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The present study aims to accurately classify estrus cycle by using images of the uterus from 

female rats. Convolutional neural network-based deep learning techniques were utilized for 

the classification process. While the human menstrual cycle spans 28 days, in rats, it 

completes within 4-5 days. Female rats are particularly preferred in studies related to the 

female reproductive system due to being a model organism. In the study, sections stained 

with Hematoxylin and Eosin from the uterine tissue of female rats were examined under a 

light microscope, and their images were digitized. The obtained images were used to 

histologically classify the estrus cycles in rats. Following the examination, an artificial 

intelligence-based model was proposed for the classification of estrus cycles in rats using 

images obtained from uterine sections. The study classifies estrus cycles into four stages: 

proestrus, estrus, metestrus, and diestrus. In the proposed model, the classification success 

of sub-models belonging to the YOLOv5 algorithm, such as YOLOv5n, YOLOv5s, 

YOLOv5m was compared with histological results. The YOLOv5m model achieved an 

accuracy of 98.3%, precision of 99%, recall of 98%, and an F1-score of 98% in 

classification. By using the YOLOv5m architecture, a 98% accuracy in classifying estrus 

cycles was achieved, providing a robust deep learning approach for tissue analysis. The 

obtained results indicate that the proposed model can offer a second opinion support to 

expert pathologists in analyzing microscopic images. 
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1. INTRODUCTION

Owing to factors such as ease of care and feeding, shorter 

lifespans and gestation periods, and the ability to serve as 

models for other organisms, rats are commonly used in 

experimental studies. In a female reaching puberty, or the 

adolescent period, controlled by hormones, various changes 

occur in the ovarian and uterine tissues. Mammals exhibit 

estrus at different intervals depending on their species and ages. 

The period between the beginning of two consecutive estrus 

cycle is referred to as the estrus cycle or estrus period [1]. Due 

to the fact that in rats, the estrus cycle typically lasts 4-5 days 

compared to the 28-day menstrual cycle in humans, this 

animal species is often preferred as a model organism in 

studies related to the female reproductive system. In rats, the 

estrus cycle consists of four main stages: proestrus, estrus, 

metestrus, and diestrus [2, 3]. 

Artificial neural network-based deep learning studies have 

become widely used in various fields, including veterinary 

science and medicine, just as in many other areas nowadays [4, 

5]. Within the scope of the study, recent research in this field 

present in the literature has been examined. The reviewed 

studies particularly focus on the field of pathology, which 

investigates the changes occurring in tissues, cells, and organs, 

as well as their causes. In the literature based on convolutional 

neural network techniques, there are numerous studies 

utilizing deep learning methods on various tissues. İnik et al. 

[6] proposed a new method based on ESA architecture for

follicle counting from ovarian tissue images. In the study, a

total of 1750 images with different magnification levels (x10,

x20, x40) were classified into 5 groups. They mentioned that

their proposed model in follicle classification through

segmentation process was more successful compared to the

Faster R-CNN model. Sun et al. [7] classified pathological

diagnoses from images of endometrial (uterine lining) tissue

into 4 groups. They stated achieving successful results in the

classification field with their proposed model. Yan et al. [8],

on the other hand, proposed a hybrid convolutional deep

neural network model for classifying breast cancer tumor

types using an increased number of images. They reported

good results with 91.3% accuracy in a 4-class study conducted

through image augmentation methods. Additionally, Huo et al.

[9] employed the YOLOv5 model for the classification of

parasite eggs in microscopic images. They highlighted the

model's high average accuracy in an 8-class study containing

281 sample images. Drioua et al. [10] reported that effective

results were achieved for the early detection of cancerous

lesions in breast tissue images using the YOLOv5 model for

classification. Huang et al. [11] proposed a two-stage method

to enhance the rapid detection and screening effectiveness of

abnormal prostate cancer cells. In their study, they applied the

ResNet50 and YOLOv5 models to pathological cell images.
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They mentioned that in other models, due to the presence of 

numerous parameters and the complexity of model structures, 

overfitting occurred during training. However, they 

highlighted that the applied model, with its smaller number of 

parameters, reduced computational cost, and simpler structure, 

reduced the inference time. Guo et al. [12] conducted a study 

on the pathological detection of stomach cancer cells using the 

YOLOv5 model, aiming for deep learning-based classification. 

The study concluded that it could provide decision support for 

clinical judgment. On the other hand, Xu et al. [13] worked on 

deep learning-based cervical cell classification. They used a 

global average pooling layer to improve the recognition 

accuracy of cell images. They mentioned designing a 

superficial feature enhancement network to enhance the 

localization and recognition of weak cells. Additionally, data 

augmentation methods were implemented to enhance the 

model's detection capability. According to experimental 

results, the proposed model was stated to outperform 

CenterNet, YOLOv5, and Faster R-CNN algorithms in certain 

aspects such as time consumption and high recognition 

accuracy. Yu et al. [14] conducted research on pathological 

whole-slide images of uterine smooth muscle tumors. While 

the ResNet model was used as a classification network for 

cytologic atypia and necrosis, the YOLOv5 model was 

employed for mitotic count detection. The researchers 

mentioned achieving successful results with different 

parameter values. On the other hand, Çeçen and Özer [15] 

worked on the classification of pathological breast cancer 

images. They utilized the YOLOv5 model for a two-class 

grouped dataset consisting of 1693 image samples. According 

to experimental results, they expressed that the chosen model 

for classifying tumor types in pathological images was 

successful. When reviewing the studies in the literature, the 

focus was on parameters such as tissue type, image size, 

methodology used, number of classes, utilized model or 

algorithm, and the achieved accuracy value. The parameters 

used in the studies are presented in Table 1.  

 

 

Table 1. An overview of deep learning studies with pathological images 
 

Reference Tissue Type 
Image 

Size 
Method 

Number of 

Classes 
Model Accuracy 

İnik et al. [6] Ovary 1024×1024 
Segmentation, 

Classification 
6 Faster R-CNN 95.35% 

Sun et al. [7] Endometrium 224×224 Classification 4 HIENet 84.50% 

Yan et al. [8] Breast 2048×1536 Classification 4 Inception-V3 91.3% 

Huo et al. [9] Feces 512×512 Object Detection 7 YOLOv5 99.4% 

Drioua et al. [10] Breast 512×512 
Object Detection, 

Segmentation 
2 YOLOv5 89% 

Huang et al. [11] Prostate 200×200 
Classification, Object 

Detection 
5 

ResNet50, 

YOLOv5 
71.1% 

Guo et al. [12] Stomach 640×640 Object Detection 9 YOLOv5 61.1% 

Xu et al. [13] Cervical cell 512×512 Object Detection 8 GAN 99.81% 

Yu et al. [14] 
Uterine smooth 

muscle 
224×224 

Classification, Object 

Detection 
3 

ResNet, 

YOLOv5 
92% 

Çeçen and Özer [15] Breast 224×224 Classification 2 YOLOv5 95.3% 

 

1.1 Significance of the study 

 

Numerous studies have been conducted on determining 

estrus cycles in animals, encompassing methods such as smear 

tests, cytological analyses, and histological examinations [16-

18]. Furthermore, there are detailed publications defining the 

histological characteristics of estrus cycles specifically in rats 

[19, 20]. Emphasis has been placed on the effects of drugs or 

chemicals on the reproductive functions of female rats, 

highlighting that these effects often manifest as alterations in 

the normal morphology of the reproductive system or 

disruptions in the duration of specific stages within the estrus 

cycle. It has been stated that these changes can be accurately 

and consistently described only when a pathologist possesses 

sufficient knowledge and expertise regarding the continuously 

varying histological appearance of various components within 

the uterus throughout the estrus cycle. Despite the existence of 

comprehensive reports illustrating the normal appearance 

during the estrus cycle of rats for many years, it has been 

reported that they are often insufficient in defining different 

criteria to distinguish the end of one phase from the beginning 

of another [19]. Based on personal experience and literature 

references, aiming to address the shortcomings in determining 

the stages of the estrus cycle, a practical method was intended 

to be developed for histologists and pathologists involved in 

studies related to the female reproductive system. In this study, 

a convolutional neural network-based model is proposed for 

the classification of estrus cycles based on pathological images. 

Determining the estrus cycles in female rats provides 

fundamental information about the reproductive system. The 

analysis in the study was conducted using deep learning 

techniques on sections obtained from uterine tissue. Deep 

learning methods such as the YOLOv5 model were preferred 

for this analysis. The significance of the proposed model can 

be summarized as follows: 

- The sections converted into pathological samples are 

being examined under a microscope by expert 

pathologists. In the study, the images of these 

sections have been digitized. 

- The training time of the proposed model is 8-10 

minutes, allowing for a quick process compared to 

the examination time of the relevant tissue section 

under the microscope. 

- The monitoring of the reproductive system in rats 

serves as a model for the human reproductive system. 

It is an important study for the detection of potential 

diseases in the reproductive system and for 

monitoring pregnancy and pseudopregnancy 

conditions. 

- It enables the use of pathological images in artificial 

intelligence-based decision support systems. 
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1.2 Contribution and novelty 
 

When examining the studies in the literature, it is observed 

that convolutional neural network (CNN) based models and 

architectures have achieved success in the classification field 

with high accuracy rates and low loss rates. The utilization of 

CNN-based layered architecture enhances the inference of 

different features from images, thereby increasing the success 

and predictive power of the model.  

The most significant benefit of digitized pathological 

images is their utilization as input data for artificial 

intelligence-supported systems [21]. 

To sum up, the contributions of this study to the literature 

are as follows: 

• Specifically, an original dataset has been created for 

the examination of estrus cycles on uterine tissue. 

• A collaborative study has been established, bringing 

together interdisciplinary fields such as medicine, veterinary 

science, and computer science. 

• The YOLOv5 model, typically used for Object 

Detection, has been employed as a classifier. The limited 

number of studies in this field makes the conducted research 

significant. 

• High accuracy has been achieved in classifying estrus 

stages of uterine tissue. This outcome indicates that the model 

can provide a second opinion support to expert pathologists. 

 

 

2. MATERIALS AND METHOD 

 

 
 

Figure 1. Obtaining process of images related to uterine tissue 

 

 
 

Figure 2. Samples related to the estrus cycle 

 

The study utilized 78 Sprague Dawley rat uterine tissues, 

for which ethical approval was obtained from the Local 

Animal Experiments Ethics Committee of Gazi University 

with the ethical approval code G.U.ET-23.038 for the dataset 

used. Tissues were processed through routine histological 

procedures, stained using the Hematoxylin and Eosin (H&E) 

method, and photographed at 4x magnification using an 

Olympus BX 51 light microscope. The images of the captured 

uterine tissue were classified and grouped by an expert 

pathologist based on the estrus cycle stages of the rats 

(proestrus, estrus, metestrus, diestrus). The process of 

obtaining images related to the tissue is depicted in Figure 1. 

The obtained images are in different sizes such as 5184 × 3456, 

3071 × 2126, and 2040 × 1536, and have been grouped 

according to classes with the guidance of an expert pathologist. 

The dataset comprises a total of 195 images, divided into 

proestrus (37), estrus (59), metestrus (44), and diestrus (55) 

phases. Within the dataset, the images were divided for the 

model's optimal performance into 70% for training, 10% for 

testing, and 20% for validation. For each phase of the estrus 

cycle, Figure 2 shows pathological tissue samples respectively 

classified as (a) Proestrus, (b) Estrus, (c) Metestrus, and (d) 

Diestrus.  

 

2.1 Proposed method 

 

Deep learning constitutes a multi-layered structure that 

makes data meaningful and generates predictions about new 

data [22]. In this study, the detection of tissue classes is 

presented using the YOLOv5 algorithm based on 

Convolutional Neural Networks (CNNs), which is one of the 

deep learning methods. Compared to previous YOLO models, 

the YOLOv5 model is enhanced with the CSPDarknet53 

backbone and PANet (Path Aggregation Network) structure 

for feature extraction. It enables better and faster processing of 

high-resolution images, exhibiting efficient and rapid 

operation supported by both CPU and GPU/TPU. In the study, 

pathological images of uterine tissue sections are used as input 

data for the model. A structure is proposed using the YOLOv5 

model to accurately classify stages of the estrus cycle based on 

tissue images. The proposed method consists of three stages as 

depicted in Figure 3: data preprocessing, classification using 

the YOLOv5 architecture for feature extraction, and 

assessment of performance metrics. 
 

 
 

Figure 3. Stages of the proposed method 

 

2.1.1 Data preprocessing 

The data preprocessing stage aimed to prepare the dataset 

for use in the study. A sequential series of operations was 

applied to the created dataset, including increasing the number 

of images, resizing images, and partitioning data into training, 

testing, and validation sets. Augmenting the number of images 

was performed to enhance the volume of the dataset, thereby 

strengthening the convolutional neural network structure. In 

the study, data augmentation techniques such as mirroring, 
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rotation, shearing, sharpening, and 2-D Gaussian blur filtering 

were applied, increasing the total number of available data 

from 195 to 1755 instances. Sample images illustrating the 

outputs of the data augmentation processes mentioned in 

Figure 4 are provided. 

As the second step of the data preprocessing stage, the 

augmented data was uniformly resized. It is crucial for the 

effective functioning of the model that images have equal 

aspect ratios and balanced class distributions. Therefore, since 

images with a 4x magnification rate in the dataset were of 

various sizes, each image was resized to the optimal working 

size of the model, which is 224×224 pixels. As the final step 

of the data preprocessing stage, the dataset was divided into 

70% for training, 10% for testing, and 20% for validation 

purposes. Accordingly, the dataset was distributed as 1227 

instances for training, 178 instances for testing, and 350 

instances for validation, thus completing the data preparation 

process. 

 

 
 

Figure 4. Application of data augmentation methods 

 

2.1.2 Classification with YOLOv5 architecture 

The YOLOv5 model architecture is the latest version of the 

YOLO (You Only Look Once) model family, designed for 

object detection and classification. YOLOv5 stands out as a 

fast and accurate object detection model developed with the 

PyTorch library. The architectural network of the YOLOv5 

method consists of three main sections named backbone, neck, 

and head. The focus of the backbone section lies in extracting 

feature information from input images. The neck section 

combines the extracted feature information to generate a three-

scale feature map. Meanwhile, the head section is responsible 

for classifying the objects within the created feature map. The 

backbone network is a convolutional neural network that 

generates feature maps of different sizes from the input image 

through multiple convolution and pooling steps. Within the 

YOLOv5 architecture, as depicted in Figure 5, there are layers 

of the feature map created within the backbone network. The 

neck network merges feature maps at different levels to obtain 

more correlated information from feature maps of different 

sizes and reduce information loss [23]. 

The core focus of the architecture is based on slicing each 

image and merging to better extract features during 

subsampling. The CBL (Convolution, Batch Normalization, 

Leaky ReLU) module consists of three main modules: 

convolution, normalization, and Leaky ReLU activation 

function. The CSP (Cross-Stage Partial) module, which comes 

in two variations within the backbone and neck networks, is 

employed in the architecture. The CSP network aims to reduce 

model size while maintaining accuracy and boosting inference 

speed. There exists a slight difference between the two types 

of CSP networks utilized. The CSP network in the backbone 

consists of one or more residual units, while in the neck, the 

CSP network replaces residual units with CBL modules. Here, 

dimension reduction operations are conducted in the pooling 

step to represent image features at a higher level of abstraction. 

Essentially, this process involves compressing the input 

feature map, reducing the complexity of computations within 

the network. On the other hand, feature compression facilitates 

the extraction of fundamental characteristics [23]. The Concat 

module aids in combining feature maps obtained from 

multiple convolutional layers to acquire deeper and more 

detailed features, contributing to a more accurate perception 

and classification of objects. Additionally, the Concat module 

enables the network to achieve higher accuracy with fewer 

parameters. Dropout layers are employed in deep learning 

models to mitigate overfitting. However, the YOLOv5 

architecture, in its general structure, does not include dropout 

layers. Instead, the head module layers are utilized to enhance 

feature extraction and control overfitting. 

 

 
 

Figure 5. YOLOv5 model network architecture 

 
2.1.3 Assessment of performance metrics 

In the study, evaluating the performance of the applied 

model in detecting estrus cycle phases requires assessment 

based on specific criteria. For this purpose, assessment metrics 

such as accuracy, precision, recall, and F1 score are utilized. 

Among the methods used to summarize the success of the 

classification algorithm is the confusion matrix [24]. The 

confusion matrix is created based on parameter values such as 

accuracy, precision, recall, and F1 score.  

Accuracy parameter is one of the metrics that explains the 

accuracy of the algorithm in the classification process [25]. 

The accuracy value is expressed as the ratio of the number of 

matching samples to the total number of samples. This 

parameter is considered a criterion for assessing how well the 

model performs. It ranges between 0 and 1, and as the value 

approaches 1, the success rate increases [19]. The calculation 

formula is provided in Eq. (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
    (1) 

 

The Precision parameter is used to measure the success of 
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positive cases in a convolutional neural network [26]. It is 

defined as the ratio of true positive predictions to the total 

positive predictions made by the model. As this value 

increases, the success of the network also increases 

accordingly. It is calculated according to Eq. (2). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (2) 

 

The Recall parameter signifies how much of the positive 

given classes were predicted as positive or how much of the 

negative given classes were predicted as negative. It is 

calculated according to the formula given in Eq. (3). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (3) 

 

F1 Score parameter is expressed as the harmonic mean of 

precision and recall metrics. It is calculated according to the 

formula in Eq. (4). 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

 

 

3. DISCUSSION AND EXPERIMENTAL RESULTS  

 

Training a model in deep learning is a complex and 

computation-intensive task. Utilizing GPU support in the 

working environment has made model training faster, leading 

to better results. Studies conducted using the YOLOv5 model 

indicate that as the number of parameters increases, the 

accuracy value rises [27]. In this study, aiming to classify 

stages of the estrus cycle, three sub-models of the YOLOv5 

model, namely YOLOv5n, YOLOv5s, and YOLOv5m, were 

employed. The training outputs and results of these models 

were examined. The results of the training performed based on 

input images of size 224×224 for YOLOv5n, YOLOv5s, and 

YOLOv5m models are presented in Table 2. The study was 

conducted on a server with a Tesla T4 GPU and 16 GB of 

RAM within the Google Colab environment. The number of 

epochs for training was set to 100. The training time for the 

three applied models ranged from 8 to 10 minutes. The 

YOLOv5m model achieved the highest accuracy, reaching 

98.3% based on the Accuracy parameter. According to the 

results, an increase in the number of layers was observed to 

correlate with an increase in the accuracy value. The training 

accuracy values obtained for 100 epochs using YOLOv5n, 

YOLOv5s, and YOLOv5m models are depicted in Figure 6. 

Additionally, the loss graphs for training and test data 

concerning YOLOv5n, YOLOv5s, and YOLOv5m models are 

provided in Figure 7.  

Adjusting hyperparameters during model training in deep 

learning significantly affects the model's performance. The 

hyperparameters used in training the YOLOv5 model in the 

study are provided in Table 3. The learning rate is crucial in 

determining the amount of update to model weights. A high 

learning rate can provide speed but might result in variable and 

unstable weight updates. The number of epochs determines 

how many cycles the model will be trained for. It's crucial to 

properly set the number of epochs for a good model training. 

Depending on the number of epochs, the model might exhibit 

overfitting or underfitting. The number of epochs should be 

chosen carefully to balance these unwanted conditions. In the 

study, to prevent the mentioned conditions, the number of 

epochs was set to 100. The batch size represents the number 

of samples processed in each epoch and is adjusted based on 

the dataset's size. The images were resized to the pixel size 

where classification worked most efficiently according to the 

YOLOv5 model. The Adam optimization algorithm, a 

gradient-based optimization algorithm used to achieve rapid 

convergence and reduce overfitting issues, was employed. 

 

Table 2. Training metrics of YOLOv5 sub-models on the uterus dataset 
 

Model Size (Pixel) Accuracy (%) Training Duration (Hour) Number of Training Layers Number of Accuracy Layers 

YOLOv5n 224 96.6 0.136 149 117 

YOLOv5s 224 96.6 0.145 149 117 

YOLOv5m 224 98.3 0.161 212 166 

 

 
 

Figure 6. Training accuracy graph according to the YOLOv5 model 
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Figure 7. Training-test loss graphs according to the YOLOv5 model 

 

Table 3. Training parameter values for YOLOv5 model 

 
Parameters Value 

Rate of learning 0.001 

Number of Epochs 100 

Batch size 64 

Image size 224 

Optimization Algorithm Adam 

 
Table 4 presents the distributions and evaluation metrics of 

the results obtained from data trained on the YOLOv5n model. 

It's observed that the overall accuracy value according to the 

YOLOv5n model is 96.63%. Regarding the distribution by 

classes, the most successful class based on the recall metric is 

the 'diestrus' stage. 

When examining the prediction rates of data trained on the 

YOLOv5n model by classes, it was observed that among 50 

image data belonging to the 'diestrus' stage, 27 images had an 

accuracy rate of 90% and above. Among randomly selected 

images, the lowest accuracy rate was 60%, and the lowest 

recall rate according to the model was 94%, associated with 

the 'estrus' stage. In Figure 8, prediction rates for the 'diestrus' 

stage and randomly selected images with a 4x optical zoom 

ratio are provided. Additionally, non-normalized and 

normalized confusion matrices created for performance 

evaluation of the YOLOv5n model are shown in Figure 9. 

 

Table 4. Test results of data trained with YOLOv5n model 

 
Stage Number of Images Accuracy (%) Precision Recall F1 Score 

Whole 178 96.63 0.96 0.96 0.96 

Proestrus 34 98.31 0.94 0.97 0.96 

Estrus 54 98.31 1.0 0.94 0.97 

Metestrus 40 98.88 1.0 0.95 0.97 

Diestrus 50 97.75 0.93 1.0 0.96 

 

 
 

Figure 8. Sample images of the diestrus stages trained in the YOLOv5n model 
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Figure 9. Confusion matrices for the YOLOv5n model 

 

The distribution and evaluation metrics of the results 

obtained from data trained on the YOLOv5s model are 

presented in Table 5. An accuracy of 96.63% was achieved 

with the YOLOv5s model. According to the confusion matrix, 

it's observed that all 50 images for the 'diestrus' stage were 

predicted correctly, supported by the sensitivity parameter.  

Upon examining the prediction rates of data trained with the 

YOLOv5s model by classes, it was observed that among a 

randomly selected 50 image data belonging to the 'diestrus' 

stage, 33 images had a prediction rate of 90% and above. 

Among the randomly selected images, the lowest accuracy rate 

was 60%, and the lowest accuracy rate compared to the overall 

model was 90%, associated with the 'metestrus' stage. Figure 

10 illustrates the prediction rates for the 'diestrus' stage and 

random image samples. Additionally, non-normalized and 

normalized confusion matrices created for the performance 

evaluation of the YOLOv5s model are shown in Figure 11. 

According to the confusion matrix, it's observed that all 50 

images in the 'diestrus' stage with the highest prediction rate 

were predicted correctly. For the 'metestrus' stage, out of the 

allocated 40 images, 4 images were predicted as 'diestrus,' 

which affected the class's successful prediction rate. 

The distributions and evaluation metrics of the results 

obtained from data trained on the YOLOv5m model are 

presented in Table 6. According to the YOLOv5m model, the 

classes predicted with the highest success rates based on the 

recall parameter are 'diestrus,' 'estrus,' and 'proestrus' stages. 

 

 
 

Figure 10. Sample images of the diestrus stage trained in the 

YOLOv5s model 

 

 
 

Figure 11. Confusion matrices for the YOLOv5s model 

 

Table 5. Test results of data trained with YOLOv5s model 

 
Stage Number of Images Accuracy (%) Precision Recall F1 Score 

Whole 178 96.63 0.97 0.96 0.97 

Proestrus 34 99.44 1.0 0.97 0.99 

Estrus 54 98.88 0.98 0.98 0.98 

Metestrus 40 97.75 1.0 0.90 0.95 

Diestrus 50 97.19 0.91 1.0 0.95 
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Table 6. Test results of data trained with YOLOv5m model 

 
Stages Number of Images Accuracy (%) Precision Recall F1 Score 

Whole 178 98.31 0.99 0.98 0.98 

Proestrus 34 100 1.0 1.0 1.0 

Estrus 54 100 1.0 1.0 1.0 

Metestrus 40 98.31 1.0 0.93 0.96 

Diestrus 50 98.31 0.94 1.0 0.97 

 

 
 

Figure 12. Sample images for classes trained in YOLOv5m 

model 

 

In the examination of data trained according to the 

YOLOv5m model, when analyzing the prediction rates for 

classes, a significantly high accuracy was achieved for image 

data belonging to the proestrus, estrus, and diestrus stages in 

our 4-class dataset. Comparing with YOLOv5n and YOLOv5s 

models, the increase in the total success rate along with the 

number of correctly predicted classes demonstrates that the 

YOLOv5m model is more successful than other models. This 

situation indicates that the success rate is influenced by the 

increase in parameters and layers of the applied model. In 

Figure 12, randomly selected sample images belonging to 

diestrus, estrus, and proestrus stages with high prediction 

accuracy are provided. The non-normalized and normalized 

confusion matrices created for evaluating the performance of 

the YOLOv5m model are given in Figure 13. 

When test data is evaluated according to the YOLOv5 

model, low accuracy in the classification process for certain 

image examples is presented in Figure 14. The estrous cycle 

occurs gradually in four stages: proestrus, estrus, metestrus, 

and diestrus, respectively. In Figure 14, for instance, image (a) 

is expected to be predicted as a 1st-stage image, but it is 

observed that the prediction closely aligns with the 3rd stage. 

Similarly, for image (b), although it is expected to be predicted 

as the 3rd stage, the prediction ratio indicates proximity to the 

2nd and 4th stages. Considering the high similarity in some 

classes, it is apparent that image quality and resolution play a 

decisive role. 

When comparing our study with similar studies in the 

literature, as shown in Table 7, for instance, Sun et al. [7] 

conducted a classification process for endometrial tissue using 

deep learning techniques in 2019. Similar to our study, a 

dataset consisting of 4 classes and 224x224-sized images was 

used. However, the success of the proposed HIENet model 

was found to be 84.5%. Our study, employing the YOLOv5 

model, achieved a high accuracy rate of 98.3%, showcasing 

the success of the model compared to similar studies. Similarly, 

in the study by Yu et al. [14] in 2023, focusing on uterine 

smooth muscle tissue, the YOLOv5 model was preferred. The 

study, conducted on 3-class 224×224-sized images, achieved 

a success rate of 92%. According to the results, it's evident that 

the number of classes has an impact on model success. In the 

study conducted by Çeçen and Özer [15] in 2023, 

classification was performed for the tumor class in two groups 

based on pathological biopsy images of breast tissue. It was 

reported that a success rate of 95.3% was achieved using the 

YOLOv5 model in the preferred study. Our study's dataset and 

model seem to yield more successful results compared to 

similar studies. Important factors affecting model success 

include the size, resolution, and quantity of images used in the 

dataset. 

 

 
 

Figure 13. Confusion matrices for YOLOv5m model 

 

 
 

Figure 14. Low prediction confidence for estrus periods 
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Table 7. Comparison between the study conducted and other methods 

 

References Tissue Type 
Image 

Size 
Method 

Number of 

Classes 
Model Accuracy 

Sun et al. [7] Endometrium 224×224 Classification 4 HIENet 84.50% 

Yu et al. [14] 
Uterus smooth 

muscle 
224×224 

Classification, Object 

Detection 
3 

ResNet, 

YOLOv5 
92% 

Çeçen & Özer [15] Breast 224×224 Classification 2 YOLOv5 95.3% 

The present study 

2023 
Uterus 224×224 Classification 4 YOLOv5 98.3% 

 

 

4. CONCLUSION 

 

The pathological sections taken from the experimental 

animal in the study were examined under a microscope and 

digitized. This method is crucial for the detection of potential 

diseases or monitoring expected conditions in the reproductive 

system of the organism. In this study focusing on the 

classification of the relevant tissue using deep learning 

techniques, the aim was to provide expert pathologists with a 

second opinion. The YOLOv5 model was employed for the 

estimation of estrus cycle stages in tissue classification. A 

success rate of 98.3% was achieved by evaluating the results 

of the YOLOv5 model's performance based on its YOLOv5n, 

YOLOv5s, and YOLOv5m sub-models. Utilizing Google 

Colab as the working environment with GPU support 

expedited model training in the study. 

The originality of the dataset created using sections from 

uterine tissue for classifying estrus stages within the scope of 

this study will contribute to the literature due to the scarcity of 

studies in this field. In the literature, it is observed that studies 

preferring the YOLOv5 architecture mainly focus on object 

detection. Particularly, the limited number of studies in the 

field of classification using the preferred architecture renders 

our study unique.  

The results were evaluated in conjunction with expert 

opinions, and the proposed model provides the opportunity for 

tissue classification with minimum time cost, low error rate, 

and high accuracy value. In this respect, it enhances the 

potential preference for artificial intelligence-based decision 

support systems in pathological tissue classification. 
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