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With pumps as the main devices, the main drainage system (MDS) is critical to mine 

construction and production. Considering the high cost of traditional manual pump scheduling 

strategy and the wide adoption of time-of-use (TOU) electricity traffic in coal mines, this paper 

attempts to reduce the mine operation cost by scheduling the pumps in the flat and valley 

periods instead of the peak period. For this purpose, the pump scheduling was considered as 

an optimization problem, the water level of the sump was predicted by double exponential 

smoothing, and then the optimal pump scheduling plan was derived by ant colony optimization 

(ACO). The pump scheduling plan obtained by the proposed method was proved cost efficient 

through experiments on a gold mine in China.  
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1. INTRODUCTION

The mine drainage system (MDS) prevents groundwater 

and surface water from leaking into the mine during mine 

construction and production, providing an important guarantee 

of mine safety against water damage [1]. Most MDSs are 

controlled manually, i.e. turned on or off by an operator based 

on his/her experience. The manual control mode consumes lots 

of electricity. In Chinese coal mining enterprises, the MDSs 

account for 40 % of the power consumption by all 

electromechanical devices in coal mines [2-3]. Since the pump 

is the centerpiece of each MDS, it is important to design a 

pump scheduling algorithm to save energy and reduce the 

relevant cost. 

Many pump scheduling methods are available to water 

distribution systems (WDSs). However, these approaches 

cannot be applied directly to the MDSs, owing to the following 

differences between the WDSs and MDSs [4]: the water flow 

is stable in the WDSs but constantly changing in MDSs; the 

urban water demand has basically the same daily variation [5], 

while the mine water inflow mutates from time to time. 

To solve the problem, this paper proposes a cost-effective 

pump scheduling (CEPS) algorithm based on water inflow 

prediction and ant colony optimization (ACO). The main 

contributions of this paper incudes are as follows: treating the 

pump scheduling in the MDSs as a discrete optimization 

problem; developing a water inflow prediction method based 

on double exponential smoothing to guide the pump 

scheduling; creating an ACO-based algorithm to obtain the 

most cost-effective pump schedule. 

The remainder of this paper is organized as follows: Section 

2 reviews the previous studies on pump scheduling; Section 3 

formulates the pump scheduling problem; Section 4 details the 

CEPS algorithm; Section 5 applies the CEPS into an actual 

case of pump scheduling and analyzes the results; Section 6 

wraps up this paper with some conclusions 

2. LITERATURE REVIEW

Pump scheduling is an emerging hotspot in the research of 

the WDSs, whose water supply relies heavily on pump stations. 

The pump scheduling of the WDSs is generally treated as an 

optimization problem, and solved by different optimization 

algorithms to obtain the (sub)optimal solution. For example, 

Reference [5] reduces the energy and maintenance costs of 

WDS pump scheduling by two meta-heuristics, simulated 

annealing (SA) and hybrid genetic algorithm (HGA), and 

experimentally proves that the SA outperforms the HGA. 

Reference [6] considers the joint problem of pump scheduling 

and water flow control as a mixed-integer second-order cone 

program, and solves the program with the alternating direction 

method of multiplier. Reference [7] creates a mixed-integer 

linear programming model for the scheduling of variable-

speed pumps in hydropower stations. Reference [8] models the 

scheduling of multiple water-lifting pumps in China’s South-

to-North Water Diversion Project, which aims to solve the 

water shortage in northern China, as an optimal operation 

problem, and solves the problem through dynamic 

programming. Reference [9] puts forward a similar solution to 

Mahasawat water distribution station in Thailand. All these 

energy-saving strategies provide good references to the pump 

scheduling of the MDSs. However, special algorithms should 

be designed for the MDSs, owing to the said differences 

between the WDSs and MDSs. 

Some of the representative studies on pump scheduling of 

the MDSs are reviewed as follows. Reference [10] presents a 

variable-speed hybrid Petri net model of the MDS, and creates 

on online pump control algorithm based on the model, but the 

model is difficult to establish due to the MDS variation from 

mine to mine. Targeting the coal seam 14# in China’s 

Linnancang Coalmine, Reference [11] sets up a 

comprehensive model of the seepage field to determine the 

proper water level in adjacent aquifers, and optimizes the main 
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drainage capacity using the finite-element subsurface flow 

system. To improve pump efficiency in the MDSs, Reference 

[12] establishes a model based on the HGA, but fails to 

consider the change law of water level. Reference [13] 

constructs a multi-pump MDSs optimization model, and 

applies the artificial bee colony algorithm to determine the 

number of running pumps in different periods. Reference [14] 

develops a gray correlation model between water inflow and 

time, as well as an economic MDS model to implement the 

load shifting schedule. Based on the water inflow of China’s 

Fuxin Coalmine, Reference [15] provides a dynamic gray 

model, and designs an automatic, energy-efficient EDS control 

system. To sum up, the above models all consider MDSs pump 

scheduling as a continuous optimization problem, which may 

lead to fragmentation of pump running time. The frequent start 

and stop of pumps will exacerbate equipment aging. Therefore, 

this paper views the pump scheduling as a discrete 

optimization problem, aiming to strike a balance between the 

number of pump starts/stops and the electricity consumption. 

 

 

3. PROBLEM FORMULATION 

 

Table 1 lists the main symbols and their definitions in this 

paper. A typical MDS consists of a water sump to store the 

mineral water, and several pumps to drain the water from the 

sump when the water level surpasses the pre-set threshold. 

Because the electricity consumption varies from period to 

period in one day, the power supply usually adopts the time-

of-use (TOU) electricity tariff mechanism to minimize the 

pressure on the grid. As shown in Figure 1, the TOU electricity 

tariff divides one day (24 hours) into several periods, and the 

electricity tariff in each period may falls into the valley, flat or 

peak segment. In this case, the pump scheduling is to 

determine the pump running period that minimizes the 

electricity consumption and control the water level in the sump 

under the pre-set threshold. 

 

Table 1. Symbols and definitions 

 

Symbol Definition 

𝐻𝑡 Water level at time 𝑡 

𝜙 The predefined threshold of water level 

𝐾 Number of pumps of an MDS 

𝑝 Power of a pump 

𝐿 Length of predefined time period (unit: minute) 

𝑁 
Number of time periods in 24 hours, 𝐿 ⋅ 𝑁 =

1440 minutes 

𝒞 Cost of pumps in 1 day 

𝑐𝑝, 𝑐𝑓, 𝑐𝑣 
Electricity tariff in peak, flat, and valley 

segment, respectively 

𝑛𝑠 
Number of running pumps in 𝑠th period, 0 ≤

𝑠 ≤ 𝑁 

𝑐𝑠 Electricity tariff in 𝑠th period 

𝐻𝑠 Water level at the beginning of 𝑠th period 

𝐹𝑠 
Increased water level by water inflow in 𝑠th 

period 

𝐷𝑠 
Decreased water level by draining water with 

pumps in 𝑠th period 

𝐹𝑠
(1)

 Basic exponential smoothing value of 𝐹𝑠 

𝐹𝑠
(2)

 Double exponential smoothing value of 𝐹𝑠 

�̂�𝑠 Predicted value of 𝐻𝑠 

𝑑 
Decreased water level by one pump in one time 

period 

ω Smoothing factor to compute 𝐹𝑠
(1)

 and 𝐹𝑠
(2)

 

G = (V, E, W) 
Multistage directed and weighted graph for 

pump schedule 

𝑣𝑗
(𝑠)

∈ V A vertex of G, which is in 𝑠th stage 

𝑣𝑠
(0)

, 𝑣𝑒
(𝑁+1)

∈ V 
Additional first and last vertex of G 

V𝑠 Set of vertices of 𝑠th stage 

𝑤𝑖,𝑗 Weight of edge 〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉 

𝑀 Number of ants of ACO 

𝜏𝑖,𝑗  Pheromone laying on edge 〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉 

𝜂𝑖,𝑗  
Locally available heuristic information of edge 

〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉 

𝜌𝑖,𝑗
𝐴  

Probability of ant 𝐴 at 𝑣𝑖
(𝑠)

 to choose 𝑣𝑗
(𝑠+1)

 to 

visit 

𝒞𝑏𝑒𝑠𝑡  Cost of the best pump schedule 

𝛼, 𝛽, 𝜌 Parameters used in ACO 

𝐼𝑡𝑟𝑀𝑎𝑥 Maximum number of iterations of ACO 

 

 
 

Figure 1. The TOU electricity tariff 

 

Let 𝐻𝑡  be the water level of the sump at time 𝑡, 𝜙 be the pre-

set threshold of water level, and 𝐾 be the number of pumps of 

an MDS. Meanwhile, it is assumed that the pumps have the 

same, nonadjustable power 𝑝 , each day (24 hours) 

encompasses 𝑁  periods of equal length L and the same 

electricity tariff, and the electricity tariffs in peak, flat, and 

valley segments are 𝑐𝑝, 𝑐𝑓 and 𝑐𝑣, respectively. Then, the daily 

pump cost of the MDS can be expressed as: 

 

𝒞 = ∑ ∫ (𝑝 ⋅ 𝑟(𝑡) ⋅ 𝑐(𝑡))𝑑𝑡
24

0
𝐾
𝑖=1                     (1) 

 

where 𝑟(𝑡) = 0 if the pump is off at time 𝑡, and 𝑟(𝑡) = 1 if 

the pump is on at time 𝑡; 𝑐(𝑡) is the electricity tariff at time 𝑡. 

Since each day is divided into several periods, equation (1) can 

be transformed into: 

 

𝒞 = ∑ 𝑝 ⋅ 𝑛𝑠 ⋅ 𝑐𝑠 ⋅ 𝐿𝑁
𝑠=1                              (2) 

 

where 𝑛𝑠  and 𝑐𝑠  are the number of running pumps and 

electricity tariff in period s, respectively. Therefore, the pump 

scheduling problem can be defined as: 

 

𝑚𝑖𝑛 𝒞 = ∑ 𝑝 ⋅ 𝑛𝑠 ⋅ 𝑐𝑠 ⋅ 𝐿𝑁
𝑠=1

𝑠. 𝑡.
0 ≤ 𝑛𝑠 ≤ 𝐾

𝑐𝑠 ∈ {𝑐𝑝 , 𝑐𝑓 , 𝑐𝑣}

0 ≤ 𝐻𝑡 ≤ 𝜙

                       (3) 

 

If the water level of the sump is predictable, then the 

problem defined in equation (3) is to find the 𝑛𝑠  at the 

beginning of each period, such that the solution space contains 
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(𝐾 + 1)𝑁 feasible solutions. This task is hard to solve by brute 

force. This paper adopts the ACO to complete the task. The 

ACO provides a desirable way to solve discrete optimization 

problems [15]. This algorithm is inspired by the behavior of 

real ant colonies: when an ant colony wants to find the shortest 

path between their nest and a food source, the ants constantly 

release pheromones, directing each other to resources, while 

exploring their environment. Each ant constructs a feasible 

solution and updates the pheromones according to the quality 

of solution, and the pheromones guide the ants to construct a 

better solution in the next loop. 

 

 

4. CEPS DESIGN 

 

4.1 Water level prediction 

 

As mentioned before, each day can be divided into several 

periods of equal length; in each period, each pump is either in 

the on state or the off state. Hence, it is necessary to determine 

the water level at the beginning of each period. Let 𝐻𝑠 be the 

water level at the beginning of period 𝑠. Then, the water level 

at the subsequent period can be calculated as: 

 

Hs+1 = Hs + Fs − Ds                             (4) 

 

where 𝐹𝑠  is the water level increase induced by the water 

inflow; 𝐷𝑠  is the water level decrease induced by the water 

drainage. The value of 𝐷𝑠  is already known, as the pump 

parameters are given in advance. The pumps should be turned 

on if 𝐻𝑠+1 is greater than the pre-set threshold on water level 

𝜙. Since the 𝐹𝑠 is constantly changing, the double exponential 

smoothing was introduced to predict its value. 

 

Let ω be the smoothing factor. Then, the basic exponential 

smoothing value of the 𝐹𝑠 can be described as: 

 

Fs+1
(1)

= ωFs + (1 − ω)Fs
(1)

                          (5) 
 

The double exponential smoothing value of the 𝐹𝑠  can be 

described as: 

 

Fs+1
(2)

= ωFs+1
(1)

+ (1 − ω)Fs
(2)

                       (6) 
 

Then, the predicted value of 𝐹𝑠+𝑗 can be obtained as: 

 

�̂�𝑠+𝑗 = 𝑎𝑠 + 𝑏𝑠𝑗                                    (7) 

 
where  

 

{
𝑎𝑠 = 2𝐹𝑠

(1)
− 𝐹𝑠

(2)

𝑏𝑠 =
ω

1−ω
(𝐹𝑠

(1)
− 𝐹𝑠

(2)
)

                            (8) 

 
The value of 𝐷𝑠 depends on the number of running pumps 

𝑛𝑠 and the water level reduction 𝑑 caused by one pump in each 

period: 

 

𝐷𝑠 = 𝑛𝑠𝑑                                        (9) 
 

Therefore, the predicted value of �̂�𝑠+1 can be written as: 

 

Ĥs+1 = Hs + F̂s − nsd                         (10) 

4.2 ACO-based pump scheduling 

 

Before solving the pump scheduling problem by the ACO, 

the problem defined in equation (3) must be transformed into 

the shortest path problem in a graph. 

As shown in Figure 2, the pump scheduling problem can be 

transformed into a multi-stage directed and weighted graph 

G = (V, E, W),  where V =

{𝑣𝑗
(𝑠)

|𝑠 = 1,2, ⋯ , 𝑁;  𝑗 = 0,1, ⋯ , 𝐾. } ∪ {𝑣𝑠
(0)

, 𝑣𝑒
(𝑁+1)

} , E =

{〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉} ∪ {〈𝑣𝑠

(0)
, 𝑣𝑖

(1)〉} ∪ {〈𝑣𝑖
(𝑁)

, 𝑣𝑒
(𝑁+1)〉}  and 

W: E → ℝ is the weight of edges (ℝ is the set of real numbers). 

Each period corresponds to one stage in G, and each stage 

has 𝐾  vertices corresponding to the 𝐾  pumps. Let V𝑠(𝑖 =
1,2, ⋯ , 𝑁)  be the set of vertices in stage s. Then, V𝑠 =

{𝑣𝑖
(𝑠)

|𝑖 = 0,1, ⋯ , 𝐾}. The weight of 〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉, 𝑤𝑖,𝑗, is the 

cost incurred by turning on 𝑗 pumps and turning off 𝑖 pumps, 

with 𝑤𝑠,𝑖 = 𝑤𝑖,𝑒 = 0 (𝑖 = 1,2, ⋯ , 𝐾) . Therefore, the pump 

scheduling problem is equivalent to finding the shortest path 

from 𝑣𝑠
(0)

 to 𝑣𝑒
(𝑁+1)

, which can be solved by the ACO. 

 

 
 

Figure 2. The graph of the pump scheduling problem 

 

The basic procedure of the ACO-based pump scheduling 

plan is as follows: 

Step 1: Solution construction. Initially, 𝑀 ants are all placed 

at 𝑣𝑠
(0)

. In each iteration, each ant chooses the next vertex at a 

certain probability. For ant 𝐴 at vertex 𝑣𝑖
(𝑠)

, the probability of 

the ant to visit 𝑣𝑗
(𝑠+1)

 can be expressed as: 

 

ρi,j
A =

τi,j
α ηi,j

β

∑ τi,j
α η

i,j
βK

j=0

                                (11) 

 

where 𝜏𝑖,𝑗 and 𝜂𝑖,𝑗 =
1

𝑤𝑖,𝑗
 are the pheromone and local heuristic 

information of 〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉 , respectively; 𝛼  and 𝛽  are the 

relative importance parameters of 𝜏𝑖,𝑗 and 𝜂𝑖,𝑗, respectively. If 

several vertices have the same probability, the ant will select 

one of them by random. 

In addition, the solution construction of each ant must 

satisfy the constraints in equation (3). The first constraint, 0 ≤
𝑛𝑠 ≤ 𝐾, is automatically satisfied, because 0 ≤ |V𝑠| ≤ 𝐾; the 

second constraint, 𝑐𝑠 ∈ {𝑐𝑝, 𝑐𝑓 , 𝑐𝑣}, is used to compute the cost 

of each solution; the third constraint, 0 ≤ 𝐻𝑡 ≤ 𝜙, is satisfied 

if the next vertex is not 𝑣0
(𝑠+1)

 if ant 𝐴 is at vertex 𝑣𝑖
(𝑠)

, and 

�̂�𝑠+1 > 𝜙 or �̂�𝑠+2 > 𝜙. 

Step 3: Pheromone update. After all ants have constructed 

their solutions, the pheromone trails are updated by the 

following rule: 

 

𝜏𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 + Δτ𝑖,𝑗
𝑏𝑒𝑠𝑡                       (12) 

Stage 1 Stage 2 Stage N

)1(
0v

)1(
1v

)1(
Kv

)2(
1v

)2(
0v

)2(
Kv

)0(
sv )1+(N

ev

)(
0
Nv

)(
1
Nv

)(N
Kv
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where 0 < 𝜌 ≤ 1 is the pheromone evaporation rate; Δτ𝑖,𝑗
𝑏𝑒𝑠𝑡  is 

the amount of pheromone released by the ants on 〈𝑣𝑖
(𝑠)

, 𝑣𝑗
(𝑠+1)〉, 

which can be defined as 

 

Δτ𝑖,𝑗
𝑏𝑒𝑠𝑡 = {

1

𝒞𝑏𝑒𝑠𝑡
if 〈𝑣𝑖

(𝑠)
, 𝑣𝑗

(𝑠+1)〉 is in the best solution

0 otherwise
 (13) 

 

Based on the above description, the ACO-based pump 

scheduling algorithm was summed up as follows: 

 

Algorithm 1. CEPS algorithm 

 

1. Function CEPS (G)// G is the graph as Figure 2 

2. Set parameters and initialize pheromone trails; 

3. for Itr ← 1 to ItrMax 

4. for i ← 1 to M 

5. List0
i ← vs

(0)
 

6. for j ← 1 to N + 1 

7. u ← Listj−1
i  

8. v ← argmax {ρu,v
i |

ρu,v
i  computed by (11) and

 v satisfying constraints of (3)
} 

9. Listj
i ← v 

10. end for 

11.  end for 

12.  Listbest
Itr ← shortest path of this iteration 

13.  𝒞best
Itr ← cost of Listbest

Itr  

14.  Listbest
global

← shortest path so far 

15. 𝒞best
global

← cost of Listbest
global

  

16. update τ according to (12) and (13) 

17.  end for 

18.  return Listbest
global

 and 𝒞best
global

 

19. end function 

 

In Algorithm 1, lines 3~17 are the main iterations of the 

ACO, and 𝐼𝑡𝑟𝑀𝑎𝑥 is the maximum number of iterations. In 

each iteration, each ant attempts to find a path representing a 

feasible plan, and ant 𝑖 stores the solution in 𝐿𝑖𝑠𝑡𝑖 . At first, all 

ants are placed at 𝑣𝑠
(0)

 (line 5). Then, all ants construct their 

solutions by equation (11) and verify the solution feasibility 

by equation (3) (lines 6-10). Thirdly, lines 12-15 compute the 

best solution of the current iteration and best-known global 

solution. Line 16 updates 𝜏 to guide the ants to search for the 

solution in next iteration. Finally, line 18 returns the best 

solution covering the cost and scheduling plan. 

 

 

5. EXPERIMENTS AND ANALYSIS 

 

From September 1st to 30th, 2018, several experiments were 

carried out on the real data of Jinchiling Gold mine in 

Zhaoyuan, eastern China’s Shandong Province, to verify the 

feasibility of the proposed algorithm. One MDS with 𝐾 = 5 

pumps was selected for the experiments from the mine. The 

power of each pump is 𝑝 = 110kW. The water level threshold 

of the sump is 𝜙 = 2.2 m. The TOU electricity tariff is given 

in Table 2, where 𝑐𝑝, 𝑐𝑓 and 𝑐𝑣 are respectively RMB 1.252-

yuan, 0.782 yuan and 0.370 yuan. Each day (24h) was divided 

evenly into 𝑁 = 72 periods with the length 𝐿 = 20 minutes. 

The smoothing factor was set to ω = 0.7. The symbols and 

their definitions were given in Table 3 below. 

 

 

Table 2. TOU electricity tariff 

 
Time 

period 

0:00- 

6:00 

6:00- 

8:00 

8:00- 

11:00 

11:00- 

18:00 

18:00- 

21:00 

21:00- 

24:00 

Tariff 

(Unit: 

Yuan) 

0.370 0.782 1.252 0.782 1.252 0.370 

 

Table 3. Symbols and definitions 

 
Peri

od 
1 2 3 4 5 6 7 8 9 

𝐹𝑠 
2.0

95 

2.1

07 

2.1

18 

2.1

26 

2.1

35 

2.1

47 

2.1

58 

2.1

69 

2.1

80 

�̂�𝑠+1  2.0

95 

2.1

12 

2.1

26 

2.1

35 

2.1

44 

2.1

58 

2.1

69 

2.1

80 

�̂�𝑠+2   2.0

95 

2.1

18 

2.1

35 

2.1

43 

2.1

53 

2.1

68 

2.1

80 

�̂�𝑠+3    2.0

95 

2.1

24 

2.1

44 

2.1

52 

2.1

62 

2.1

79 

Peri

od 
10 11 12 13 14 15 16 17 18 

𝐹𝑠 
2.1

88 

2.2

00 

2.2

09 

2.2

20 

2.2

21 

2.2

21 

2.3

02 

2.3

10 

2.3

22 

�̂�𝑠+1 
2.1

90 

2.1

97 

2.2

10 

2.2

20 

2.2

30 

2.2

28 

2.2

25 

2.3

36 

2.3

41 

�̂�𝑠+2 
2.1

91 

2.2

01 

2.2

07 

2.2

21 

2.2

30 

2.2

41 

2.2

34 

2.2

27 

2.3

76 

�̂�𝑠+3 
2.1

91 

2.2

01 

2.2

12 

2.2

16 

2.2

32 

2.2

40 

2.2

51 

2.2

40 

2.2

30 

Peri

od 
19 20 21 22 23 24 25 26 27 

𝐹𝑠 
2.3

29 

2.3

37 

2.3

48 

2.3

56 

2.3

64 

2.3

73 

2.3

82 

2.3

91 

2.4

03 

�̂�𝑠+1 
2.3

43 

2.3

43 

2.3

47 

2.3

58 

2.3

65 

2.3

73 

2.3

82 

2.3

90 

2.4

00 

�̂�𝑠+2 
2.3

69 

2.3

62 

2.3

55 

2.3

57 

2.3

68 

2.3

74 

2.3

81 

2.3

91 

2.3

99 

�̂�𝑠+3 
2.4

17 

2.3

97 

2.3

81 

2.3

67 

2.3

66 

2.3

78 

2.3

83 

2.3

90 

2.4
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Figure 3. Relative errors of predicted values 

 

Figure 3 records the relative errors of the predicted values 

of 27 water inflow levels (𝐹𝑠) in one day. It can be seen that 

�̂�𝑠+1 is the most accurate. The mean relative errors of �̂�𝑠+1, 

�̂�𝑠+2  and �̂�𝑠+3  are, respectively, 0.039 %, 0.066 %, and 

0.091 %. The water level variation at 16 causes the greatest 

prediction error. 

Using the above prediction data, the pump scheduling was 

carried out by Algorithm 1. For convenience, the original 

pump scheduling plan is denoted as the original plan, and the 

pump scheduling plan after the optimization by Algorithm 1 is 

denoted as the optimized plan. Note that the latter plan is 
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simulated rather than the real scheduling of Jinchiling gold 

mine. 

The ACO parameters were directly extracted from Referen

ce [16], which also finds the shortest path in a graph by the A

CO, including 𝑀 = 30 ants, 𝛼 = 1, 𝛽 = 2, 𝜌 = 0.9 and 

𝐼𝑡𝑟𝑀𝑎𝑥 = 300. The costs of original and optimized plans are

 compared in Table 4 and Figure 4. The comparison shows th

at Algorithm 1 can reduce the mine operation cost by 34.09 %

 on average from the level of the original plan. 

 

Table 4. Total costs of the original and optimized plans (Unit: RMB yuan) 

 
Day 1 2 3 4 5 6 7 8 9 10 

Original 7507 6562 7474 7931 6678 8611 7461 7553 9084 8641 

Optimized 4230 3671 4696 5547 5079 4781 5165 5369 6389 6559 

Day 11 12 13 14 15 16 17 18 19 20 

Original 7932 6254 8785 6823 6307 7835 6502 7533 4655 7198 

Optimized 5274 4702 5458 5413 4127 6061 3456 3850 3560 4015 

Day 21 22 23 24 25 26 27 28 29 30 

Original 7888 8190 6426 6246 7608 7423 6813 7721 6304 7010 

Optimized 5151 4661 3480 4019 4562 5666 4274 5362 4504 4981 

 
 

Figure 4. Cost comparison between the original and 

optimized plans 

 

(In each pair of bars, the left and right bars are respectively 

the costs of the original and optimized plans.) 

Table 5 shows the machine hours of the pumps in peak, flat 

and valley periods of the two plans. It can be seen that the 

optimized plan greatly reduces the machine-hours in peak 

period, and increases the machine-hours in valley period. The 

results are consistent with Figure 4, where the cost in peak 

period only accounts for a fraction of the total cost. 

 

Table 5. Machine-hours of the pumps in the original and 

optimized plans in different periods 

 
Time period Peak Flat Valley 

Original 17.67 39.21 54.62 

Optimized 2.65 27.99 98.55 

 

 

6. CONCLUSIONS 

 

With pumps as the main devices, the MDSs often consume 

lots of electricity in mine production. In most mines, the TOU 

electricity tariff mechanism is adopted because the pumps only 

start when the water level in the sump reaches a pre-set 

threshold. Thus, pump scheduling is a possible way to 

optimize the MDS energy efficiency. This paper utilizes 

double exponential smoothing method to predict the water 

inflow, and employs the ACO to obtain the optimal pump 

scheduling plan. The proposed pump scheduling method was 

verified through experiments in a gold mine in China. The 

experimental results show that the optimized plan can greatly 

reduce the mine operation cost. The future research will 

explore the pump scheduling of MDSs with different types of 

pumps. 
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