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 Semiconductor based photo-catalysts which was an efficient process to treat water and 

wastewater. There are various techniques can be used for enhancement of photo-catalytic 

properties such as element rich strategy, defect control and facet engineering. Many 

methods were used for manufacturing of BiOBr, including ion-exchange method, 

solvothermal method, wet-chemical method, ultra-sonication method, co-precipitation 

method and hydrothermal method. Various operational parameters have such as initial pH 

of solution, catalyst dosage and inorganic ions have been employed to show their roles on 

the photo-degradation efficiency of pollutants. Elemental doping and coupled 

semiconductors are the widely using methods for enhancing BiOBr performance. It was 

concluded that the binary and ternary composites have the ability to enhancement the 

photo-catalytic activity and increased the degradation efficiency more than 50% compared 

with pure BiOBr. According to suitable band structure, bismuth bromide oxide is a 

promising candidate to treat wastewater efficiently by photo-catalytic technique. 
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1. INTRODUCTION 

 

Industries and human activities have been responsible about 

air, water and land contaminations. Environment pollution 

particularly, water pollution has increased due to rapid 

increase in the population, which is a major threatens of the 

humanity existence [1, 2]. Wastewater or polluted water 

contains various pollutants such as organic, inorganic 

pollutants and pharmaceuticals [3-6]. Wastewater 

contaminated with dyes is highly hazardous for biological 

health and ecosystem, and the water bodies should be treating 

from these pollutants. In developing countries, waterborne 

pathogens such as bacteria and viruses were responsible for 

80% of illnesses including giardiasis, diarrhea, typhoid fever, 

dysentery and salmonellosis [7]. It is necessary to kill these 

microorganisms and remove other pollutants to obtain 

drinking water [8]. However, various methods such as 

electrochemical reduction [9], membrane filtration [10-15], 

precipitation [16], electro-dialysis [17], photo-catalysis [18, 

19] and electro-deionization [20] have been used for removing 

various pollutants and treatment of wastewater [11, 12]. The 

major disadvantages of these technologies except photo-

catalysis are complicated process, large intake of energy, by-

products formation and wastes, low removal efficiency and 

expensive so these technologies are not preferred in 

wastewater treatment. Photo-catalysis is an effective and green 

process, which is the best treatment process due to its cost-

effectiveness and high efficiency; it has obtained the chemical 

energy from sunlight energy. Photocatalysis can be used in 

various applications like dye removal, microbial inactivation 

and eliminating pollutants from air, etc. [18]. 

By a series of reactions, photo-catalysis process has the 

ability to convert complex pollutants into very simple and 

harmless molecules. So, this technique has been an 

environment friendly and economically [21]. For current 

research and development, one of the common techniques for 

wastewater management is a nanotechnology [22]. 

Bismuth was discovered in the 1660s which is a white 

substance, it has an atomic mass of 208.98 [23-25]. Many 

important Bismuth ores are Bi2S3 and Bi2O3 [26]. Unlike many 

of heavy metals which are carcinogenic, highly toxic and cause 

fragility of bones, failure of kidney and lung damaging [27-

32], bismuth is non-carcinogenic and non-toxic [33], bismuth 

is less toxic than table salt, which is regarded as a green 

element [27-29]. For long time, bismuth has been employed in 

several applications as pigments, cosmetics and medicines [30, 

31], as well as using of bismuth vanadate in paints as a pigment 

[32]. In this aspect, many researches have been used bismuth 

in several applications as a replacement for toxic lead [34]. 

BiOBr has small band-gap (Eg=.64-2.91 eV) [35-37]; so, it 

has the ability for maximum visible sunlight energy harvesting 

photo-catalyst [38]. Bismuth is non-toxic and chemically 

stable as well as cheap [39-41]. There are several shapes of 

BiOBr, including nanoflowers [42], nanobelts [43] and 

nanoflakes [44] and nanospheres [45] which have been 

manufactured by several methods like solvothermal [43], 

hydrothermal [46], ion thermal [47], and co-precipitation [48]. 

Now, bismuth is being used for various purposes, such as 

photo-catalytic wastewater treatment [49], water splitting [42], 

indoor-gas purification [50] and alcohol selective oxidation 

[51].  

Bismuth bromide oxide belongs to BiOX (X=I, Br, Cl, F) 
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family, which crystallizes with layered tetragonal matlockite 

structures [52]. BiOX compounds are characterize good 

magnetic and electrical properties, which have been used in 

various field such as photo-chromic devices, solar cells, ferr-

oelectric materials and pigments [53, 54]. 

In each layer, four atoms of halogen surround the bismuth 

center (having weak interlayered interactions) and four atoms 

of oxygen (having strong covalent bonds) [55], as shown in 

Figure 1. 

 

 
 

Figure 1. BiOX (X = I, Br, Cl, F) crystal structure systems 

[56] 

 

For improving the overall degradation process, another 

form of composites has been used which are called ternary 

composites. The advantages of ternary composites are to 

suppress the recombination of photo-induced charges and 

provide more active sites than binary composites [57-61]. 

The aims of this study are reviewing recent works on the 

BiOBr synthesis methods, the characteristics of fabricated 

BiOBr, the pristine BiOBr photo-catalytic activity and 

operating parameters affecting on the degradation process 

using BiOBr composite. 

 

 

2. SEMICONDUCTOR PHOTO-CATALYSIS 

 

Semiconductor is a material has conductivity between 

conductors and insulators. Semiconductor photo-catalysis are 

a photo-chemical reaction whereby a quantum of light (visible, 

ultraviolet or infrared radiation) was absorbed by a 

semiconductor for initiate a chemical reaction [62]. Photo-

catalytic is a heterogeneous process, which uses different 

semiconductors like oxides (ZnO, CeO2, TiO2, WO3, ZrO2, 

Fe2O3, etc.) and sulfides (ZnS, CdS, etc.) in the presence of 

visible light [63-65]. Titanium dioxide (TiO2) is characterized 

as low energy consumption, photo and chemical stability, high 

photo-catalytic activity, ease of available, low operation 

temperature and nontoxic byproducts formation [66-69]. The 

basic elements should be provided for completing of a photo-

catalytic reaction are: a photo-catalyst, source of light and the 

transformation of the chemical reaction partners. A 

semiconductor photo-catalyst must be photo-active and photo-

stable, biologic and chemical inert, inexpensive and ecologic 

friendly to promote its functions [70]. 

The photocatalytic activity of semiconductors has been 

affected by several parameters such as phase structures, 

crystalline, particles size, defects and composition. It was 

reported the influence of these factors on the ZnO activity [71]. 

There is difference in the photocatalytic activity at various 

values of specific surface area of rods: 8.02, 7.85, 7.91, and 

6.04 m2/g. It was noticed that the improving of photogenerated 

carriers separation was related to the structure and aspect ratio 

of the facets. Thus recombination centers were decreased 

leading to higher photocatalytic efficiency [72, 73]. 

BiOBr is characterized as narrow-band gap Semiconductor 

[74] which is more suitable than other photo-catalysts such as 

ZrO2, TiO2, ZnO and SnO because it has the ability for 

absorbing the maximum portion of visible sunlight due to 

narrow band gap. When a photo-catalyst is irradiated by light 

of the desired wavelength, the electrons-holes were transferred 

to the semiconductor surface and may recombine. This 

recombination has been producing heat and phonons, the 

number of charge carries have been decreased and affect the 

photo-catalysis efficiency. So, binary and ternary composites 

like BiOI/BiOBr [35], GQDs/BiOBr [75] and 

BiOBr/W18O49/PAN [76] have been developed to enhance 

the photo-catalysis efficiency. 

In a photo-catalytic reaction, the electrons excited from VB 

of the particular semiconductor to CB by providing sufficient 

and enough amount of photons energy (hʋ). The region of 

empty energy between these bands is called band-gap (Eg) 

[77]. The positions of VB and CB are essential features for 

determining the photo-catalytic ability of a semiconductor [78]. 

Generally, by irradiation of a semiconductor photo-catalyst 

with photons energy greater than its band-gap, this led to a 

photo-catalytic reaction gets initiated. The oxidative species 

that are generated in a photo-catalytic reaction is shown in 

Figure 2.  

 

 
 

Figure 2. Schematic illustration of a typical photo-catalytic 

reaction [79] 

 

In the conduction band, molecular oxygen (O2) adsorbed 

has the ability to trap the electron (e-
CB), which is reduced to 

form superoxide radical anion (O2
•-). Subsequently, (O2

•-) 

radical can be further protonated to form hydro-peroxyl 

radicals (HOO•), then formation of hydrogen peroxide (H2O2) 

[80]. The generated (O2
•-) and (HOO•) have the ability for 

degradation of organic pollutants (P) directly. On the other 

hand, the holes are capable of either producing intermediate 

products by directly oxidizing P or producing hydroxyl 

radicals (OH•) by oxidizing H2O. Eqs. (1)-(10) below show a 

photo-catalytic reaction mechanism [81]: 

 

BiOBr photo-catalyst + hv → e- + h+ (1) 

 

e- + O2 → O2•− (2) 

 

h+ + H2O → H+ + OH• (3) 

 

h+ + OH- → OH• (4) 

 

O2•− + H+ → HOO• (5) 
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HO2
• + HO2

• → H2O2 + O2 (6) 

 

h+ + P → intermediate products → CO2 + H2O (7) 

 

O2•− + P → intermediate products → CO2 + H2O (8) 

 

OH• + P → intermediate products → CO2 + H2O (9) 

 

HOO• + P → intermediate products → CO2 + H2O (10) 

 

 
3. SYNTHESIS OF BIOBR COMPOSITES 

 

The photo-catalytic efficiency of composites can be 

enhanced by coupling of two or more semiconductors due to 

enhancing the surface area as well as synergistic role of each 

semiconductor. Various factors that influence the morphology, 

size, and properties of BiOBr composites such as pH and 

temperature. It was found that at pH equal to 8, best BiOBr 

photocatalytic activity has been obtained for photodegradation 

of rhodamine B. [82]. Temperature parameter has important 

effect on the size, and properties of BiOBr composites. At 

increasing the value of temperature, the BiOBr activity was 

increased and then decreased due to has a good crystallization. 

While for BiOCl, the efficiency was decreased due to 

decreasing in specific surface area and pore size [83]. 

BiOBr composites have been manufactured mainly by 

several processes such as: Ion exchange [84], solvothermal 

[85], wet chemical [86] ultra-sonication [87], co-precipitation 

[88] and hydrothermal methods [89].  

 

3.1 Ion-exchange method 

  

This method includes formed a new product by using a 

desired chemical species instead of present ionic species. For 

instance, using ion exchange method for synthesize of 

Bi/BiOBr/AgBr. Firstly, Bi/BiOBr were fabricated by 

dissolving sodium bromide (0.001 mol) in 30 ml of ethylene 

glycol and heated at 180℃ for 15 h in Teflon-lined autoclave. 

Then, the synthesized particles were separated by 

centrifugation, washed with pure water/absolute ethanol for 

many times and dried for 4h at 80℃. After that, it was used 

ion exchange method to synthesize of Bi/BiOBr/AgBr. In 

which, 0.001 mol of AgNO3 was dissolved in 80 mL ethylene 

glycol (80 mL), then added of synthesized Bi/BiOBr 

microspheres (0.4 g) to the mixture and stirred for 12h. Then, 

the synthesized particles were separated by centrifugation, 

washed three times and dried at 80℃ for 4 h [84].  

Figure 3 shows the Bi/BiOBr, BiOBr/AgBr and 

Bi/BiOBr/AgBr phase structures were characterized by XRD 

[90-92].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. XRD patterns of (a) Bi/BiOBr; (b) 

Bi/BiOBr/AgBr and (c) BiOBr/AgBr 

3.2 Solvothermal method  

 

A Teflon-lined autoclave was used for heating the 

precursors. To produce precursor solutions, a variety of the 

solvents are used such as ethanol [93], ethylene glycol [94] and 

glycerol [95]. For instance, the solvothermal route has been 

used to synthesis CdS/BiOBr binary composites. Firstly, CdS 

has been synthesized by dissolving (2.666 g) of 

C4H6CdO4⋅2H2O and (2.256 g) of CH3CSNH2 in de-ionized 

water (30 mL) and stirring for 1 h. During stirring, 

CH3CSNH2 solution was added into the cadmium nitrate 

solution. Then, the mixture was heated at 120℃ for 24 h in 

Teflon-lined autoclave. The synthesized particles were 

separated by centrifugation, washed with pure water/absolute 

ethanol for three times and dried for 6 h at 60℃.  

To synthesize of BiOBr, (1.0902 g) of bismuth nitrate was 

dissolved in 30 mL of ethyl glycol and mixed with 0.078 M of 

KBr. Then, a Polyvinylpyrrolidone (0.3020 g) was added into 

the Bi (NO3)2⋅5H2O and stirred for 30 min. After that, 0.078 

M KBr solution was added to the mixture under stirring for 1 

h. Then, the mixture was heated at 160℃ for 12 h in Teflon-

lined autoclave. The synthesized particles were separated and 

washed with pure water/absolute ethanol for many times and 

dried for 6h at 60℃. 

Finally, to synthesize of CdS/BiOBr binary composites, 

take (0.3033 g) of synthesized CdS and added to 0.07 M of 

KBr solution. Then, a Polyvinylpyrrolidone (0.3207 g) was 

added into 0.0868 M of Bi (NO3)3⋅5H2O. Separately, both 

mixtures were separately stirred for 1 h. After that, the 

suspension of CdS and KBr was added into the bismuth nitrate 

solution with stirring for 1 h. The synthesized particles were 

separated and washed with pure water/absolute ethanol for 

many times and dried for 6h at 60℃ [96]. By using solvo-

thermal method, there are various BiOBr based composites 

can be synthesized like BiOCl/BiOBr [97], 

PANI/BiOBr/ZnFe2O4 [98] and Fe3O4/mSiO2/BiOBr [95]. 

Also, the BiOBr physicochemical properties were 

influenced by the initial reaction pH value. For instance, 

synthesizing of BiOBr catalysts with different values of 

reaction pH. It was noticed that the average thickness and 

width of BiOBr nanosheets were inversely proportional with 

pH value, as shown in Table 1, even though the basic samples 

units were nanosheets, see Figure 4 [99]. 

 

Table 1. BiOBr sizes and specific surface areas at various pH 

[99] 

 
pH Value Width (µm) Thickness (nm) SBET (m2/g) 

1 2-4  110-130  2.51 

3 1-3  80-90  5.18 

5 1-2  60-80  5.80 

7 0.5-2  40-60  11.91 

 

 
 

Figure 4. FE-SEM of BiOBr samples at various values of 

pH [99] 
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Moreover, with the high value of pH, the (001), (002), (003) 

and (004) diffraction peaks (shown in Figure 5) weakened due 

to the reduced exposure percentage of [001] facets. Also, it 

was concluded that BiOBr has been nucleation at pH value was 

increased leads to a decrease in crystallite size, so the BET 

specific surface area is directly proportional to the pH value, 

see Table 1.  

 

 
 

Figure 5. (a) BiOBr XRD patterns and (b) their peak 

intensity ratios of BiOBr samples [99] 

 

3.3 Wet-chemical method  

 

In this method, it was synthesized of composites in suitable 

liquid such as deionized water. For instance, Gao et al. 

fabricated of BiPO4/BiOBr binary composites by using wet-

chemical method. In which, 0.01 mol of synthesized BiOBr 

was dissolved in ethanol (40 mL). Then, it was added the 

concentrated H3PO4 to the solution with and stirred for 20 min. 

The obtained particles were washed and dried at 80 C for 12 h 

to obtain BiPO4/BiOBr composites [100]. The BiOBr phase 

structures and BiPO4/BiOBr were characterized by XRD, and 

the results are shown in Figure 6.  

 

 
 

Figure 6. XRD patterns of BiOBr and BiPO4/BiOBr [100] 

 

3.4 Ultra-sonication method 

 

Ultrasonic processing has been used to process the mixtures 

of reaction for a suitable time. For example, Cheng et al. [101] 

used this method for synthesizing of BiOBr/Bi2O2CO3 binary 

composite. Firstly, Bi2O2CO3 was synthesized by dissolving 

1.4553 g of Bi (NO3)3•5H2O in 60 mL of diluted HNO3. Then, 

it was added a urea (3.6 g) to the solution and sonication 

treated for 10 min. The solution was heated at 160℃ for 10h 

in a Teflon-lined autoclave. The produced particles were 

washed and dried at 80℃. 

To synthesize of BiOBr, 1.4553 g of Bi (NO3)3.5H2O was 

dissolved in 30 mL of pure water and treated ultra-sonically 

for 20 min. On the other hand, 0.309 g of sodium bromide was 

dissolved in 30 mL of pure water and dropped this solution to 

the above solution and treated the mixture ultra-sonically for 

10 min. The solution was heated at 160℃ for 10h in a Teflon-

lined autoclave. The produced particles were washed and dried 

at 80℃. 

Finally, to synthesize of BiOBr/Bi2O2CO3 binary 

composites, 0.515g sodium bromide was dissolved into 50 mL 

of pure water. Then, 0.5 g of synthesized Bi2O2CO3 was 

dispersed in the above solution and treated the mixture ultra-

sonically for 40 min. The produced particles were washed with 

water and dried at 80℃ [101]. 

 

3.5 Co-precipitation method 

 

This method required less time and low temperature, which 

is environment friendly as compared to other methods.  

Zhao et al. [102] used this method for synthesizing of 

BiOBr/TiO2 composite. In which, during an appropriate 

amount of potassium bromide has been dissolved into 20 mL 

of de-ionized water, an appropriate amount of Bi (NO3)3.5H2O 

was added into de-ionized water (20 ML) to form suspension 

X1. After that, TiO2 nanobelts (40 mg) were dispersed in to 

potassium bromide with stirring to form suspension X2. After 

that, the suspension X2 was added slowly into the suspension 

X2 under stirring at room temperature for 30 min. Then, the 

synthesized particles were separated and washed with pure 

water/ethanol solution and dried at 60℃ to form BiOBr@TiO2 

hetero-structures.  

 

 
 

Figure 7. Mechanism of using PANI/BiOBr/ZnFe2O4 for 

photo-catalytic degradation of nitrobenzene [59] 

 

 
 

Figure 8. Schematic illustration explains of the constructing of 

BiOBr/ZnFe2O4/CuO nano composites [103] 

 

3.6 Hydrothermal method  

 

Water has been used as a solvent in hydrothermal method. 

For instance, Jiang Y. et al. used this method for fabricating 

BiOBr/BiOI binary composites for the photo-catalytic crystal 

violet dyes degradation. The general procedure includes 

adding of precursors into water/nitric acid and transfer the 

mixture to an autoclave and heat at (110-260℃) for 12 h. Then, 

222



 

a variety of hetero-structures are produced [89]. Moreover, this 

method has been used for synthesizing of Ternary composites 

of BiOBr/Fe3O4/rGO [60], as explain in Figure 7. Also, Figure 

8 shows the fabricating BiOBr/ZnFe2O4/CuO photo-catalyst 

by a hydrothermal method [102]. The phase structures of 

BiOBr, ZnFe2O4, CuO, and BiOBr/ZnFe2O4/CuO. were 

characterized by XRD [103], see Figure 9. 

 

 
 

Figure 9. XRD patterns of BiOBr, ZnFe2O4, CuO, and 

BiOBr/ZnFe2O4/CuO [103] 

 

 

4. APPLICATION OF BIOBR IN WASTEWATER 

TREATMENT 

 

In the photocatalytic process, the photo-catalyst was 

interacted to the incident visible light for creating the electron-

hole (e- / h+) pairs [104, 105]. The visible light has the ability 

to promoted the valence band electron to the conduction band, 

while a hole (hVB
+) is generated by the interaction of visible-

light. These charges have the ability for reacting with adsorbed 

species and migrate from the bulk to the surface of 

photocatalysis [106, 107].  

Binary and ternary composites have the ability to 

enhancement the photo-catalytic activity and increased the 

degradation efficiency more than 50%. For example, Han et al. 

[108] showed that the chlorophenol degradation was increased 

from 0.8% (by using BiOBr composite) to more than 92% (by 

using BiOBr/NaBiO3). Band structure, band gap and interface 

of the composites have the ability for enhancement of photo-

catalytic efficiency. Formation of narrow binary composite 

band gap is the main factor for enhancement the photo-

catalytic activity by increased sunlight harvesting, it was 

shown that the BiOBr and NaBiO3 band gabs are 2.880 eV and 

2.60 eV, respectively, which was reduced to 2.52 eV when the 

formation of BiOBr/NaBiO3 binary composite. Conclusively, 

efficient visible light harvesting resulted in binary composite 

due to modulated band gap.  

Although the binary composites have the ability for 

enhancing the photo-catalytic activity, but still not perfect in 

practical applications. So, researchers have been increased 

charge separation and enhanced surface area by synthesizing 

of ternary composites. For example, in the case of 

Bi/BiOBr/AgBr composites, the degradation percentage of 

wastewater pollutants was increased from 48% (BiOBr) to 

more than 95%. Furthermore, metal-oxygen bond has the 

ability to recovery of composites after pollutants degradation 

and has the ability for increasing surface area, like 

BiOBr/Fe3O4/RGO [60], Fe3O4/BiOBr/BiOI [94], 

Fe3O4/mSiO2/BiOBr [95] and Fe3O4/BiOBr/CQDs [109]. 

Conclusively, ternary composites have more adsorption area 

for pollutants and more ability for degrading pollutants than 

binary composites, for example, the rhodamine B degradation 

efficiency by Bi/BiOBr/AgBr was 4.9 and 1.4 times faster than 

BiOBr/AgBr and Bi/BiOBr, respectively [84]. Similarly, 

BiOBr/TiO2/G has the ability for degradation of various 

wastewater pollutants more efficiently than BiOBr/TiO2 [89, 

110-113] and the degradation efficiency of g-

C3N4/BiOI/BiOBr was a better than BiOI/BiOBr [102, 114-

118]. Also, Bi2O2CO3/Ti3C2Tx heterostructure has the ability 

to degrad 95.4% of levofloxacin, while the degradation 

efficiency was 68.1% by using Bi2O2CO3 [119]. 

Several operating parameters like dose of a semiconductor, 

pollutants concentration and intensity of visible light 

irradiation have been studied in the literature. Higher catalyst 

concentrations provide reactive radical’s generation. On the 

other hand, due to particles aggregation, the effective path-

length of radiation was reduced when using excess of catalyst 

[120-122]. 

 

 

5. PHOTO-CATALYTIC ACTIVITY OF BIOBR 

 

The previous studies indicated that the treatment of water 

contaminated with synthetic dyes become difficult due to 

stability of dyes in water. Recently, nanoparticles under visible 

light have the ability for removing dyes from wastewater [22]. 

Various organic pollutants were degraded by using BiOBr as 

catalyst with visible light. However, the hierarchical structure, 

surface area, crystallization are the main factors that affecting 

the degradation efficiency of pollutants. For instance, Xia et al. 

[123] used BiOBr nanospheres for degrading of 10 mg/L of 

(RhB), it was found that the degradation percentage was 100% 

when using BiOBr nanospheres as catalysts. While, the 

degradation percentage was 75% after 105 min by using 

hollow spheres. 

Xue et al. [124] used 3D-BiOBr hierarchical microspheres 

for degrading 7 mg/L of Rhodamine Blue (RhB) by using 1:1, 

1:2 and 2:1 molar ratios of Br:Bi for 35 min detention time, it 

was found that the degradation efficiencies were 91.1%, 

88.6% and 95.9%, respectively. Due to high percent of Bi 

compared with Br in the second mixture, the degradation 

efficiency as low compared with other efficiencies. 

BiOBr photo-catalytic activity was also found to be 

impacted by its hydrothermal pH value. For instance, Ye et al. 

[125] used BiOBr with three different values of pH (0.4, 6 and 

10) for degradation of 10 ppm of RhB. It was found that the 

degradation efficiencies after 2h were 67%, 83% and 99%, 

respectively. It was concluded that the BiOBr photo-catalytic 

activity has a direct relationship with pH value because the 

BiOBr band structure, size and its surface area are affected by 

its hydrothermal pH value.  

By comparing the BiOBr activity with other commonly 

used photocatalysts, the Rhodamine (RhB) degradation 

efficiency was 92% by using Ni-ZnS/g-C3N4 heterojunction 

after 75 min [126]. Another study showed that by using Iron 

oxide/CdS to degrade Xylenol blue (XB), the 

photodegradation efficiency was 90.2% after 3 hr [127]. Also, 

it was reported that the BiOBr/ZnFe2O4/CuO photocatalyst has 

optimum photocatalytic properties, which has the ability for 

destroying 98% of malachite green in 90 min [103]. 

Band-gap, mesoporous structure, surface area and 

synergistic effect between TiO2 and BiOBr are the main 

factors that affect the photocatalytic activity of BiOBr 

nanoparticles such as band-gap, mesoporous structure, surface 

area and synergistic effect between TiO2 and BiOBr [128]. 
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6. ENHANCING THE PHOTO-CATALYTIC 

PERFORMANCE OF BIOBR 

 

The electron-hole recombination is an important process in 

semiconductors due to it plays a crucial role in photocatalytic 

reactions [129]. The electron-hole recombination cause losses 

in copper zinc tin sulfide charge and energy [130].  

To enhance the BiOBr performance, there are many efforts 

and methods have been used for this purpose. The widely used 

methods are discussed below. 

 

6.1 Elemental doping 

 

Several dopants have been used to enhance the photo-

catalytic activity of BiOBr, as tabulated in Table 2.The most 

important efforts include inhibits recombination of electron-

hole by doping an appropriate number of cations [131]. Some 

of the cations can be introduced to improve other properties, 

such as redox -potential of the photogenerated radicals and the 

ability of BiOBr for harvesting of visible light [132]. However, 

it was noted that photo-catalytic activity was decreased in the 

presence of excess cationic dopants because these dopants 

serve as recombination centers [133]. 

To inhibit the electron- hole recombination, it was used Ag–

TiO2−xNx to separate of electrons and holes under UV-visile 

light. The higher efficiency of this composite is reacted to the 

electrons and holes density. So, the Ag loading has the ability 

for decreasing of the recombination and enhancing the 

photocatalytic activity. The electron acceptors can be inhibit 

the fast electron-hole recombination by accelerating the 

electron transfer [134, 135]. 

Many researchers studied the BiOBr photo-catalytic activity 

loaded with noble metals. For instance, using photo-deposition 

method for loading palladium nanoparticles onto the surface 

of BiOBr. It has been further loading of palladium 

nanoparticles onto BiOBr surface for enhancing the Pd-doped 

BiOBr absorbance intensity. The phenol degradation was 67% 

only by using BiOBr for 5h. While, when using 0.5 Pd-BiOBr, 

it was successfully degraded all phenol [136]. Moreover, using 

photo-reduction method for dispersing Pd NPs onto BiOBr 

surface [137]. 

Other forms of cationic dopants are the transition metals that 

were reportedly introduced into BiOBr, this method has the 

ability for improving the absorbance intensity in the visible 

region as well as inhibit recombination of electron-hole. For 

instance, synthesizing of Fe-doped BiOBr photo-catalysts for 

methyl orange degradation, it was noticed that the photo-

catalytic activity of Fe-doped BiOBr more effective than that 

of pristine BiOBr [131]. Similarity, synthesizing of Zn-doped 

BiOBr catalysts with a 300 W Xe lamp to degrade RhB dye 

[133]. Many authors studied the potential for leaching of 

dopants, it was reported that the catalytic site of combined W 

dopants and Co vacancies was less active than the W dopants 

alone. However, the leaching-induced Co vacancies with 

residual W dopants cause decreasing of current density and the 

created cataytic sites is more active than generated by W 

dopants alone. As a result, the photocataytic activity of 

combined W dopants and Co vacancies has been enhanced 

[138]. 

Literature has also used the anionic dopants onto BiOBr 

surface to inhibits recombination of electron-hole. For instance, 

B-doped BiOBr samples was synthesized for the RhB dye 

degradation. It was reported high degradation efficiency of B-

doped BiOBr compared with alone pristine BiOBr [139]. Also, 

degradation of RhB dye by S-doped BiOBr. It was found that 

the degradation rate of S-doped BiOBr was 0.0960 per min. 

While, it was 0.0176 per min of pristine BiOBr [140].  

 

Table 2. The photo-degradation efficiencies of common BiOBr and doped BiOBr catalysts 

 

Dopant Source of Light 

Experimental 

Conditions [Pollutant]; Dosage; 

Time of Irradiation 

Photo-Degradation 

Efficiency, % Reference 

BiOBr Doped BiOBr 

Er 300 W Xe lamp with a light cut-off filter (λ>400 nm) 
CIP]=10 mg/L;  

100 mg/L; 360 min 
50 61 [132] 

Ag 500 W Xe lamp 
[MO]=10 mg/L;  

200 mg/L; 120 min 
58.5 98.6 [137] 

Fe 
150 W halogen-lamp with light intensity of 200 mW/ 

cm2 

[MO]=10 mg/L;  

1000 mg/L; 120 min 
75 100 [131] 

Ti 
11 W lamp with 

a light cut-off filter (λ≥400 nm) 

[RhB]=10 mg/L;  

1000 mg/L; 180 min 
-75 100 [141] 

Pt 
300 W Xe lamp to provide visible light (320 

nm<λ<680 nm) 

[PNP]=10 mg/L;  

1000 mg/L; 30 min 
-25 100 [52] 

Cu 
200 W Xe arc lamp with a light cut-off filter (λ≥420 

nm) 

[NOR]=10 mg/L;  

1000 mg/L; 90 min 
-20 -45 [142] 

Cu 
200 W Xe arc lamp with a light cut-off filter (λ≥420 

nm) 

[NOR]=10 mg/L;  

1000 mg/L; 90 min 
-20 -45 [142] 

Co 
Xe lamp (500 W) with a light cut-off filters (λ≥400 

nm) 

[RhB]=10 mg/L;  

1000 mg/L; 120 min 
34 99.5 [143] 

Mn Daylight lamp with a light cut-off filters (λ≥400 nm) 
[RhB]=0.2 g/L;  

1000 mg/L; 140 min 
78 96.5 [144] 

Nb 300 W Xe lamp with a light cut-off filters (λ≥420 nm) 
[RhB]=10 mg/L;  

200 mg/L; 20 min 
51 -100 [145] 

S 
11 W lamp with a light cut-off filter 

(λ≥400 nm) 

[RhB]=10 mg/L;  

400 mg/L; 60 min 
-45 -100 [146] 

Ia 
500 W Xe lamp with 

a light cut-off filter to provide visible light (λ=400 nm) 

[MO]=10 mg/L;  

2000 mg/L; 180 min 
-20 -70 [147] 

S 1000 W Xe lamp with a UV cut-off filter (λ≥420 nm) 
[RhB]=20 mg/L;  

500 mg/L; 50 min 
50 100 [140] 

Bi 300 W perfect Xe lamp with a UV cut-off filters [TC]=NA;  -30 -100 [148] 
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(λ≥400 nm) 800 mg/L; 20 min 

B 
150 W tungsten lamp with a UV cut-off filters (λ≥420 

nm) 

[RhB]=15 mg/L;  

1000 mg/L; 30 min 
71.1 99.3 [139] 

Y 25W Eco-living day light fluorescent 
[CIP]=20 mg/L;  

1000 mg/L; 60 min 
71.7 87.6 [149] 

*CIP = Ciprofloxacin; RhB = Rhodamine B; MO = Methyl Orange; TC = Tetracycline; PNP = p-nitro- phenol; NA = Not Available; W = Watts. 

 

6.2 Coupled semiconductors 

 

The formation of hetero-junction with semiconductors is 

another widely approach has been used for improving the 

photo-catalytic performance of photocatalysts [150].  

The synergistic effects on the photo-catalytic performance 

have been studied. It was reported synergetic effect on g-C3N4 

structure, the g-C3N4 has the ability to create gap states. while 

the g-C3N4 band edge can be tune by coupling effect at g-

C3N4/MoS2 interface, this modification has the ability for 

inhibiting the electron-hole recombination by affecting the 

electron distribution [151]. 

Metal-organic frameworks (MOFs) have several properties 

make it more suitable for photocatalytic applications, but there 

stability is the most important challenge, the stability of these 

compounds is limited. To overcome these limitations, many 

authors developed composite materials such as utilizing 

molybdenum disulfide (MoS2), in combination with (MOFs). 

It was concluded that the MoS2/MOF heterojunctions were 

high photochemical stability and effective compared to pure 

MOFs due to there. It was indicated that these composites have 

the ability for using in practical applications [152].  

such as tabulated in Table 3. Bismuth-based semiconductors 

are the most common coupling semiconductors have been used 

in photocatalytic process. For example, Qiu et al. [153] used 

solvothermal method for loading different amounts of bismuth 

sub-carbonate (Bi2O2CO3) onto BiOBr nanosheets to form 

Bi2O2CO3/BiOBr (BOC/BOB). The degradation efficiency of 

fabricated Bi2O2CO3/BiOBr p-n heterojunction composites 

was a better than pristine BiOBr or pristine Bi2O2CO3 

degradation efficiencies under visible light. There are many 

factors which enhanced the performance of composites, 

including: the p-n hetero-junction, suppressed recombination 

and facilitating charge separation. Also, Su and Wu [154] used 

hydrothermal method to construction of BiOBr/Bi4O5Br2 

composites for photo-catalytic degradation of CIP at various 

pH (pH=4, 5, 6 and 7). It was noticed that the highest 

degradation efficiency can be obtained by synthesized of the 

BiOBr/Bi4O5Br2 composite at pH 7.  

Another widely approach is loading metal-free 

carbonaceous materials, like carbon quantum dots (CQDs) on 

to BiOBr. For example, Xia et al. [155] used different weight 

ratio of CQD to BiOBr for synthesizing a series of 

CQDs/BiOBr to degrade of RhB dye. It was noticed that the 

pristine BiOBr degradation efficiency was 37% only after 30 

min. While, the degradation efficiency of CQDs/BiOBr was 

100%, as shown in Figure 10. 
 

 
 

Figure 10. The photo-catalytic degradation of RhB in the 

presence of 1CQDs/BiOCl composites [155] 

 

Table 3. The photo-degradation efficiencies of common BiOBr and coupled BiOBr catalysts 

 

Coupling 

Catalyst 
Source of Light 

Experimental Conditions Dosage; 

[Pollutant]; Time of Irradiation 

Photo-Degradation 

Efficiency, (%) 
Reference 

Pristine Coupled 

BiOBr BiOBr 

Bi4O5Br2 
Improvised photo-catalysis reactor 

under 500 W Xe lamp 

[CIP] = 10 mg/L; 

1000 mg/L; 150 min 
50 91 [154] 

Bi2O2CO3 500 W Xe lamp (λ > 420 nm) 
[RhB] = 10 mg/L; 

500 mmg/L; 45 min 
46.99 92.83 [156] 

CdS 1 kW Xe lamp 
[MG] = 15 mg/L; 

600 mg/L; 100 min 
~ 20 99 [157] 

NiFe2O4 350 W Xe lamp (λ > 420 nm) 
[MB] = 10 mg/L; 

1000 mg/L; 60 min 
45 90 [158] 

CoTiO3 Xe lamp (500 W) 
[RhB] = 10 mg/L; 

1000 mg/L; 50 min 
~ 40 100 [159] 

CQDs 
Xe lamp (500 W) equipped 

with a light filter (λ = 420 nm) 

[RhB] = 10 mg/L; 

300 mg/L; 20 min 
67 92 [157] 

ZnO 
Xe lamp (300 W) equipped 

with a light filter (λ = 420 nm) 

[RhB] = 5 mg/L; 

1000 mg/L; 130 min 
58 95 [160] 

CoFe2O4 
Xe lamp (300 W) as a simulated 

solar light source 

[CR] = 15 mg/L; 

1000 mg/L; 60 min 
62.27 90.78 [161] 

CQDs 
Xe lamp (300 W) equipped with 

a light filter (λ = 400 nm) 

[RhB] = 10 mg/L; 

200 mg/L; 30 min 
37 ~ 100 [155] 

TiO2 104 W Slovenia cool white lamp [CIP] = 25 mg/L; 30.7 95.5 [162] 
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(λ = 390–700 nm) 1000 mg/L; 180 min 

WS2 
Xe lamp (500 W) to obtain visible light 

with a UV cut-off filter (λ > 400 nm) 

[CIP] = 20 mg/L; 

1000 mg/L; 100 min 
61 92 [163] 

FePc 
Xe lamp 350 W equipped with a UV 

filter (λ ≥ 400 nm) 

[CIP] = 10 mg/L; 

400 mg/L; 4 h 
~ 30 ~ 60 [164] 

g-C3N4 
Xe lamp 300 W equipped with a UV 

cut-off filter (λ ≥ 400 nm) 

[CIP] = 10 mg/L; 

200 mg/L; 6 h 
67 85 [165] 

WO3 
500 W Xe lamp equipped with a UV 

cut-off filter (λ ≥ 400 nm) 

[CIP] = 20 mg/L; 

500 mg/L; 120 min 
59.1 94.7 [166] 

α – Fe2O3 
300 W Xe lamp equipped with a UV 

cut-off filter (λ ≥ 420 nm) 

[RhB] = 20 mg/L; 

1000 mg/L; 40 min 
60 95 [167] 

C3N4 
300 W Xe lamp with two cut-off filters 

(λ = 320–780 nm) 

[RhB] = 20 mg/L; 

500 mg/L; 40 min 
~ 65 100 [168] 

BHO 
300 W Xe arc lamp equipped with 

a 385–740 nm desired filters 

[RhB] = 15 mg/L; 

500 mg/L; 50 min 
~ 75 100 [169] 

CdS 
Halide lamp (250 W) with 

a light cut-off filter (λ ≥ 400 nm) 

[RhB] = 20 mg/L; 

1000 mg/L; 50 min 
74 97 [170] 

Bi2O4 I300C Xe lamp 
[MO] = 20 mg/L; 

1000 mg/L; 10 min 
~ 15 100 [171] 

CdWO4 
Xe lamp (300 W) equipped with a UV 

cut-off filter (λ ≥ 420 nm) 

[RhB] = 10 mg/L; 

500 mg/L; 8 min 
40 ~ 100 [172] 

TiO2 
Xenon arc lamp (300 W) equipped with 

a UV cut-off filter (λ ≥ 400 nm) 

[MO] = 10 mg/L; 

1000 mg/L; 80 min 
~ 40 ~ 91 [173] 

BiSbO4 
Xe lamp (300 W) equipped with a UV 

cut-off filter (λ ≥ 400 nm) 

[RhB] = 10 mg/L; 

300 mg/L; 45 min 
30 96 [174] 

Graphene 
xenon lamp (500 W) equipped with 

a UV cut-off filter (λ ≥ 400 nm) 

[RhB] = 10 mg/L; 

200 mg/L; 24 min 
50 100 [175] 

BiOCl LED light irradiation 
[MB] = 10 mg/L; 

1000 mg/L; 360 min 
72 93 [176] 

TiO2 
300 W xenon lamp equipped with a UV 

cut-off filter (λ ≥ 400 nm) 

[RhB] = 10 mg/L; 

250 mg/L; 40 min 
~ 70 ~ 100 [177] 

Bi2MoO6 50 W LED light (410 nm) 
[MB] = 20 mg/L; 

1000 mg/L; 40 min 
> 20 > 90 [178] 

QDs-Cu2O 
250 W halide lamp with equipped with 

a UV cut-off filter (λ ≥ 400 nm) 

[MB] = 10 mg/L; 

1000 mg/L; 60 min 
73 95 [179] 

FeWO4 
Xe lamp (300 W) with a 400 nm 

cut-off filter 
1000 mg/L; 60 min 66.2 90.4 [180] 

LaFeO3 
200 W Xe lamp emitting simulated 

sunlight 

[RhB] = 5 mg/L; 

1000 mg/L; 30 min 
95.2 95.8 [181] 

Black phosphorus 
300 W Xe arc lamp with a UV filter 

(420 nm < λ < 780 nm) 

[TC] = 50 mg/L; 

1000 mg/L; 90 min 
~ 25 85 [182] 

(BP)      

NaBiO3 Fluorescent lamp (22W) 
[4CP] = 24 mg/L; 

1000 mg/L; 20 min 
0.8 > 92 [183] 

La2Ti2O7 Xe lamp (300 W) 
[RhB] = 10 mg/L; 

400 mg/L; 20 min 
~ 80 ~ 100 [184] 

CO/ZFO/BOB 
150 W LED lamp 

 

[MG] = 25 mg/L; 

150 mg/L; 90 min 
42 91 [185] 

SnO2 5 W nine parallel LED lights 
[RhB] = 20 mg/L; 

1000 mg/L; 20 min 
~ 60 ~ 98.2 [186] 

BiVO4 
Xe lamp (300 W) with a 420 nm 

cut-off filter 

[RhB] = 10 mg/L; 

1000 mg/L; 15 min 
~ 60 ~ 95 [187] 

Bi5O7Br 
Xe lamp (500 W) with a 420 nm 

cut-off filter 

500 mg/L; [CBZ] = 

10 mg/L; 90 min 
~ 25.8 ~ 90 [188] 

Bi(C2O4) OH 150 W Xe lamp 
1000 mg/L; [RhB] = 

10 mg/L; 30 min 
89.5 99.6 [189] 

Bi12O17Cl2 
300 W Xe arc lamp with 420 nm 

cut-off filter 

[MO] = 10 mg/L; 

500 mg/L; 20 min 
~ 70 ~ 92 [190] 

BiOCOOH Xe lamp with a UV filter 
[LEV] = 10 mg/L; 

600 mg/L; 40 min 
75.1 90.1 [191] 

CeO2 
300 W Xe lamp with 420 nm cut-off 

filter 

[RhB] = 20 mg/L; 

500 mg/L; 25 min 
71.2 97.3 [192] 

ZnO 300 W iodine-Wolfram lamps 
[MB] = 10 mg/L; 

1000 mg/L; 240 min 
~ 42 ~ 90 [193] 

ZnS 
350 W Xe lamp 

 

[TC] = 20 mg/mL; 

1000 mg/L; 25 min 
~ 70 ~ 82 [194] 

Basic bismuth 
500 W Xe lamp emitting simulated 

sunlight 

[RhB] = 10 mg/L; 

500 mg/L; 45 min 
61.8 91.98 [195] 

nitrate (BBN)      

CoS 44 W LED lamp with a UV filter [GLP] = 10-4 mol/L; 21.9 74.7 [196] 
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400 mg/L; 180 min 

Ag6Si2O7 
CEL-HXUB300 Xe lamp equipped with 

a UV filter (λ ≥ 400 nm) 

[MB] = 20 mg/L; 

1000 mg/L; 15 min 
~ 25 98 [197] 

ZnWO4 
300 W Xe lamp equipped with a UV 

cut-off filter (λ ≥ 400 nm) 

[RhB] = 2 × 

10-5 mol/L;500 mg/L; 
~ 50 ~ 100 [198] 

  16 min    

SnIn4S8 
266 W Xe lamp with a two glass filters 

(380 nm < λ < 780 nm) 

[RhB] = 15 mg/L; 

200 mg/L; 40 min 
71.1 99.8 [199] 

BiPO4 12 W LED light irradiation 
[RhB] = 15 mg/L; 

1000 mg/L; 120 min 
83.51 95.66 [200] 

MnFe2O4 fluorescent lamp (150 W) 
[2,4-D] = 20 mg/L; 

1000 mg/L; 80 min 
57.3 96.5 [201] 

C60 
Xe lamp (500 W) with a light 

filter (λ > 420 nm) 

[RhB] = 10 mg/L; 

1000 mg/L; 10 min 
59 91 [202] 

NiS 
266 W Xe lamp with with a two glass 

filters (380 nm < λ < 780 nm) 

[RhB] = 15 mg/L; 

200 mg/L; 50 min 
84 99.5 [203] 

SnWO4 sunlight radiation (Natural) 
[RhB] = 20 mg/L; 

1250 mg/L; 60 min 
65.9 97.85 [204] 

Zn2GeO4 
Xe lamp equipped with 

a cut-off filter (λ > 420 nm) 

[RhB] = 12 mg/L; 

1000 mg/L; 40 min 
~ 60 93 [205] 

BiOI 

500 W Xe lamp passed through 

annular quartz tube equipped with 

a cut-off filter (λ > 420 nm) 

[MO] = 10 mg/L; 

2000 mg/L; 300 min 
~ 30 63.1 [206] 

*CIP=Ciprofloxacin; CBZ = Carbamazepine; DC = Doxycycline; LEV = Levofloxacin; GLP = Glyphosate;  

2,4-D=2,4-dichlorophenoxyacetic acid; RhB = Rhodamine B; TC = Tetracycline; MG = Malachite Green;  
MO=Methyl Orange; BPA = Bisphenol A; 4CP = 4-chlorophenol; CR = Congo Red; MB = Methylene Blue and W = Watts. 

 

It was concluded that the coupling BiOBr with optimal 

amount of (CQDs) has the ability for enhancing the photo-

catalytic degradation efficiency due to improved optical 

absorption [155]. 

 

 

7. THE OPERATIONAL PARAMETERS THAT 

EFFECT ON PHOTO-CATALYTIC DEGRADATION 

PROCESS 

 

There are several operational conditions that influence on 

photo-catalytic degradation process are discussed below. 

 

7.1 Initial pH of solution 

 

Initial pH of solution is an important parameter that 

influences the photo-catalytic degradation efficiency process. 

Altering the initial solution pH can be Altering by changes in 

the properties of photo-catalyst’s surface charge and the 

organic pollutant. Many methods have been used for 

estimating the point of zero charge like potentiometric titration 

method [136], modified batch equilibrium method [207], salt 

addition method [165], etc. BiOBr surface is negatively 

charged at pH above 5.30 and positively charged at pH below 

5.30 because the zero charge point of BiOBr was recorded as 

5.30 [208]. 

Also, Wang et al. [209] used BiOBr catalyst for degrading 

of sulfurhodamine MO, it was found decreasing in the 

degradation efficiency as pH value increases from 2.0 to 9.0 

because low adsorption of sulfurhodamine MO onto the 

surface of BiOBr due to electrostatic attraction between BiOBr 

and sulfurhodamine MO. Similarity, by using BiOBr as photo-

catalyst for degradation of RhB, it was found that as different 

values of pH, the performance degradation process was low 

due to low RhB adsorption onto the surface of BiOBr [210]. 

Moreover, BiOBr/ZnFe2O4/CuO composite has been used 

for degradation of malachite green (MG) at various pH values 

(pH=3, 5, 7, 9, and 11), it was noticed that the best (MG) 

destruction was obtained at pH=7 [103], as shown in Figure 

11. 

 
 

Figure 11. Effect of pH value on MG photo-oxidation over 

BiOBr/ZnFe2O4/CuO [103] 

 

7.2 Catalyst dosage 

 

The BiOBr photo-degradation efficiency is also affected by 

the dosage of BiOBr catalyst used for degrading of wastewater 

pollutants, which is lead to increase in the photo-catalytic 

reactions active surface and increase the photo-generated 

charge carriers [210-212].  

Gondal et al. [213] used BiOBr (600-1500 mg/L) for 

degrading 7 mg/L of RhB dye and studied the effect of this 

dosage on the photo-catalytic degradation, with keeping other 

experimental parameters constant. For 90 min and using 1200 

mg/L of BiOBr dosage, it was noticed that 94.6% degradation 

efficiency was obtained. Then, the degradation efficiency 

started to reduce. Similarly, it was used BiOBr (250-1500 

mg/L) for degrading 10 mg/L of RhB dye and studied the 

effect of this dosage on the photo-catalytic degradation, it was 

reported that the optimum BiOBr dosage was 1000 mg/L at the 

degradation rate of 0.106 per min [210]. 
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7.3 Inorganic ions  

 

Wastewater often contains another pollutant which is 

inorganic ions [214]. Many authors have reported the effect of 

these ions on the degradation efficiency. For example, 

studying the effect of SO4
-2, Cl-, CO3

-2, PO4
-3 and NO3

- ions on 

the tetracycline photo-degradation rate using BiOBr. Due to 

their radical scavenging properties, Cl- and CO3
-2 ions 

decreased the photo-catalytic activity, while NO3
-, SO4

-2 and 

PO4
-3 did not show any significant inhibition, due to 

competition among tetracycline and inorganic ions for the 

BiOBr active sites [215, 216]. Similarly, the effect of SO4
-2, 

Ca+2, NH4
+, Cl-, PO4

-3, CO3
-2 and NO3

-ions on the degradation 

of ibuprofen was studied. It was found that Cl-, NH4
+, Ca+2, 

SO4
-2, NO3

- and CO3
-2 ions have not significant inhibition 

effect. While in the presence of PO4
-3 ions, the photo-

degradation rate was decreased significantly [217, 218]. 

 

 

8. CONCLUSIONS AND RECOMMENDATIONS 

 

In this study, several information associated with BiOBr 

have been reviewed such as its synthesis, properties, photo-

catalytic degradation activity and strategies for improving 

photo-catalytic efficiency of the BiOBr. Also, it was 

summarized various operational parameters that effect on 

BiOBr photo-catalytic degradation rate like initial pH of 

solution, catalyst dosage and inorganic ions. 

Many methods that are used for synthesizing BiOBr, but the 

most employed methods are solvothermal and hydrothermal 

methods. By using such methods, various forms of BiOBr 

photo-catalysis have been synthesized with various features of 

dimension, pore volume, pore size and morphology. However, 

the large-scale fabrication of BiOBr must be encouraged with 

more attractive features. 

There are many operational parameters that effect on BiOBr 

photo-catalytic degradation, including pH of the solution, 

BiOBr dosage and inorganic ions.  

The useful strategies for improving the photo-catalytic 

performance of BiOBr include formation of composite 

materials and elemental doping. Even though, the formation of 

composite materials and elemental doping using facile 

processes are recommended. Lastly, BiOBr was frequently 

used for the photo-degradation of pollutants, mostly dyes. So, 

an important recommendation would be to consider the 

application of BiOBr in real wastewater treatment. As well as, 

should be further investigated other potential applications of 

BiOBr, considering the interesting features of BiOBr.  

It should be focusing on developing a recyclable 

heterojunction with special properties under a UV light which 

has the ability to degrade non-biodegradable hazardous dye . 
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