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 The study of Poiseuille flow, particularly relevant in diverse scenarios such as human blood 

circulation, crude oil transport, and industrial fluid dynamics, forms the crux of this 

research. Specifically, it delves into the analysis of fluid flow within a channel inclined at 

an angle relative to the horizontal axis, a scenario commonly encountered in rotating 

frames like bioreactors and drilling rigs, where the Coriolis force plays a crucial role. 

Employing the Navier-Stokes equations, this research formulates the governing equations 

for the flow and presents an analytical solution. It has been observed that an increase in the 

pressure gradient correlates with a rise in flow velocity. Furthermore, an escalation in 

rotational speed tends to flatten and elevate the velocity profiles. Additionally, an increase 

in the angle of inclination of the channel is found to boost the flow velocity. These findings 

have significant implications for optimizing the design and operational efficiency of 

systems involving inclined channels, with potential applications across various industries, 

including biotechnology and oil extraction. 

 

Keywords: 

Poiseuille flows, pressure gradient force, 

Coriolis force, Navier-Stokes system 

 

 

 
1. INTRODUCTION 

 

Many scientific and engineering innovations, such as jet 

engines, drug delivery, fluidized bed reactors, aerobic granular 

sludge, and nuclear turbines, are premised on the 

understanding of fluid flow [1-3]. Flows in pipes and channels 

of various geometries are common in applications, and they 

are usually classified as Couette or Poiseuille flow. Couette 

flow considers flow between parallel plates that are in relative 

motion [4], while Poiseuille flow is flow driven by pressure 

difference through cylindrical channels [5]. Poiseuille flow 

illustrates laminar flow within constrained geometries and the 

conditions that the fluid is viscous, and the flow is driven by 

pressure variation at different points in between the parallel 

plates [6, 7]. In this flow regime, the force contributed by the 

pressure gradient and the viscous force supersedes the other 

inertia forces and therefore produces a uniform flow in which 

the fluid flow is characterized as a layer-by-layer flow. One 

distinguishing factor of Poiseuille flow is that its velocity 

profile turns out to be a symmetrical parabola whose 

maximum point is at the midpoint but zero on the wall [8]. The 

velocity gradient in this profile enhances material transport, 

making Poiseuille flow vital in the design and optimization of 

microfluidic devices. The flow of blood in the capillaries, 

microfluidics, and several industrial processes are some of the 

practical applications of the Poiseuille flow. The Poiseuile 

flow method makes the solution more elegant, which makes it 

more useful for advanced medical diagnostics, drug delivery, 

and chemical analysis at the microscale level. The flow of 

blood in the capillaries can be modeled by Poiseuille flow to 

explain the blood circulatory system. Fluid transport in a 

pipeline, heat exchanger systems, and chemical reactors are 

industrial processes that can be modeled by Poiseuille flow, 

and their applications can be found in petroleum industries and 

other large-scale industries [9]. Sulpizio et al. [10] studied the 

electron flow in channels of high-mobility graphene at high 

voltage. Hall field was found to be able to separate the ballistic 

from the hydrodynamic flow. At high temperatures, the flow 

presented a parabola flow velocity, thereby exhibiting the 

presence of Poiseuille flow. Choudhary et al. [11] studied the 

flow of a microswimmer under the influence of fluid inertia. 

The flow equations were solved using the perturbation 

technique. This study explores the interplay between 

Poiseuille flow, Coriolis force, and channel inclination. 

Investigating Poiseuille flow through inclined channels with 

Coriolis force reveals unique interactions. Three key questions 

are addressed in this research. The Coriolis force's impact on 

velocity distribution, the role of channel inclination in 

modifying flow, and how pressure gradients and rotational 

speeds affect overall behavior The findings hold significance 

for geophysical flows and microfluidic systems, offering 

insights into fluid transport systems, sediment transport 

predictions, and environmental phenomena. 

  

International Journal of Heat and Technology 
Vol. 42, No. 1, February, 2024, pp. 329-336 

 

Journal homepage: http://iieta.org/journals/ijht 
 

329

https://orcid.org/0000-0003-2364-5074
https://orcid.org/0000-0002-8112-2442
https://orcid.org/0000-0001-9777-3496
https://orcid.org/0009-0001-9275-8657
https://crossmark.crossref.org/dialog/?doi=10.18280/ijht.420135&domain=pdf


 

1.1 Flows in an inclined pipe 

 

The interaction between gravitational force and the fluid's 

motion in the case of an inclined channel plays a significant 

role in the pattern of the fluid's motion. Inclined channels are 

ubiquitous in both natural and engineered systems. For 

instance, the movement of rivers and streams through hilly 

terrain experiences flow variations driven by channel 

inclination, leading to the transport of sediment, erosion, and 

landscape evolution. Industrial usage for flow through an 

inclined channel can be found in pipelines and conduit 

facilities that carry fluid from a source to the destination 

through uneven land topographies [12-14]. Examples of such 

scenarios are the transport of pipe-borne water and sewage 

transport. The angle of inclination has been found to be very 

consequential in directing and redirecting the flow since the 

influence of gravitational force increases as the steepness 

increases. Masuda and Winn [15] established that increasing 

the angle of inclination results in higher velocities, altered 

pressure distributions, and complex interactions with channel 

boundaries. 

 

1.2 Coriolis force  

 

The Coriolis force is responsible for the deflection in the 

motion of gases or liquids due to a rotating frame. In the 

fundamental flow equations, the Coriolis force is just as 

important as the magnetohydrodynamic forces, inertial forces, 

and viscous forces. Physically, the forces of gravity, friction, 

centrifugation, and pressure gradient affect any fluid flow on 

the surface of the planet. In contrast, not all transport 

phenomena in the atmosphere and water are impacted by the 

Coriolis force. According to Oke et al. [16], the Coriolis force 

has the power to affect surface-level transport phenomena. 

Therefore, it is unrealistic to suppose that the Coriolis force 

has little impact on any non-static transport event on the 

surface of the globe. Three different variations in the Earth's 

orbit around the Sun are identified as potential mechanisms for 

altering the climate on a global scale. These include shifts in 

the equinoxes (precession), variations in the eccentricity of the 

Earth's orbit, and variations in the tilt of the planet's axis 

(obliquity) [17, 18]. Generally speaking, the rotation of the 

Earth has a large impact on macroscopic-scale phenomena 

such as air motion in the atmosphere, airplane flight, missile 

trajectory, and the flow of air heated by the sun. Extensive 

studies on the Coriolis force can be found in Oke et al. [19, 20]. 

 

1.3 Research objectives 

 

From the ongoing study, it can be seen that Poiseuille flow 

has been extensively studied. To deepen the understanding of 

Poiseuille flow and unravel its behavior under compounded 

influences, the interplay between Poiseuille flow, Coriolis 

force, and channel inclination is studied in this paper. 

In this current study, Poiseuille flow through an inclined 

channel in the presence of a Coriolis force is investigated. 

Investigation of Poiseuille flows within an inclined channel 

traverses new territory by investigating the interactions 

between two factors that counteract each other. These 

interactions have significant applications in geophysical flows 

and microfluidic systems. The unique influence of the Coriolis 

force includes the contortion of flow patterns, the inclination 

of channels affecting the balance of forces, and the interplay 

between pressure gradients and frame rotation. This paper 

provides answers to the following research questions: 

1. How does the Coriolis force influence the velocity 

distribution in Poiseuille flows within rotating 

inclined pipes? 

2. What role does the angle of inclination play in 

modifying the velocity profiles and flow rates within 

such channels? 

3. How do variations in pressure gradients and 

rotational speeds affect the overall flow behavior and 

transport properties? 

In addressing these questions, we aim to establish a 

comprehensive understanding of fluid dynamics within 

rotating inclined channels. This study's implications ripple 

across fields, potentially shaping more effective fluid transport 

systems, refining predictions of sediment transport, and 

offering insights into environmental phenomena. As we 

embark on this exploration, we illuminate the intricate 

mechanisms governing fluid behavior, contributing to a 

broader understanding of the natural world and expanding the 

boundaries of human knowledge. 

 

 

2. FLOW DESCRIPTION AND MODEL 

DEVELOPMENT 

 

This study examines a fully developed flow involving an 

incompressible viscous fluid confined between two parallel 

plates as shown in Figure 1. The spatial arrangement is defined 

by the plates positioned at y=+h and y=-h creating a 2h 

separation between them. The restriction of flow exclusively 

to the 𝑥-direction and the consequential nullification of flow 

in the y and z directions (v=w=0) characterizes the Poiseuille 

flow, as visually depicted in Figure 1. The channel assumes an 

inclined orientation at an angle θ concerning the horizontal 

surface. It is essential to note that throughout this study, the 

channel remains non-stretching and non-shrinking. 

Simultaneously, it undergoes a rotational motion with an 

angular velocity denoted as Ω. Following the work of Jin et al. 

[21], the equations governing the steady flow are developed 

from the Navier-Stokes continuity and momentum equations 

given as: 
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Figure 1. Flow configuration 
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The velocity vector is ( , , ),  U u v w =  and μ are the fluid 

density and dynamic viscosity respectively and f represents the 

body forces. In this case, the body forces are the Coriolis force 

and the gravitational force. Following the work of Koriko et al. 

[17], the Coriolis force is generated due to the rotation of the 

frame of reference and it defined as: 
 

UFc


−= 2  

 

which gives Fc=(-2Ωu,0,0). The gravitational force 

contribution in the flow direction is: 
 

)0,0,sin( gFG =  

 

where, g and θ are the gravitational acceleration and the angle 

of inclination respectively. Hence, the body force is: 

 

.0,sin2 ==+−= zyx ffguf   

 

The conservation law is represented in the continuity Eq. (1) 

and can be written in the full form as: 
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where, u, v and w represent the velocity components in the 

three dimensions. Including the body forces in the momentum 

Eq. (2) in the expanded form are: 
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Since the channel wall is non-stretching and non-shrinking, 

the walls are not moving and by the no-slip condition, we have 

the boundary conditions at the walls as: 
 

at .0; == uhy  
 

In addition, Figure 1 shows that the maximum velocity 

occurs at y=0. By the condition for a stationary point, it is 

required that: 
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Thus, the equations governing the flow are: 
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with the boundary and initial conditions: 
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3. ANALYTICAL SOLUTION 

 

In this section, we develop the analytical solution to the 

Poiseuille flow through an inclined channel in a rotating frame. 

The flow is developed in the 𝑥-direction, so we require:  
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It is therefore clear that: 
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and substituting into the continuity equation becomes: 
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Using conditions (13) and (15), we find that the momentum 

Eq. (8) becomes:  
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We turn to the remaining momentum equations and start by 

noting that since ,0== wv then: 
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Substituting these results in the second and third momentum 

Eqs. (9) and (10) become: 
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Since u is invariant in the z-direction and 0=



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u
, then 

u=u(y). Also, Eqs. (17) and (18) show that the pressure is 

independent of y and z and so, p=p(x). Having established 

u=u(y) and p=p(x), then the partial derivatives can be dropped 

from Eq. (16) to become: 
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The resulting Eq. (19) is a linear ordinary differential 

equation and the homogeneous part of the equation is: 
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where,  = 22
. The general solution can be found by 

the method of undetermined coefficients. Assume the general 

solution is of the form  
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By substituting Eqs. (21) and (24) into Eq. (19), we have: 
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Since u1 and u2 are solutions of the homogeneous equation, 

then 

 

0
2

12
1

2

=


−− u
dy

ud




 

0
2

22
2

2

=


−− u
dy

ud




 

 

and so, Eq. (25) becomes: 

 




sin
121 g

dx

dp

dy

du

dy

dB

dy

du

dy

dA
−=+  

 

Substituting u1 and u2 as in Eq. (20), then: 
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Hence, we are required to solve the system of equations: 
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On integrating both sides,  
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Hence, the general solution for the velocity is: 
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Using the boundary condition u=0 when hy = : 
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(26) 

 

The second condition du/dy=0 when y=0, 
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Substituting C1=C2 into Eq. (26), we have: 
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Hence, we have: 
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The velocity profile generated from the analytical solution 

is shown in Figure 2. The graph turns out to be a parabola 

which is the expected shape of the velocity profile for a 

Poiseuille flow. The parabolic nature of the velocity indicates 

that the flow has the highest velocity along the line y=0 and 

the velocity reduces farther away from the centre. 

The flow rate Q defined as: 

 


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is obtained as:  
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This shows a linear relationship between the flow rate and 

the pressure gradient with a slop of .
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Figure 2. Velocity profile 

 

 

4. RESULTS AND DISCUSSION 

 

The flow of water through the inclined channel in a rotating 

frame is considered. The physical properties of water are given 

in Table 1. 

  

Table 1. Physical properties of water 

 
Property Symbol Value Dimension 

Density ρ 1000 kg/m2 

Viscosity μ 0.001 kgm-1s-1 

 

Other parameters are set to default values: 

 

mPa
dx

dp
sradmh /100,/0004.0,1.0 =−==  

4
,81.9 2 
 == −msg  

 

Figure 3 shows the response of velocity to decreasing 

pressure gradient. The pressure gradient is decreased from 100 

Pa/m to 0 Pa/m and the colour map shows the gradation from 

blue to red; indicating that velocity is high when the pressure 

gradient is high but low when the pressure gradient is low. 

This is in agreement with Bernoulli’s principle and has been 

established in the literature. Fluids flow from regions of high 

pressure to the regions with lower pressure and hence, higher 

pressure gradients essentially increase the force driving the 

flow forward and consequently the flow velocity. Therefore, 

the flow velocity increases as the pressure difference increases. 

Figure 4 depicts the response of flow velocity to the 

increasing rate of rotation. The channel under consideration is 

suspended over a rotating frame in such a way that the 

channels are irrotational. The frame rotates at an angular 

velocity Ω and Figure 4, shows that velocity increases with 

increasing rotation. The velocity profiles flatten out at the top 

as the rotation increases and this shows that the viscous 

333



 

boundary layer thickness reduces with increasing rotation. By 

increasing rotation from 0.0001rad/s to 0.005rad/s, the fluid 

gains more acceleration.  

 

 
 

Figure 3. Velocity with pressure gradient 

 

 
 

Figure 4. Velocity with rotation 

 

 
 

Figure 5. Velocity with the inclination angle 

 

The channel is set up so that it is inclined to the horizontal 

at an angle θ. Figure 5 shows the variation in the flow velocity 

as the angle of inclination increases from 0° (perfectly 

horizontal) to 90° (perfectly vertical). As the channel becomes 

more vertical, the effects of gravitational force become more 

significant and the force driving the flow forward increases, 

hence the flow velocity increases with increasing angle of 

inclination. The fastest flow occurs when the channel is at an 

angle of 90° to the horizontal.  

A practical quantity of interest in the Poiseuille flow is the 

flow rate Q which measures the amount of fluid that passes a 

cross-sectional area at any time. Figure 6 shows the response 

of flow rate to change in pressure gradient. It can be seen that 

the flow rate follows a linear relationship with the pressure 

gradient. Considering the direction of the graph in Figure 6. it 

can be inferred that the slope is positive. The positive slope of 

the graph depicts an increasing flow rate as the pressure 

gradient increases. Also, the maximum flow rate is achieved 

when the angle of inclination is 90°. Figure 7 shows the flow 

rate behaviour as the radius of the channel increases. From the 

figure, flow rate increases as the distance separating the 

channel increases. Furthermore, by observing Figures 6 and 7. 

it can be seen that the flow rate is maximum when the channel 

is perfectly vertical and the flow is downward θ=90°. 

 

 
 

Figure 6. Flow rate with pressure gradient 

 

 
 

Figure 7. Flow rate with channel radius 

 

 

5. CONCLUSION 

 

In this study, the motion of the fluid through a channel 

inclined at an angle to the horizontal axis is investigated. The 

flow within the channel walls, separated by a distance of 2h is 
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happening in a frame rotating at an angular velocity Ω. The 

equations governing the flow are formulated as with Navier-

Stokes equations and an analytical solution is obtained for the 

governing equation. The results are graphed and the following 

outcomes are observed: 

• Although the flow happens in a rotating channel, the 

velocity profile remains a parabola like every other 

Poiseuille flow. 

• Flow velocity increases with increasing pressure 

gradient. 

• Increasing frame rotation flattens out the velocity 

profiles and also increases the velocity profiles. 

• Flow rate increases linearly with pressure gradient. 

• The flow velocity increases with increasing angle of 

inclination and the fastest flow occurs at angle 90°. 

• The flow rate increases as the pressure gradient and 

distance separating the channel increase and the 

maximum flow rate is obtained when the flow is 

downward (θ=90°). 
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NOMENCLATURE 

g Acceleration due to gravity 

p Pressure 

𝑈⃗⃗ Flow velocity vector  

Greek symbols 

ρ Density 

Ω Angular velocity 

θ Angle of inclination 

μ Dynamic viscosity, kg. m-1.s-1 
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