[], 𝐿2 [], 𝐿3[] . Each list contains a group of four

values, i.e.,

𝐿0 [4] = {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎}

𝐿1 [4] = {𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎}

𝐿2 [4] = { 𝐿2
1 , 𝐿2

0 , 𝐿2
0 , 𝐿2

1 }

𝐿3 [4] = { 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎}

𝐿0 [4] = {𝐿0
1 , 𝐿0

0 , 𝐿0
0 , 𝑳𝟎

𝟎}

𝐿4 [4] is converted as 𝐿0 [4] as the pre-shared key consist of

4 lists. Further, these array values are substituted with files

from the corresponding list based on the index values. The

files substitution is shown as follows.

𝐿0 [4] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠}

𝐿1 [4]
= {𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥}

𝐿2 [4]
= {𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥}

𝐿3 [4]
= {𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓}

𝐿0 [4] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠}

Later substituted file are placed into an array L2[N] as:

𝐿2[𝑁] = 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,
 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥,

 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥,
 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓,

 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠}

Table 3. Substituted files in array L2[N] with corresponding indexes

Index 0 1 2 3 4

L2[N] 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥

Index 5 6 7 8 8

L2[N] 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥

Index 10 11 12 13 14

L2[N] 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓

Index 15 16 17 18 19

L2[N] 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

Table 4. Array O[N] after permuted choice – 2

3 1 2 5 4

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

53

Table 3 is the array L2[N] representation in the tabular form.

➢ Permuted choice-2

Another permutation operation is applied to the substituted

values, providing an additional level of security to the process.

This step contributes to the robustness of the algorithm against

various cryptographic vulnerabilities

Further, algorithm-1 Applies permuted choice-2 on an array

L2[N] same as the permuted choice-1

Table 4 filled in a rectangle row-wise from an array L2[N].

For permutation, read the column-wise as per increment order

of key ′𝐾′ the permuted output

𝑂[𝑛] =
[𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠,

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,
𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓,

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,
𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠].

Compare with Table 5 indexes remain the same, but files

are changed, which is shown in Table 5.

➢ Allocation

The allocated permuted output is distributed across different

clouds based on pre-shared key information. This strategic

allocation is designed to ensure that the Secret information is

dispersed securely across multiple clouds, preventing a single

point of compromise. The final step of algorithm 1 is to

allocate the O[N] values into the four clouds 𝐶0, 𝐶1,𝐶2, 𝐶3, as

per the pre-shared key cloud information. Eq. (3) is used to

allocate the O[N] values into the different clouds.

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑂[𝑁] = 𝐶𝑖,𝑗 (3)

where,

𝑗 = 𝑁 𝑚𝑜𝑑 𝐶,

𝑖 =
𝑁 − 𝑗

𝐶
,

𝑁 = 0,1,2 … 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆).

If 𝑁 equal to 0 indexed value, then after substituting in Eq.

(3) the position of a 0 indexed value, i.e., 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 is

allocated in 𝐶0,0 of n*n matrix. Similarly, all the indexed file

positions are computed and allocated their respective positions.

Here is the example of 0 indexed valued file and 19 indexed

file:

𝑂[0] = 𝐶0,0 → 𝑗 = 0 𝑚𝑜𝑑 4 = 0, 𝑖 =
0−0

4
= 0

𝑂[19] = 𝐶4,3 → 𝑗 = 19 𝑚𝑜𝑑 4 = 3, 𝑖 =
19−3

4
= 4

Table 5. Permuted output array O[N] with modified files from array L2[N]

𝐼𝑛𝑑𝑒𝑥 0 1 2 3 4

𝑂[𝑁] 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

𝐼𝑛𝑑𝑒𝑥 5 6 7 8 9

𝑂[𝑁] 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥

𝐼𝑛𝑑𝑒𝑥 10 11 12 13 14

𝑂[𝑁] 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓

𝐼𝑛𝑑𝑒𝑥 15 16 17 18 19

𝑂[𝑁] 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

Table 6. n*n matrix for cloud allocation

𝐶𝑖,𝑗 𝑗

𝑖

 0 1 2 3

0 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠

1 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

2 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓

3 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

4 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

Table 7. Column-wise files allocation into multi-clouds

C0 C1 C2 C3

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

Table 8. Files reallocation in n*n matrix

𝐶𝑖,𝑗 𝑗

𝑖

 0 1 2 3

0 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠

1 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

2 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓

3 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

4 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

54

Algorithm-1: Multi-Cloud Secret Key Storage

Step 1: Submit the Secret key ′𝑆′ and set the no. of clouds.

Step 2: Secret key ′𝑆′ converted through Base value ′𝐵′.

𝐵2𝐵4𝐵9𝐵16 … . . 𝐵𝑛

Step 3: After conversion into ′𝐵′, ‘S’ values placed in array

𝐿1[𝑁] and apply permutation.

Step 4: Choose key ′𝐾′ for permutation, where ′𝐾′ length size

is greater than no. of clouds.

𝐶ℎ𝑒𝑐𝑘 𝑘𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝐾 > 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠
𝑖𝑓 𝐾 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑖𝑧𝑒 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑𝑠

𝑡ℎ𝑒𝑛 𝐾 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑖𝑧𝑒 + +

Step 5: Substitute a group of permuted results with

corresponding lists. The group formed by using 𝑛𝐶 < 𝐿𝑛 ≤
(𝑛 + 1)𝐶,

𝑤ℎ𝑒𝑟𝑒, 𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆

𝐶
− 1) , 𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠, 𝑆

= 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦
𝐺𝑟𝑜𝑢𝑝′𝑠: 𝐿0 [] 𝐿1[] 𝐿2 [] 𝐿3 … . 𝐿𝑛[]

𝐺𝑟𝑜𝑢𝑝: 𝐿𝑛[𝑚] = {𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝑚−1} 𝑤ℎ𝑒𝑟𝑒 𝑚
= 𝑛𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑠𝑡 𝑜𝑟 𝑔𝑟𝑜𝑢𝑝

Step 6: Grouped lists are substituted with corresponding files

𝑓1𝑓2𝑓3 … . . 𝑓𝑛.

Step 7: Files are placed in an array 𝐿2[𝑁] and apply

permutation.

𝐿2[𝑁] = [𝑓1𝑓2𝑓3 … . . 𝑓𝑛]

Step 8: Permuted files, i.e., 𝑂[𝑁] = [𝑓1𝑓2𝑓3 … . . 𝑓𝑛] are placed

in 𝑛 ∗ 𝑛 matrix by computing the position.

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑂[𝑁] = 𝐶𝑖,𝑗

𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑁 𝑚𝑜𝑑 𝐶 , 𝑖

=
𝑁 − 𝑗

𝐶
 , 𝑁 (𝑓𝑖𝑙𝑒𝑠 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠)

= 0,1,2, … . . 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆)

Step 9: Each column of 𝑛 ∗ 𝑛 matrix is stored in the selected

cloud.

𝐶1𝐶2𝐶3𝐶4 … … . 𝐶𝑛

Algorithm 1. Multi-Cloud Secret Key Storage Algorithm

Table 6 shows the position of each Secret key value

allocation in the n*n matrix by indexing with different files.

Attackers 𝑎𝑟𝑒 unable to notice that Secret values are covered

with the file. After file position allocation, select the four

clouds C0C1C2C3 to store the part of the Secret key. Each

column of n*n matrix is stored in the selected cloud, and it is

shown in Table 7.

The step-by-step working procedure of secure Secret

storage in a multi-cloud environment is shown in Algorithm 1

and Figure 2.

B. Secure Secret retrieval from the multi-cloud

environment

The algorithm initiates by identifying and selecting the

multi-cloud storage where the Secret information is distributed.

This step is critical for initiating the retrieval process. Secure

Secret retrieval from the multi-cloud environment aims to

retrieve the Secret in the multi-cloud securely by following the

steps.

1. Extraction: - Retrieve the files from multiple clouds

and place them into the array.

2. Inverse Permutation choice-2: The Secret

represented in the array undergoes the inverse

permutation with the help of the session key.

3. Substitution: The files available in the output of

Inverse Permutation choice-2 are substituted with the

list and index values.

4. Inverse Permutation choice-1: The outvalue of the

substitution phase undergoes the Inverse Permuted

Choice 1 with the help of the session key.

5. Decoding: The Secret value retrieved from Inverse

Permutation choice-1 is decoded by the agreed base

value from the pre-shared key.

➢ Extraction

Retrieve the files from multiple clouds and organize them

in a matrix form. Each file occupies its designated location in

the matrix, forming the basis for subsequent decryption steps.

The information available in the multi-clouds in a matrix form,

with size n*m. The user browses the multi-clouds and fetches

the stored information from the cloud, and stores it in the array

O[N]. The location in which the fetched information is stored

in array O[N], is computed by Eq. (4).

𝑁 = 𝑖 ∗ 𝐶 + 𝑗 (4)

where,

𝑗 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑖 = 𝑟𝑜𝑤 𝑛𝑢𝑚𝑏𝑒𝑟

𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑𝑠

In our example, the extracting entity (entity-2) browses the

multi-clouds i.e., 𝐶0𝐶1𝐶2𝐶3 , where the files are stored in a

matrix form of size 5*4, as shown in Table 8. The files are stored

in the matrix with index values (𝑖, 𝑗) =
(0,0)(0,1)(0,2) … … … … (4,3). Then entity-2 pic files one by

one from the matrix and computes the index value using the Eq.

(4), and then placed them into the array O[N].

𝑂[𝑁]
= [𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠,

𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,
 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓,

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,
𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠]

➢ Inverse permuted choice-2

Apply the inverse of permutation choice-2 to the retrieved

files. This step involves reversing the permutation operation

applied during the storage phase, an essential part of the

decryption process.

Apply inverse permuted choice-2 on an array O[N] using

Ks=31254. In the process of inverse permutation, array values

O[N] placed in the column-wise as per increment order of key

′𝐾′ by using Eq. (5)

𝐶𝑜𝑙𝑢𝑚𝑛 𝑙𝑒𝑛𝑔𝑡ℎ =
array 𝑂[𝑁] 𝑙𝑒𝑛𝑔𝑡ℎ

𝐾𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ
=

𝑆

𝐾
 (5)

55

Table 9. Inverse permuted choice-2

𝟑 𝟏 𝟐 𝟓 𝟒

𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑥 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠

Figure 2. Flowchart of the Secret key storage in multi-clouds

Figure 3. Secret key extraction in multi-clouds

56

𝐶𝑜𝑙𝑢𝑚𝑛 𝑙𝑒𝑛𝑔𝑡ℎ =
20

5
 = 4

In our example, the length of array O[N] is 20 from 16

length of key K=5. Column length is computed by substituting

the values of array length, and key length in Eq. (5), and

obtained depth of the column is 4.

Insert the first four files of the array O[N] into the column

of the key labeled 1, next four files of the array O[N] are

inserted into the column of the key labeled 2, and so on, as

shown in the Table 9.

The output values of inverse permuted choice-2 are stored

in an array L2[N]. The values of L2[N] are fetched from Table

9 as left to right and top to bottom.

𝐿2[𝑁] = {𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠,

𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑠ℎ𝑒𝑒𝑡1. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥, 𝑟𝑒𝑝𝑜𝑟𝑡. 𝑥𝑙𝑠𝑥,
𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑝𝑝𝑡𝑥, 𝑓𝑖𝑙𝑒. 𝑝𝑝𝑡𝑥,

𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑙𝑖𝑛𝑒𝑎𝑟. 𝑝𝑑𝑓, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑝𝑑𝑓,
𝑇ℎ𝑒𝑠𝑖𝑠. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠, 𝑎𝑟𝑡. 𝑑𝑜𝑐𝑠}.

➢ Substitution

Substitute the files with list and index values based on pre-

shared key information. This step is a reversal of the

substitution process applied during the storage phase, restoring

the original representation of the Secret information.

The files available in the output of inverse permutation

choice-2 are substituted with the list and index values from the

pre-shared Secret key. The values of L2[N] array, i.e., files are

substituted by the list numbers and index numbers from Table

1 as follows.

𝐿2[𝑁] = {𝐿0
1 , 𝐿0

1 , 𝐿0
0 , 𝑳𝟎

𝟎, 𝐿1
1 , 𝐿1

1 , 𝐿1
0 , 𝑳𝟏

𝟎, 𝐿2
1 , 𝐿2

0 ,

 𝐿2
0 , 𝐿2

1 , 𝐿3
1 , 𝐿3

1 , 𝐿3
1 , 𝑳𝟑

𝟎, 𝐿4
1 , 𝐿4

0 , 𝐿4
0 , 𝑳𝟒

𝟎 }

Further, the elements in the L2[N] the just index values

replace array, i.e., remove the lists information and store it in

the array L1[N] as follows.

L1[N]=[11001100100111101000]

➢ Inverse permuted choice-1

Apply the inverse of permutation choice-1 to further decrypt

the retrieved information. This step is crucial for unraveling

the encryption layers applied during the storage phase.

Apply inverse permuted choice-1 on an array L1[N] using

session key Ks=31254. In the process of inverse permutation,

array values of L1[N] are placed in the column-wise as per

increment order of key ′𝐾′ by using Eq. (5), as follows; and

shown in Table 10.

Table 10. Inverse permuted choice-1

3 1 2 5 4

1 1 1 1 1

0 1 1 0 1

0 0 0 0 1

1 0 0 0 0

The output of the inverse permuted choice-2 are stored in

list S. The values of list S are fetched from Table 10 as left to

right and top to bottom, as follows:

S=11111011010000010000

Remove agreed-on bogus values and place the values in

row-wise order from the Table 10 to get the Secret key.

S=1111101101000001

➢ Decoding:

Decode the retrieved information using the agreed base

value from the pre-shared key. This final step transforms the

information back to its original form, completing the secure

retrieval process. The agreed base value decodes the Secret

value retrieved from Inverse Permutation choice-1. The agreed

base value is B=2. Thus the decoded value is

S=1111101101000001.

The step-by-step working procedure of secure Secret

extraction in a multi-cloud environment is shown in Algorithm

2 and Figure 3.

Algorithm:2 Multi-Cloud Secret Key Extraction

Step 1: Browse and find selected multi cloud storage.

Step 2: Extract all permuted files from multi clouds and

allocate them in their respective locations in 𝑛 ∗ 𝑛 matrix

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝐶𝑖,𝑗 = 𝑂𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 {𝑖, 𝑗} =

(0,0) (0,1) (0,2) … … … … (𝑝, 𝑞)

𝑤ℎ𝑒𝑟𝑒 𝑖 =
𝑁−𝑗

𝐶
, 𝑗 =

𝑁 𝑚𝑜𝑑 𝐶, 𝑁 (𝑓𝑖𝑙𝑒𝑠 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) =
0,1,2, … . . 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆)

𝑁 = 𝑖 ∗ 𝐶 + 𝑗

Step 3: Select the files row wise from n*n matrix and place

into array L2[N].

Step 4: Apply inverse permutation on L2[N].

Step 5: Group of files [𝑓1 = 𝐿𝑛
0 , 𝑓2 = 𝐿𝑛

0 , 𝑓3 = 𝐿𝑛
0 … . . 𝑓𝑛 =

𝐿𝑛
𝐵] substitute in a list.

𝐿𝑛[𝐵] = 𝐿𝑛
0 , 𝐿𝑛

1 , 𝐿𝑛
2 … … 𝐿𝑛

𝐵

Step 6: Arrange list Ln[B] in a row wise by

𝑛𝐶 < 𝐿𝑛 ≤ (𝑛 + 1)𝐶

𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2, … . . 𝐶𝑒𝑖𝑙 (
𝑆

𝐶
− 1) , 𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑢𝑑𝑠, 𝑆

= 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦

Step 7: Indexed files are replaced with corresponding values

and placed into array L1[N] and apply inverse permutation for

decryption.

L1[N]=B values

Step 8: B values convert into base value S.

Algorithm 2. Multi-Cloud Secret Key Extraction Algorithm.

4. RESULTS AND DISCUSSION

The paper presents a Product Cipher-Based Distributed

Steganography scheme designed to dynamically hide Secrets

in a multi-cloud environment. This undetectable Secret

distribution system relies on steganography, a method of

concealing information to make it hard to find. In contrast to

related steganographic work, our approach to Secret extraction

in a multi-cloud storage environment does not depend on

57

modifying files to hide the presence of a covert channel

between communicating entities. The scheme facilitates

efficient Secret distribution in a multi-cloud environment

without modifying cover files, ensuring the original files

remain unchanged. This minimizes overhead and avoids any

suspicious content that could attract adversaries' attention.

Additionally, our method refrains from using special

characters, such as space, ASCII code letter A0, character

coloring, or text justification, to conceal information. As a

result, inspecting the file content reveals no questionable

elements, preventing the file content from drawing the

adversary's attention. This enhances the scheme's efficiency by

eliminating the need for sophisticated encoding or decoding

methods, reducing computational cost, and ensuring faster and

more effective Secret extraction.

PCDS is a secure method for storing and retrieving Secrets

in a multi cloud environment. Its security can be assessed

using the following criteria:

1. Confidentiality: PCDS seeks to protect the secrecy of

the stored Secret by converting it to files and

embedding them in multiple clouds. The use of

permutation and substitution techniques incorporate

the added layer of security. The secrecy of cloud list,

base value, session key, and file lists is essential to

provide the confidentiality.

2. Covert Channel Detection: The maintenance of an

undetectable covert channel between communicating

entities is prioritized by PCDS. The technique

decreases the risk of an attacker discovering the

presence of a covert channel by using existing cover

files without modification and avoiding suspicious

material. This improves the overall security of the

system.

3. Computational Complexity: PCDS's security is based

on the computational complexity required for an

attacker to extract the Secret. Permutations,

substitutions, and several files in distinct lists are

used in the method, making it computationally

difficult for an adversary to establish the precise

distribution and numbering of Secret information.

Even if all cloud accounts are available, recovering

the Secret is computationally unfeasible due to its

complexity.

Lemma: By maintaining the secrecy of crucial elements and

employing strong encryption, the PCDS scheme ensures it is

computationally impossible for an attacker to recover the

original Secret without the encryption key.

Proof: The PCDS scheme achieves confidentiality through

two key features:

1. Secrecy of Key Elements: The PCDS scheme

protects the cloud list, base value, session key, and

file lists from unauthorized access. These crucial

elements remain hidden to prevent attackers from

learning about encryption or file delivery across

clouds. Without these confidential key pieces, an

adversary cannot decrypt the Secret.

2. Robust Encryption Techniques: The PCDS scheme

uses product cipher-based encryption to store the

original Secret in encrypted files distributed across

multiple clouds. Even if an adversary gains access to

encrypted files, these encryption methods render the

Secret information unreadable. The encryption key is

kept Secret from attackers. The complexity of

encryption makes it computationally impossible to

interpret encrypted data and retrieve the original

Secret without the correct encryption key.

The PCDS approach safeguards the Secret by keeping

essential aspects hidden and employing strong encryption.

This strategy, which combines maintaining key secrecy and

using robust encryption, creates significant computational

obstacles for attackers, thereby protecting multi-cloud Secret

information
Lemma: The PCDS mechanism maintains an undetectable

covert channel by using existing cover files without

modification and avoiding suspicious content.

Proof: The PCDS scheme ensures covert channel detection

through two techniques:

1. Utilization of Existing Cover Files: The scheme

leverages existing cover files in the multi-cloud

environment without modifying them. By utilizing

these legitimate files for a genuine purpose, the

scheme avoids arousing suspicion and effectively

conceals the presence of a Secret channel.

2. Avoidance of Suspicious Content: The PCDS

scheme refrains from using special characters, space,

ASCII code letter A0, character coloring, or text

justification to conceal information. This approach

eliminates any questionable content that may attract

attention during file inspection, enhancing

performance, reducing computational overhead, and

ensuring efficient Secret extraction.

By using unmodified cover files and avoiding suspicious

content, the PCDS scheme ensures an undetectable covert

channel. Adversaries analyzing the file content will find no

indications of a Secret channel, making it highly improbable

for them to detect the hidden communication.

Lemma: The PCDS scheme's computational complexity

makes it computationally infeasible for an attacker to retrieve

the Secret, even with full access to all cloud accounts.

Proof: The PCDS scheme employs permutations,

substitutions, and multiple files in different lists to distribute

the Secret across the multi-cloud environment. The

computational cost required for an attacker to discover the

correct Secret distribution and numbering is greatly increased

by these elements. Using permutations and substitutions, the

scheme generates a large number of possible combinations.

This makes it extremely difficult for an attacker to predict the

correct Secret distribution without the key. In addition, the

Secret's distribution across numerous files and distinct lists

increases the computational complexity. The attacker must

accurately identify the sequence of Secret distribution and the

numbering of files within each list. This involves a vast

number of possibilities

Considering these factors, the total number of computations

required for the attacker to retrieve the Secret value is given

by B! * k! * n!, where B represents the number of potential

permutations, k represents the number of substitutions, and n

represents the number of files within each list.

This computational complexity is exponential and grows

rapidly as the number of permutations, substitutions, and files

increases. As a result, it becomes computationally infeasible

for the attacker to retrieve the Secret, even with full access to

all cloud accounts.

The existing approach in distributed data hiding in the

multi-cloud storage environment focuses on two technical

contributions: the cover media acting as a pointer to

fragmented data and the storage of a Secret message in the

multi-cloud environment. It claims to make it complicated for

58

an attacker to detect and extract the Secret message. However,

upon analysis of the security strength of this approach, it has

been concluded that it is vulnerable to brute force attacks that

require computations significantly smaller than the

exponential complexity of B!*K!*n!.

In contrast, the proposed PCDS scheme offers a more robust

solution for the secure distribution of Secrets in a multi-cloud

environment. The PCDS scheme employs permutations,

substitutions, and multiple files in distinct lists, which

substantially increases the computational complexity required

for an attacker to discover the Secret. Due to the large number

of possible combinations introduced by permutations and

substitutions, it is extremely difficult for an attacker to predict

the correct Secret distribution without the key. In addition,

dispersing the Secret across multiple files in distinct lists

increases the computational difficulty. The total number of

computations necessary to retrieve the Secret is given by

B!*K!*n!, where B represents potential permutations, k

represents substitutions, and n represents the number of files

contained within each list. This complexity increases

exponentially with the number of permutations, substitutions,

and files, making it computationally impossible for an attacker

to retrieve the Secret, even if they have access to all cloud

accounts.

Unlike the existing technique, which is vulnerable to brute-

force attacks with computations less than B!*K!*n!, the PCDS

provides significantly higher security assurances. Its

computational complexity exponentially increases with the

number of permutations, substitutions, and files. This ensures

secrecy in the multi-cloud environment, providing a robust

defense against brute-force attacks.

Overall, the PCDS ensures strong security by employing

steganographic techniques, maintaining an undetectable

covert media, and making it challenging for potential attackers

to perform computations. It offers a realistic and efficient

solution for Secret storage and retrieval in a multi-cloud

context.

The existing paper analyzes security through two attack

hypotheses: Hypothesis 1 involves adversaries without cloud

account access, and Hypothesis 2 involves adversaries with

varying levels of cloud account access. The existing analysis

concludes that adversaries lacking access remain unaware of

Secret communication, and even those with access are

impeded by the exponential complexity of permutation-based

attacks.

In contrast, our proposed work provides a more

encompassing security analysis, delving deeper into the

scheme's resilience across diverse attack scenarios. This

analysis revolves around three pivotal lemmas: confidentiality,

preservation of an undetectable covert channel, and

computational complexity. Rigorous proofs support each

lemma, showcasing the scheme's robustness.

The confidentiality lemma safeguards crucial elements like

cloud lists and session keys, ensuring unauthorized decryption

is infeasible. The maintenance of an undetectable covert

channel is achieved through the use of existing cover files and

the avoidance of suspicious content. Notably, the

computational complexity lemma underscores the scheme's

resilience against adversaries with full access

Comparing the security strengths of both analyses, the

proposed work's analysis excels in breadth, rigor, and a

dynamic approach. Unlike the existing analysis, which focuses

on limited attack scenarios and vulnerabilities, our analysis

explores the scheme's resilience from multiple dimensions.

The thorough examination of core lemmas demonstrates the

scheme's strength against diverse attacks, reinforcing its

security.

Addressing theoretical facets like encryption strength,

covert channel integrity, and computational complexity, the

proposed work establishes a more compelling basis for secure

Secret distribution in a multi-cloud environment.

While maintaining an undetectable Secret channel without

modifying existing cover files is a noteworthy aspect of our

approach, it's crucial to recognize that this feature results from

the underlying research principles forming the basis of our

scheme. Our fundamental contribution is the development of

a novel Product Cipher-Based Distributed Steganography

scheme, specifically designed for secure and dynamic Secret

distribution within a multi-cloud environment.

It's essential to emphasize that our security argument goes

beyond the concealment of the channel itself. Our extensive

security analysis adopts a holistic approach, thoroughly

examining key security elements, including confidentiality,

preservation of an undetectable covert channel, and

computational complexity. Through rigorous proofs, we

establish the scheme's resilience against a wide range of

potential attack scenarios. This comprehensive analysis

reinforces our claim that our proposed scheme provides a

robust and secure framework for Secret distribution and

retrieval in multi-cloud contexts.

By encompassing these broader security dimensions, we

offer a comprehensive and robust justification for the

effectiveness of our approach.

5. CONCLUSION

The paper introduces a Product Cipher-Based Distributed

Steganography for secure Secret distribution in a multi-cloud

environment. This approach conceals the Secret by

fragmenting it into smaller parts and placing each fragment

within separate cover files, utilizing multi-cloud storage

without modifying them. Our strategy, validated through a

comprehensive security analysis, demonstrates the

computational infeasibility for attackers to decipher the hidden

message, even with complete access to all cloud accounts.

Striking a balance between efficient Secret distribution and

robust security, our method eliminates the need for complex

encoding, reducing computational overhead and ensuring

unaltered original files, mitigating potential suspicion from

adversaries.

REFERENCES

[1] Arif, M.A., Mohammad, A.A.K., Sastry, M.K.,

Bankapalli, J. (2022). Brute force attack on distributed

data hiding in the multi-cloud storage environment more

diminutive than the exponential computations. Ingenierie

des Systemes d'Information, 27(6): 915-921.

https://doi.org/10.18280/isi.270607

[2] Zhang, Y., Geng, H., Su, L., Lu, L. (2022). A blockchain-

based efficient data integrity verification scheme in

multi-cloud storage. IEEE Access, 10: 105920-105929.

https://doi.org/10.1109/ACCESS.2022.3211391

[3] Hassan, J., Shehzad, D., Habib, U., Aftab, M.U., Ahmad,

M., Kuleev, R., Mazzara, M. (2022). The rise of cloud

computing: Data protection, privacy, and open research

59

challenges - a systematic literature review (SLR).

Computational Intelligence and Neuroscience, 2022:

8303504. https://doi.org/10.1155/2022/8303504

[4] Mohd Satar, S.D., Hussin, M., Hanapi, Z.M., Mohamed,

M.A. (2021). Towards virtuous cloud data storage using

access policy hiding in ciphertext policy attribute-based

encryption. Future Internet, 13(11): 279.

https://doi.org/10.3390/fi13110279

[5] Gupta, I., Singh, A.K., Lee, C.N., Buyya, R. (2022).

Secure data storage and sharing techniques for data

protection in cloud environments: A systematic review,

analysis, and future directions. IEEE Access, 10: 71247-

71277. https://doi.org/10.1109/ACCESS.2022.3188110

[6] Gaur, M., Jailia, M. (2022). Cloud computing data

security techniques - A survey. In: Kumar, A., Srivastava,

S.C., Singh, S.N. (eds) Renewable Energy Towards

Smart Grid. Lecture Notes in Electrical Engineering, vol

823. Springer, Singapore. https://doi.org/10.1007/978-

981-16-7472-3_5

[7] Gutub, A., Alaseri, K. (2020). Hiding shares of counting-

based Secret sharing via Arabic text steganography for

personal usage. Arabian Journal for Science and

Engineering, 45(4): 2433-2458.

https://doi.org/10.1007/s13369-019-04010-6

[8] Abdul, A.M., Mohammad, A.A.K., Venkat Reddy, P.,

Nuthakki, P., Kancharla, R., Joshi, R., Kannaiya Raja, N.

(2022). Enhancing security of mobile cloud computing

by trust-and role-based access control. Scientific

Programming, 2022: 9995023.

https://doi.org/10.1155/2022/9995023

[9] Mewada, S. (2023). Cryptic algorithms: Hiding sensitive

information in cloud computing. In Encyclopedia of Data

Science and Machine Learning, pp. 781-789.

https://doi.org/10.4018/978-1-7998-9220-5.ch044

[10] Gutub, A., Al-Ghamdi, M. (2020). Hiding shares by

multimedia image steganography for optimized

counting-based Secret sharing. Multimedia Tools and

Applications, 79(11-12): 7951-7985.

https://doi.org/10.1007/s11042-019-08427-x

[11] Ge, X., Yu, J., Hao, R., Lv, H. (2021). Verifiable

Keyword search supporting sensitive information hiding

for the cloud-based healthcare sharing system. IEEE

Transactions on Industrial Informatics, 18(8): 5573-5583.

https://doi.org/10.1109/TII.2021.3126611

[12] Aminzade, M. (2018). Confidentiality, integrity and

availability–finding a balanced IT framework. Network

Security, 2018(5): 9-11. https://doi.org/10.1016/S1353-

4858(18)30043-6

[13] Man, Z., Li, J., Di, X., Zhang, R., Li, X., Sun, X. (2023).

Research on cloud data encryption algorithm based on

bidirectional activation neural network. Information

Sciences, 622: 629-651.

https://doi.org/10.1016/j.ins.2022.11.089

[14] Alemami, Y., Al-Ghonmein, A.M., Al-Moghrabi, K.G.,

Mohamed, M.A. (2023). Cloud data security and various

cryptographic algorithms. International Journal of

Electrical and Computer Engineering, 13(2): 1867-1879.

https://doi.org/10.11591/ijece.v13i2.pp1867-1879

[15] Abd-El-Atty, B., ElAffendi, M., El-Latif, A.A.A. (2023).

A novel image cryptosystem using Gray code, quantum

walks, and Henon map for cloud applications. Complex

& Intelligent Systems, 9(1): 609-624.

https://doi.org/10.1007/s40747-022-00829-z

[16] Gadde, S., Amutharaj, J., Usha, S. (2023). A security

model to protect the isolation of medical data in the cloud

using hybrid cryptography. Journal of Information

Security and Applications, 73: 103412.

https://doi.org/10.1016/j.jisa.2022.103412

[17] Makhdoom, I., Abolhasan, M., Lipman, J. (2022). A

comprehensive survey of covert communication

techniques, limitations and future challenges. Computers

& Security, 120: 102784.

https://doi.org/10.1016/j.cose.2022.102784

[18] Denis, R., Madhubala, P. (2021). Hybrid data encryption

model integrating multi-objective adaptive genetic

algorithm for secure medical data communication over

cloud-based healthcare systems. Multimedia Tools and

Applications, 80: 21165-21202.

https://doi.org/10.1007/s11042-021-10723-4

[19] Simmons, G.J. (1984). The Prisoners’ Problem and the

Subliminal Channel. In: Chaum, D. (eds) Advances in

Cryptology. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4684-4730-9_5

[20] Chinnasamy, P., Deepalakshmi, P., Dutta, A.K., You, J.,

Joshi, G.P. (2021). Ciphertext-policy attribute-based

encryption for cloud storage: Toward data privacy and

authentication in AI-enabled IoT system. Mathematics,

10(1): 68. https://doi.org/10.3390/math10010068

[21] Ying, Z., Jiang, W., Liu, X., Xu, S., Deng, R.H. (2021).

Reliable policy updating under efficient policy hidden

fine-grained access control framework for cloud data

sharing. IEEE Transactions on Services Computing,

15(6): 3485-3498.

https://doi.org/10.1109/TSC.2021.3096177

[22] Moyou Metcheka, L., Ndoundam, R. (2020). Distributed

data hiding in multi-cloud storage environment. Journal

of Cloud Computing, 9(1): 68.

https://doi.org/10.1186/s13677-020-00208-4

[23] Wang, T., Yang, Q., Shen, X., Gadekallu, T.R., Wang,

W., Dev, K. (2021). A privacy-enhanced retrieval

technology for the cloud-assisted internet of things. IEEE

Transactions on Industrial Informatics, 18(7): 4981-4989.

https://doi.org/10.1109/TII.2021.3103547

[24] Deepthi, B., Ramani, G., Deepika, R., Shabbeer, M.

(2021). Hybrid secure cloud storage data based on

improved encryption scheme. In 2021 International

Conference on Emerging Smart Computing and

Informatics (ESCI), Pune, India, pp. 776-779.

https://doi.org/10.1109/ESCI50559.2021.9396842

[25] Wagemann, J., Siemen, S., Seeger, B., Bendix, J. (2021).

A user perspective on future cloud-based services for Big

Earth data. International Journal of Digital Earth, 14(12):

1758-1774.

https://doi.org/10.1080/17538947.2021.1982031

[26] Xie, H., Zhang, Z., Zhang, Q., Wei, S., Hu, C. (2021).

HBRSS: Providing high-secure data communication and

manipulation in insecure cloud environments. Computer

Communications, 174: 1-12.

https://doi.org/10.1016/j.comcom.2021.03.018

[27] Marion, N.E., Twede, J. (2020). Cybercrime: An

Encyclopedia of Digital Crime. Bloomsbury Publishing

USA.

[28] Jiang, S., Ye, D., Huang, J., Shang, Y., Zheng, Z. (2020).

SmartSteganogaphy: Light-weight generative audio

steganography model for smart embedding application.

Journal of Network and Computer Applications, 165:

102689. https://doi.org/10.1016/j.jnca.2020.102689

[29] Sahu, A.K., Swain, G. (2020). Reversible image

60

steganography using dual-layer LSB matching. Sensing

and Imaging, 21: 1-21. https://doi.org/10.1007/s11220-

019-0262-y

[30] Pilania, U., Gupta, P. (2020). Analysis and

implementation of IWT-SVD scheme for video

steganography. In: Sharma, D.K., Balas, V.E., Son, L.H.,

Sharma, R., Cengiz, K. (eds) Micro-Electronics and

Telecommunication Engineering. Lecture Notes in

Networks and Systems, vol 106. Springer, Singapore.

https://doi.org/10.1007/978-981-15-2329-8_16

[31] Yang, J., Liao, X. (2020). An embedding strategy on

fusing multiple image features for data hiding in multiple

images. Journal of Visual Communication and Image

Representation, 71: 102822.

https://doi.org/10.1016/j.jvcir.2020.102822

[32] Liao, X., Yin, J., Chen, M., Qin, Z. (2020). Adaptive

payload distribution in multiple images steganography

based on image texture features. IEEE Transactions on

Dependable and Secure Computing, 19(2): 897-911.

https://doi.org/10.1109/TDSC.2020.3004708

[33] Liao, X., Wen, Q.Y., Shi, S. (2011). Distributed

steganography. In 2011 Seventh International

Conference on Intelligent Information Hiding and

Multimedia Signal Processing, Dalian, China, pp. 153-

156. https://doi.org/10.1109/IIHMSP.2011.20

[34] AlKhodaidi, T., Gutub, A. (2020). Trustworthy target

key alteration helping counting-based Secret sharing

applicability. Arabian Journal for Science and

Engineering, 45: 3403-3423.

https://doi.org/10.1007/s13369-020-04422-9

[35] Gutub, A., Al-Ghamdi, M. (2019). Image based

steganography to facilitate improving counting-based

Secret sharing. 3D Research, 10: 1-36.

https://doi.org/10.1007/s13319-019-0216-0

[36] Gutub, A., Al-Juaid, N., Khan, E. (2019). Counting-

based Secret sharing technique for multimedia

applications. Multimedia Tools and Applications, 78:

5591-5619. https://doi.org/10.1007/s11042-017-5293-6

[37] Moyou Metcheka, L., Ndoundam, R. (2020). Distributed

data hiding in multi-cloud storage environment. Journal

of Cloud Computing, 9(1): 68.

https://doi.org/10.1186/s13677-020-00208-4

61

