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 In industrial processes such as machining, molding, disc brake operation, and spot welding, 

the thermal transfer at solid-solid interfaces, particularly with heat generation at the 

interface, is a critical area of study. This research presents a theoretical framework for 

addressing the direct problem of thermal conduction in electro-thermal contacts, with a 

focus on short-term scenarios where heat dissipation occurs through the Joule effect. This 

aspect, not extensively explored in existing literature, is investigated using a semi-

analytical method. The study also encompasses a simulation-based exploration, aimed at 

deepening the understanding of physical phenomena at the contact level. Special attention 

is given to the thermal transfers initiated at the asperity level of the electro-thermal contact. 

Findings from this investigation underscore the significance of incorporating the thermal 

diffusivity of materials into the model for achieving convergence. A notable observation is 

the increasing divergence over time between the temperatures predicted by numerical and 

analytical solutions, a trend more pronounced in materials with higher thermal diffusivity, 

such as titanium. This research contributes valuable insights into the modeling of contact 

parameters essential for simulating various industrial applications, potentially enhancing 

efficiency and efficacy in thermal engineering practices. 
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1. INTRODUCTION 

 

Thermal transfer at solid-to-solid interfaces is of utmost 

importance in a wide range of industrial applications, 

including machining, molding, frictional processes, and 

electrothermal phenomena. Understanding the mechanisms of 

heat transfer at these interfaces is crucial for optimizing 

thermal efficiency and improving overall system performance. 

Solid-to-solid thermal contacts have been extensively 

studied to understand the underlying heat transfer mechanisms 

[1-9]. These studies have delved into various factors, such as 

contact pressure, material properties, surface characteristics, 

and interfacial conditions. The insights gained from these 

investigations have significantly contributed to the 

development of advanced models and techniques for 

predicting and optimizing thermal performance. Numerous 

studies have explored the mechanical aspects of friction 

interfaces, with temperature being a critical factor that is often 

highlighted. However, very few studies have modeled and 

measured this fundamental aspect of sliding contacts. The 

thermal phenomenon is a dimensioning criterion in many 

industrial fields, such as the space industry and railways, as 

friction leads to increased temperatures that can generate 

degradation of the contact surfaces. Therefore, it is crucial to 

have a thermal model that represents the sliding interface. 

Researchers have also explored the impact of heat generation 

on the thermal resistance of the contact interface, with 

attention given to understanding the fraction and partition 

coefficient of the heat flux generated in these systems. These 

parameters play a crucial role in characterizing the distribution 

and utilization of heat within the contact interface. 

Furthermore, various studies have investigated different 

aspects of resistance spot welding (RSW) from both 

experimental and numerical perspectives. For instance, 

Murugesan et al. [10] investigated the RSW of dissimilar 

metals, AISI 304 and AISI 316L, and evaluated the ultimate 

strength and heat utilization of spot welds through finite-

element and macrostructural evaluations. Similarly, Hamed 

Pashazadeh et al. [11] explored the effect of welding 

parameters on the diameter and height of the nugget using the 

full factorial design of the experiment methodology. However, 

electrothermal effects have received relatively less attention in 

RSW studies, despite their significant influence on the welding 

process. Electrothermal effects are mainly driven by the 

current density distribution and the associated Joule heating at 

the electrode-sheet interface. Feulvarch et al. [12] presented a 
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general electrothermal contact formulation for RS-WG. Le 

Meur et al. [13] conducted an experimental study on the 

electrothermal contact at the electrode-sheet interface during 

RSW, which showed that the thermal contact resistance and 

partition coefficient of the generated heat flux vary with time 

and are affected by current intensity and material conductivity. 

Later Le Meur et al. [14] developed an experimental 

methodology to validate the theoretical models of thermal 

contact resistance and partition coefficient of generated heat 

flux at the interface. Mokrani and Bourouga [15] conducted an 

experimental study on the thermal parameters at an imperfect 

metal-metal contact interface with Joule effect dissipation [16]. 

The results showed the behavior of these parameters under the 

influence of contact pressure, materials, and surface states. It 

has also been suggested to use reverse analysis and 

experiments [13, 14] to figure out the thermal contact 

resistance and the partition coefficient of the generated flux. 

These methods show that these parameters are strongly related. 

In recent years, several researchers have proposed different 

approaches to solve electrothermal problems. For instance, 

Degiovanni et al. [17] proposed an electrical analogy approach 

to solve heat transfer problems in a system with multiple 

isotherm surfaces, an exchange surface, and a heat source with 

any distribution. This method generalizes the concept of 

thermal resistance and the partition coefficient of the internal 

heat source. Anas El Maakoul et al. [18, 19] introduced the 

concept of contact resistance and partition coefficient to 

describe solid-solid contact with heat sources in electrothermal 

problems. They found that the partition coefficient is a 

constant equal to 1/2. 

In this study, the analytical framework uses Laplace 

transforms as a basic tool for dealing with differential 

equations. These transforms turn the equations that govern 

heat conduction into the Laplace domain, which makes the 

problem easier to fully understand. To bridge the gap between 

the Laplace domain and the temporal domain, the Stehfest 

numerical inversion method is employed. This method 

facilitates the conversion of solutions from the Laplace 

domain back to the temporal domain, offering insights into the 

temporal evolution of the electrothermal contact system. The 

entirety of this methodology is referred to as semi-analytical, 

as it combines analytical techniques with numerical 

approaches for a comprehensive understanding of 

electrothermal contact dynamics. 

 

 

2. SEMI-ANALYTICAL MODEL FOR ELECTRO-

THERMAL CONTACT IN SHORT TIME 
 

At short times, thermal disturbances applied to the 

boundaries only gradually penetrate the medium. Thus, at a 

relatively short time after the beginning of the phenomenon, 

the disturbance only reaches a layer of thickness 'e', which is 

called the penetration depth. Beyond this penetration depth, 

the rest of the medium has not yet participated in the transient 

process and is still at its initial condition. Therefore, at this 

short time interval, the length of the medium has no influence 

on the behavior of temperature. The assumption of semi-

infinite media consists in considering that the length of the 

medium is infinite. 

The chosen model for the electrothermal contact problem 

involves placing two cylindrical bars of equal circular cross-

section in (imperfect) contact across the entirety of their base 

areas, as shown in Figure 1. The two cylinders are assumed to 

be of equal size (L1=L2 and D1=D2). This model involves a 

study in the transient stat, where the imperfect contact creates 

a thermal contact resistance Rtc. When an electric current 

passes through the contact, the imperfection of the contact also 

creates an electrical contact resistance REc. With this passage 

of electric current, other source terms will appear, such as the 

heat flux generated at the interface φg(W/m2) due to the 

imperfect contact, and the volumetric powers dissipated in the 

two cylinders P1 and P2(W/m2). it should be noted that the 

numerical values used for solving the problem in this study are 

inspired by the work of Le Meur et al. [13] and have been 

modified to fit the specific requirements of the electro-thermal 

contact problem being investigated. Additionally, two 

temperatures TL1=0℃ and TL2=0℃ are imposed at the left and 

right boundaries, respectively, and the lateral surface of the 

two cylinders is assumed to be perfectly insulated. 

 

 
 

Figure 1. Schematic illustration of the electro-thermal 

contact model 

 

The literature review [13-16, 18, 19] shows that previous 

studies have mainly focused on the long-time problem of 

solid-to-solid thermal contacts, whether for the direct problem 

or for the estimation and modeling of the parameters of the 

contact interface with heat generation. They have all 

investigated the thermal aspect of the macroscopic scale in 

long-time regimes, but none have looked into the short-time 

electro-thermal contact problem. This gap in the literature 

highlights the importance of our study, which aims to 

investigate the short-time electro-thermal contact problem to 

contribute to a better understanding of the physical phenomena 

that occur at the contact interface in these situations. 

The model that describes the behavior of electrothermal 

contact in transient state is presented as follows: 

 

The heat equation in area 1 and 2 

 

{
 
 

 
 𝜕

2𝑇1
𝜕𝑥2

+
𝑃1
𝜆1
=
1

𝑎1

𝜕𝑇1
𝜕𝑡

            𝑥 ∊ [−𝐿1, 0 ]       

 
𝜕2𝑇2
𝜕𝑥2

+
𝑃2
𝜆2
=
1

𝑎2

𝜕𝑇2
𝜕𝑡

       𝑥 ∊ [ 0, 𝐿2 ]  

 (1) 

 

Condition at the border 

 

x = −L1 ∶     𝑇1(−𝐿1, 𝑡) = 𝑇−𝐿1(𝑡)   (2) 

 

Conservation of the flow at the interface 

 

𝜆1
𝜕𝑇1(0, 𝑡)

𝜕𝑥
= 𝜆2

𝜕𝑇2(0, 𝑡)

𝜕𝑥
+ 𝜑𝑔  (3) 
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Fourier condition 

 

𝜆2
𝜕𝑇2(0, 𝑡)

𝜕𝑥
+ 𝛼𝜑𝑔 =

𝑇2(0, 𝑡) − 𝑇1(0, 𝑡)

𝑅𝑡𝑐 
   (4) 

 

Boundary condition at the frontier 

 

x = −L1 ∶  𝑇2(𝐿2, 𝑡) = 𝑇𝐿2(𝑡) (5) 

 

The initial condition in area 1 and 2   

 

{
𝑇1(𝑥, 0) = 𝑇𝑖1(𝑥)   

𝑇2(𝑥, 0) = 𝑇𝑖2(𝑥)  
 (6) 

 

2.1 Application of the transformation to equations 

 

As mentioned above, disturbances during short times 

primarily impact small thicknesses, justifying the 

consideration of infinite lengths. However, the system 

diverges from this norm as the heating associated with 

volumetric power dissipation extends along the entire length 

of both cylinders right from the initiation of the phenomenon. 

To address this unique characteristic, a variable change 

defined by Eq. (7) is strategically employed: 

 

𝑇𝑗  =  𝑇𝑃𝑗 + 𝑇𝜑𝑗𝑗 =  1,2 (7) 

 

The transformation introduced in the context of the 

electrothermal contact problem serves to decompose the 

temperature (T) profiles into two distinct components: 

where, 

𝑻𝑷𝒋 (Volumetric Power Dissipation): 

• Captures the temperature increase due to the 

volumetric powers dissipated in the 

cylinders during the transient state.  

• Associated with the effects of the electric 

current passing through the contact, 

resulting in heat generation within the 

medium. 

 

𝑻𝝓𝒋 (Generated Flux): 

• Represents the temperature increase due to 

the generated flux at the interface.  

• Accounts for the heat flux generated at the 

imperfect contact interface, contributing to 

the overall thermal behavior of the system. 

 

Applying the variable change Eq. (7) to the original PDE 

Eq. (1) yields two transformed expressions: 

 

{
 
 

 
 

𝜕2𝑇𝜑𝑗

𝜕𝑥2
=
1

𝑎𝑗

𝜕𝑇𝜑𝑗

𝜕𝑡

𝜕2𝑇𝑃𝑗

𝜕𝑥2
+
𝑃𝑗

𝜆𝑗
=
1

𝑎𝑗

𝜕𝑇𝑃𝑗

𝜕𝑡

 (8) 

 

These transformed equations separate the original PDE into 

two components: Tϕj, related to the generated flux, and TPj 

related to the volumetric powers. 

 

2.2 System decomposition 

 

The entire transient state 'A' yields two systems: 'B' and 'C' 

➢ 'B' representing the heating due to the volumetric 

powers dissipated in the two cylinders during the 

transient state, which will be solved over finite 

lengths; 

➢  'C' representing the heating due to the generated flux 

during the transient stat, which will be solved by 

considering that both lengths L1 and L2 tend towards 

infinity. 

 

➢ Case 1: Heating due to volumetric powers (finite 

lengths) 

 

2.3 System 'B' - volumetric power dissipation (finite 

lengths) 

 

System 'B' is designed to analyze the electrothermal contact 

problem when considering the heating effect due to volumetric 

power dissipation. The focus is on finite lengths, providing a 

detailed understanding of temperature profiles in this scenario. 

 

a) Equations for finite lengths 

 

{
 
 

 
 𝜕

2𝑇𝑃1
𝜕𝑥2

+
𝑃1
𝜆1
=
1

𝑎1

𝜕𝑇𝑃1
𝜕𝑡

             𝑥 ∊ [−∞, 0]

𝜕2𝑇𝑃2
𝜕𝑥2

+
𝑃2
𝜆2
=
1

𝑎2

𝜕𝑇𝑃2
𝜕𝑡

            𝑥 ∊ [ 0, +∞]

 (9) 

 

 

b) Boundary and interface conditions 

 

𝑇𝑃1(−𝐿1, 𝑡) = 0 (10) 

 

𝜆1
𝜕𝑇𝑃1(0, 𝑡)

𝜕𝑥
= 𝜆2

𝜕𝑇𝑃2(0, 𝑡)

𝜕𝑥
 (11) 

 

𝜆2
𝜕𝑇𝑃2(0, 𝑡)

𝜕𝑥
=
𝑇𝑃2(0, 𝑡) − 𝑇𝑃1(0, 𝑡)

𝑅𝑡𝑐 
 (12) 

 

𝑇𝑃2(+𝐿2, 𝑡) = 0 (13) 

 

{
𝑇𝑃1(𝑥, 0) = 0    

𝑇𝑃2(𝑥, 0) = 0
 (14) 

 

c) Solution strategy 

 

The selection of Laplace transforms for solving heat transfer 

problems in the temporal domain is grounded in the nature of 

heat conduction equations commonly used in various systems 

such as welding, non-contact interactions, and more. Heat 

conduction problems are often formulated as partial 

differential equations with appropriate boundary conditions 

that describe the behavior of the system. Laplace transforms 

have demonstrated significant efficacy in handling linear 

differential equations, making them particularly well-suited 

for problems involving heat transfer. 

The rationale behind transforming the system from the 

temporal domain to the Laplace domain lies in the inherent 

advantages of Laplace transforms in simplifying the 

mathematical expressions associated with heat conduction. 

The conversion allows for a more straightforward and 

systematic analysis of the problem, providing a clear 

representation of the system's response to electrothermal 

interactions. 
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System B undergoes transformation through the application 

of the Laplace transform, allowing the expression of equations 

in the Laplace domain. This transformative process 

significantly simplifies the analysis of transient behavior, 

resulting in the following solution when applied to Eq. (9): 

 

𝜕2𝑇𝑃𝑗

𝜕𝑥2
−
1

𝑎𝑗

𝜕𝑇𝑃𝑗

𝜕𝑡
= −

𝑃𝑗

𝜆𝑗
 →  

𝜕2Ө𝑃𝑗

𝜕𝑥2
−
1

𝑎𝑗
[𝑠. Ө𝑃𝑗 − 𝑇𝑃𝑗(𝑥, 0)]

= −
𝑃𝑗

𝑠. 𝜆𝑗
 

 

With TP(x, 0)=0 and ‘s’ the Laplace variable. 

  

{
 
 

 
 𝜕

2Ө𝑃1
𝜕𝑥2

−
𝑠

𝑎1
Ө𝑃1 = −

𝑃1
𝜆1
. 𝑠−1

𝜕2Ө𝑃2
𝜕𝑥2

−
𝑠

𝑎2
Ө𝑃2 = −

𝑃2
𝜆2
. 𝑠−1

 (15) 

 

The solutions for the transformed Eq. (15) are detailed as 

follows: 

 

{
 

 Ө𝑃1(𝑥, 𝑠) = 𝐶1𝑒
−𝑞1𝑥 + 𝐶2𝑒

+𝑞1𝑥 +
𝑎1𝑃1
𝜆1

. 𝑠−2

Ө𝑃2(𝑥, 𝑠) = 𝐶3𝑒
−𝑞2𝑥 + 𝐶4𝑒

+𝑞2𝑥  +
𝑎2𝑃2
𝜆2

. 𝑠−2
 (16) 

 

d) Numerical inversion 

 

The Stehfest method [20] is employed for numerical 

inversion in the Laplace domain due to the unconventional 

nature of the temperature field solution. The solution obtained 

in the Laplace domain doesn't conform to standard functions, 

making direct inversion using traditional methods challenging. 

The Stehfest method is chosen for its proven effectiveness in 

handling such non-standard functions, offering a reliable and 

efficient approach to invert the Laplace-transformed equations. 

Its application ensures accurate insights into the temporal 

evolution of the electrothermal contact system, addressing the 

specific complexities associated with the analytical framework 

utilized in this study. 

The solutions for the transformed Eq. (16) involve 

coefficients C1, C2, C3 and C4, which are determined by 

applying boundary conditions. These coefficients play a 

crucial role in shaping the behavior of the system during the 

transient state. 

To execute the inversion from θP1(x,s) → TP1(x,t), the 

Stehfest numerical inversion method is applied. This involves 

calculating TPj(x,t) using the formula: 

 

𝑇𝑃𝑗(𝑥, 𝑡) = (
ln (2)

𝑡
)∑𝑉𝑗(𝑁)

𝑁

𝑗=1

 Ө𝑃𝑗 (𝑗
ln (2)

𝑡
) (17) 

 

The term Vj is computed using the given formula:  

 

𝑉𝑗 = (−1)
𝑁
2+𝑗 ∑

𝑘
𝑁
2  (2𝑘)!

(
𝑁
2
− 𝑘) ! 𝑘! (𝑘 − 1)! (𝑗 − 𝑘)! (2𝑘 − 𝑗)!

𝑚𝑖𝑛(𝑖,
𝑁
2
)

𝑘=⌊
𝑗+1
2 ⌋

 (18) 

 

Setting N=10 in the Stehfest numerical inversion method 

strikes a balance between computational efficiency and 

precision. This choice, representing single precision, is a 

standard compromise for numerical simulations, offering 

satisfactory results for various engineering applications. It 

reflects a pragmatic decision, acknowledging the diminishing 

returns in accuracy with higher N values while ensuring 

manageable computational demands for the electrothermal 

contact problem under consideration. 

 

➢ Case 2: Heating due to the generated flow  

 

2.4 System 'C' - generated flow (infinite lengths) 

 

The system 'C' of equations is established to describe the 

thermal behavior in scenarios where the generated flow 

influences the entire length. The partial differential equations 

(PDEs) under consideration are expressed in terms of 

temperature profiles and their spatial and temporal derivatives. 

 

a) Equations for infinite lengths 

 

{
 
 

 
 𝜕

2𝑇𝜑1

𝜕𝑥2
=
1

𝑎1

𝜕𝑇𝜑1

𝜕𝑡
               𝑥 ∊ [−∞, 0]

𝜕2𝑇𝜑2

𝜕𝑥2
=
1

𝑎2

𝜕𝑇𝜑2

𝜕𝑡
                𝑥 ∊ [ 0, +∞]

 (19) 

 

 

b) Boundary and interface conditions 

 

The set of conditions for System 'C' includes initial and 

boundary conditions that ensure the physical relevance of the 

solution. 

 

𝑇𝜑1(𝑥 → −∞, 𝑡) = 0 (20) 

 

𝜆1
𝜕𝑇𝜑1(0, 𝑡)

𝜕𝑥
= 𝜆2

𝜕𝑇𝜑2(0, 𝑡)

𝜕𝑥
+ 𝜑𝑔  (21) 

 

𝜆2
𝜕𝑇𝜑2(0, 𝑡)

𝜕𝑥
+ 𝛼𝜑𝑔 =

𝑇𝜑2(0, 𝑡) − 𝑇𝜑1(0, 𝑡)

𝑅𝑡𝑐 
 (22) 

 

𝑇𝜑2(𝑥 → +∞, 𝑡) = 0 (23) 

 

{
𝑇𝜑1(𝑥, 0) = 0

𝑇𝜑2(𝑥, 0) = 0
 (24) 

 

c) Solution strategy 

 

By applying the Laplace transform to Eq. (19), the resulting 

expression is: 

 

→
𝜕2Ө𝜑1

𝜕𝑥2
−
𝑠

𝑎1
Ө𝜑1(𝑥, 𝑠) = 0 → Ө𝜑1(𝑥, 𝑠)

= 𝐶1𝑒
−𝑞1𝑥 + 𝐶2𝑒

+𝑞1𝑥  𝑊𝑖𝑡ℎ 𝑞1 = √
𝑠

𝑎1
 

→
𝜕2Ө𝜑2

𝜕𝑥2
−
𝑠

𝑎2
Ө𝜑2(𝑥, 𝑠) = 0 → Ө𝜑2(𝑥, 𝑠)

= 𝐶3𝑒
−𝑞2𝑥 + 𝐶4𝑒

+𝑞2𝑥  𝑊𝑖𝑡ℎ 𝑞2 = √
𝑠

𝑎2
 

 

When x tends to −∞ the temperature reaches a finite value 

which implies that C1=0. 

13



 

When x tends to +∞ the temperature reaches a finite value 

which implies that C4=0. 

 

{
Ө𝑃1(𝑥, 𝑠) = 𝐴1𝑒

+𝑞1𝑥

.
Ө𝑃2(𝑥, 𝑠) = 𝐴2𝑒

−𝑞2𝑥
 (25) 

 

d) Numerical inversion 

 

The coefficients (A1 and A2) are determined by applying 

boundary conditions to ensure a physically meaningful 

solution. 

 

𝐴2 =
𝜑𝑔 (𝐸1𝑅𝑡𝑐 𝛼. 𝑠

−
1
2 + 1)

𝑅𝑡𝑐 𝐸1𝐸2. 𝑠 + (𝐸1+𝐸2). 𝑠
−
1
2

. 𝑠−1 (26) 

 

𝐴1 =
𝜑𝑔 . 𝑠

−2. (𝛼𝑅𝑡𝑐 
2𝐸1𝐸2 + 𝐸1𝑅𝑡𝑐 𝛼 + 𝑅𝑡𝑐 𝐸2) + 𝜑𝑔 . 𝑠

−1. (1 − 𝑅𝑡𝑐 𝛼)

𝑅𝑡𝑐 𝐸1𝐸2. 𝑠 + (𝐸1+𝐸2). 𝑠
−
1
2

 (27) 

 

With: 

E: thermal effusivity Ej = √𝜆𝑗𝑐𝑗𝜌𝑗 
 

Numerical inversion was used by the Stehfest method, as 

mentioned earlier since there was no way for an analytic 

inversion. 

 

2.5 System 'D' - Generated Flow (Finite Lengths) 

 

System 'D' extends the analysis of the electrothermal 

contact problem in the presence of the generated flow, 

focusing on finite lengths. It provides insights into the system's 

behavior when considering the influence of the generated flux 

within specific length constraints. 

 

a) Equations for infinite lengths 

 

{
 
 

 
 𝜕

2𝑇𝜑1

𝜕𝑥2
=
1

𝑎1

𝜕𝑇𝜑1

𝜕𝑡
                   𝑥 ∊ [−𝐿1, 0]

𝜕2𝑇𝜑2

𝜕𝑥2
=
1

𝑎2

𝜕𝑇𝜑2

𝜕𝑡
               𝑥 ∊ [ 0, 𝐿2]

 (28) 

 

b) Boundary and interface conditions 

 

𝑇𝜑1(−𝐿1, 𝑡) = 0 (29) 

 

𝜆1
𝜕𝑇𝜑1(0, 𝑡)

𝜕𝑥
= 𝜆2

𝜕𝑇𝜑2(0, 𝑡)

𝜕𝑥
+ 𝜑𝑔  (30) 

 

𝜆2
𝜕𝑇𝜑2(0, 𝑡)

𝜕𝑥
+ 𝛼𝜑𝑔 =

𝑇𝜑2(0, 𝑡) − 𝑇𝜑1(0, 𝑡)

𝑅𝑡𝑐 
 (31) 

 

𝑇𝜑2(𝐿2, 𝑡) = 0 (32) 

 

{
𝑇𝜑1(𝑥, 0) = 0

𝑇𝜑2(𝑥, 0) = 0
 (33) 

 

c) Solution strategy 

 

By applying the Laplace transform to Eq. (28), the 

transformed equation is obtained as follows: 

 

→
𝜕2Ө𝜑1

𝜕𝑥2
−
𝑠

𝑎1
Ө𝜑1(𝑥, 𝑠) = 0 → Ө𝜑1(𝑥, 𝑠)

= 𝐴1𝑒
𝑞1𝑥 + 𝐴2𝑒

−𝑞1𝑥  𝑊𝑖𝑡ℎ 𝑞1 = √
𝑠

𝑎1
 

→
𝜕2Ө𝜑2

𝜕𝑥2
−
𝑠

𝑎2
Ө𝜑2(𝑥, 𝑠) = 0 → Ө𝜑2(𝑥, 𝑠)

= 𝐵1𝑒
𝑞2𝑥 + 𝐵2𝑒

−𝑞2𝑥  𝑊𝑖𝑡ℎ 𝑞2 = √
𝑠

𝑎2
 

d) Numerical inversion 
 

The Ai and Bi coefficients are found by applying the 

boundary conditions, solving the following matrix system: 
 

(

𝑒−𝑞1𝐿1 𝑒𝑞1𝐿1 0 0
0 0 𝑒𝑞2𝐿2 𝑒 −𝑞2𝐿2

𝑞1𝜆1 −𝑞1𝜆1 −𝑞2𝜆2 𝑞2𝜆2
1 1 (𝑞2𝜆2𝑅𝑡𝑐 − 1) −(𝑞2𝜆2𝑅𝑡𝑐 + 1)

) × (

𝐴1
𝐴2
𝐵1
𝐵2

)

=

(

 
 

𝑇𝐿1
𝑇𝐿2
𝜑𝑔 

𝑠
−𝛼𝜑𝑔 𝑅𝑡𝑐 𝒔

−𝟏
)

 
 

 

 

The analytical framework employed plays a pivotal role in 

elucidating the temperature field or distribution during 

electrothermal contact. This, in turn, facilitates the assessment 

of key parameters that govern heat transfer in such contact 

scenarios. The results derived from the analytical model, 

manifesting as temperature profiles or distributions, offer a 

comprehensive depiction of the thermal behavior within the 

system. 

A detailed analysis of these results provides valuable 

insights into the distribution, propagation, and dissipation of 

heat during electrothermal contact. The temperature profiles 

allow for a nuanced understanding of transient behavior, 

showcasing variations at different time intervals and positions 

within the contact interface. 

Furthermore, interpreting these results contributes to a 

better understanding of how various factors, such as material 

properties, contact resistance, and generated heat flux, impact 

the overall thermal performance. This interpretation enables 

the identification of patterns, critical points, and an evaluation 

of the effectiveness of electrothermal contact under different 

conditions. 

 

 

3. RESULTS AND DISCUSSION 

 

In the course of this study, meticulous numerical 

simulations were conducted using the COMSOL software, 

renowned for its efficiency in analyzing complex phenomena, 

especially those involving electrical and thermal 

considerations. The investigation involves two distinct cases. 

For each case, specific parameters were rigorously defined, 

including geometry and meshing, material properties, thermal 

and electrical boundary conditions, as well as multiphysical 

coupling in the COMSOL interface. Regarding thermal 

boundary conditions, prescribed temperatures at the ends of 

the bars and the thermal contact resistance at the interface, 

notably through the introduction of a contact resistance based 

on the Yovanovitch model [21], were carefully specified. In 

parallel, electrical boundary conditions involved applying a 

voltage at one end of the bars. 
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Multiphysical coupling was achieved using the appropriate 

interface in COMSOL, allowing for a coherent integration of 

heat transfer equations with electrical current equations. 

Volumetric power generation due to electrical current was 

incorporated as a coupling term, with parameters tailored to 

each case. 

Furthermore, comprehensive temporal studies were 

conducted to capture the transient behavior of electrothermal 

contact. This approach underscores the commitment to a 

thorough analysis of the phenomenon, providing crucial 

insights into the understanding of complex interactions at the 

electrothermal contact interface. 

The choice of materials for this study is 

Titanium/Aluminum, which have been selected based on their 

physical properties presented in Table 1. With an electric 

current of I=300A and a thermal contact resistance of 

Rtc=1.8×10−3 (K.m2/W), these materials have been found to 

yield good agreement between the results obtained using both 

the Comsol model and the semi-analytical solution. 

Furthermore, the unique characteristics of Titanium and 

Aluminum make them particularly well-suited for 

electrothermal applications. Titanium is a high-strength, 

lightweight metal with excellent corrosion resistance and good 

thermal conductivity. Aluminum is also lightweight, with 

good thermal and electrical conductivity. Additionally, it has 

a low melting point, which makes it easy to shape and form. 

 

Table 1. Physical characteristics of the utilized materials 

 
 Titanium Aluminum 

D(mm) 30 30 

L(Mm) 60 60 

λ(W/m.K) 21.9 155 

ρ(Kg/m3) 4506 2730 

Cp(J/kg.K) 522 893 

σ(Ω-1m-1) 2.6 106 2,326 107 

 

In this section, the results obtained for two different cases 

of heating in electrothermal contacts will be presented.  

• The first case involves heating due to volumetric 

powers with finite lengths,  

• The second case focuses on heating due to the 

generated flow with infinite lengths.  

The analysis of these cases provides valuable insights into 

the heat transfer characteristics and behavior of the materials 

involved in electrothermal contact. 

 

➢ Heating due to volumetric powers with finite 

lengths 

 

 
 

Figure 2. Temperature fields related to volumetric powers 

 

Figure 2 provides a comparative analysis of the temperature 

fields generated by the flow using two different approaches: 

The semi-analytical method and the COMSOL simulation 

model. The simulation is performed using the 

Titanium/Aluminium material combination, with a generated 

flow intensity of 2000 W/m² and a partition coefficient α of 

0.7. The contact resistance is assumed to be Rtc=1.8×10−3 

(K.m²/W). At various time intervals, the temperature 

distribution patterns are examined. 

At t=2s, a notable difference is observed between the 

penetration depths of the temperature fields in aluminium and 

titanium. The penetration depth reaches 40mm in aluminium, 

indicating efficient heat propagation and response. On the 

other hand, the penetration depth in titanium is less than 20mm, 

suggesting a slower response to heat propagation compared to 

aluminium. This discrepancy can be attributed to the 

contrasting thermal conductivities and diffusivities of the two 

materials. 

It is important to consider that the hypothesis of semi-

infinite media is valid only for t<0.15τ [15, 16], where, τ 

represents the fundamental time constant. This time constant 

is derived from the transcendental equation solved using the 

separation of variables method [22]. The implication is that the 

semi-analytical approach provides accurate results within the 

specified time range, while the COMSOL simulation model 

offers a comprehensive and detailed analysis of the 

temperature fields. 

 

➢ Case 2: Heating due to the generated flow  

 

3.1 Generated flow (infinite lengths) 

 

Figure 3 depicts a detailed comparison of the short-term 

temperature changes between the Comsol simulation model 

and the semi-analytical model. Notably, in the aluminium bar 

at point x2=2 mm, the temperature difference between the two 

models begins to increase around t=6 s. Conversely, in the 

titanium rod at point x1= −2 mm, the deviation between the two 

curves is observed at t=33 s. These deviations can be attributed 

to the influence of thermal diffusivity. More specifically, at a 

given time, a material with higher thermal diffusivity will 

exhibit a greater depth of temperature penetration compared to 

a material with lower diffusivity. 

 

 
 

Figure 3. Temperature fields related to generated flow 

(infinite lengths) 
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This observation emphasizes that the semi-infinite 

approximation, which simplifies calculations by eliminating 

two constants (as x approaches ±∞), has limited convergence 

for materials with higher thermal diffusivity. As highlighted in 

Figure 4, the semi-analytical solution is valid only for t≤6s in 

Aluminium, while the method of separating variables 

converges beyond r=78s in the same case. 

 

 
 

Figure 4. Comparison between the simulation model and the 

semi-analytic model in short time 

 

3.2 Generated flow (finite lengths) 

 

To overcome these limitations and obtain more accurate 

results, it is proposed to solve the 'D' system using the Laplace 

method. This approach provides a more robust representation 

of the heating related to the flow generated in transitional 

mode at finite lengths. 

 

 
 

Figure 5. Temperature fields related to generated Flow 

(finite Lengths) 

 

Figure 5 provides a detailed comparison between the 

temperature profiles obtained from the semi-analytical model 

and the finite length model at different time intervals. The 

finite length model takes into account the boundaries of the 

system at shorter times (up to approximately 6 seconds). It can 

be observed that the resolution at finite lengths demonstrates a 

longer convergence time compared to the previous method. 

This is particularly relevant when considering situations where 

imposed lengths are present, which closely resemble real-

world scenarios. 

The incorporation of the Laplace method in our semi-

analytical model for electrothermal modeling unveils crucial 

nuances in the transient behavior of materials. Figures 3 and 4 

highlight the limitations of the case "Generated Flow (Infinite 

Lengths)," showcasing a notable divergence from Comsol 

simulations, particularly for highly diffusive materials like 

aluminum. 

The introduction of finite lengths in the case "Generated 

Flow (Finite Lengths)", coupled with the Laplace method, 

demonstrates enhanced convergence. This adaptation proves 

essential, providing a more robust representation of transient 

thermal behavior. Extending simulations up to t=90s 

strengthens the reliability of our approach and underscores the 

relevance of the Laplace method in modeling thermal 

transitions. 

This emphasizes the significance of employing techniques 

such as the Laplace method to address complexities associated 

with imposed lengths, ensuring dependable outcomes in 

practical electrothermal applications. 

 

 

4. CONCLUSIONS 

 

Electrothermal phenomena play a crucial role in numerous 

industrial applications, where the interaction between 

electricity and heat transfer is of paramount importance. The 

study of electrothermal processes aims to understand the 

complex interplay between electrical currents and thermal 

effects, enabling the development of efficient and reliable 

systems. 

This work investigates the problem of electrothermal 

contact, with a focus on heat conduction during short time 

intervals. Specifically, it develops an analytical approach to 

solve the direct problem of heat conduction in electrothermal 

contacts, taking into consideration the dissipation of heat due 

to Joule heating. This aspect has received limited attention in 

the existing literature, indicating the need for further 

investigation. 

Additionally, a semi-analytical model is employed, 

combining analytical techniques with numerical methods to 

provide a robust and accurate description of the heat transfer 

process. The model is validated and tested using the Comsol 

software, which enables comprehensive simulations and 

analysis of electrothermal contact phenomena. 

 

➢ The investigation of electrothermal contact 

phenomena, focusing on short time intervals, has 

provided valuable insights for industrial applications 

such as electric resistance spot welding. 

➢ The semi-analytical method used in this study shows 

convergence at short times for more diffuse materials 

like Titanium and Aluminum. 

➢ The depth of penetration and temperature changes 

can be accurately predicted within a time frame of 6 

seconds for Aluminum. 

➢ For Titanium, the convergence of the semi-analytical 

method occurs at longer times, around 33 seconds, 

due to differences in thermal diffusivity. 

➢ Considering finite lengths in the modeling approach 

provides additional insights into the heat transfer 

process. 

➢ The model converges for both short and long times, 
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regardless of the material's diffusivity, when finite 

lengths are considered. 

➢ The implications of these findings are significant for 

electric resistance spot welding, as engineers can 

optimize welding parameters for both Titanium and 

Aluminum. 

➢ Understanding the different thermal behaviors of 

these materials allows for precise control over the 

welding process. 

➢ The limitations of the semi-infinite assumption in 

modeling have been identified, emphasizing the 

importance of considering finite lengths for accurate 

temperature predictions. 

 

The validated semi-analytical model presents potential as a 

direct tool for determining key parameters governing 

electrothermal contacts. It can play a crucial role in 

experimental studies aimed at identifying and characterizing 

critical factors such as the partition coefficient, thermal 

resistance, and electrical resistance in electrothermal contacts. 

This potential application opens avenues for more targeted and 

informed experimental investigations, fostering a deeper 

understanding of underlying mechanisms and providing a 

foundation for optimizing the design and performance of 

electrothermal contact devices and systems. In the future, 

research could focus on utilizing the validated semi-analytical 

model to extract practical parameters, bridging the gap 

between theoretical knowledge and real-world applications. 

This approach has the potential to enhance the accuracy and 

applicability of electrothermal contact modeling in various 

industrial contexts. 
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