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A novel hybrid deep learning model for audio-visual source separation is introduced in this 

paper, with a specific focus on the precise isolation of a particular speaker's voice from 

video content. By leveraging both audio and visual characteristics, the achievement of 

accurate separation of the targeted speech signal is facilitated by our model. Notably, the 

incorporation of the speaker's facial expressions as an auxiliary cue for enhancing the 

extraction of their unique vocal qualities is emphasized. Proficiency in audio-visual speech 

separation and latent representations of distinctive speaker attributes, known as speaker 

embeddings, is simultaneously acquired by our model through unsupervised learning on 

unannotated video data. The model employed in this study is speaker-independent, wherein 

an initial stage of feature extraction is conducted for both audio and visual inputs prior to 

the subsequent deep modal analysis. The utilization of facial attribute features as an 

identifying code enables the identification of the speaker's frequency space or other audio 

properties. The model's efficacy was assessed through evaluation on the widely recognized 

AVspeech dataset yielding an improvement of 7.7 in terms of source-to-distortion ratio 

(SDR). 
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1. INTRODUCTION

Speech is the primary mode of communication for humans, 

involving the production and perception of sounds to convey 

information. However, speech signals can often be 

compromised by various factors, such as background noise or 

multiple speakers, which can make it challenging to 

understand a specific speaker in a crowded environment. 

Humans are often subjected to a combination of multiple 

conflicting sounds, necessitating their concentration on the 

pertinent source in order to differentiate it from the competing 

sources. This phenomenon, commonly referred to as the 

cocktail party effect or cocktail party problem [1], it describes 

the scenario in which an individual is attending to a single 

speaker while other speakers are also present. Audio-visual 

processing improves cocktail party problems by integrating 

auditory and visual information, including facial expressions 

and lip movements. Multimodal methods improve source 

localization, speech recognition, and noise robustness. Visual 

data, which has been demonstrated to be effective, provides a 

complete approach to isolating speakers in complex and 

congested environments, overcoming the limits of audio-only 

methods. 

The practical uses of audio-visual source separation span 

across numerous fields. It facilitates the use of assistive 

devices for those with hearing impairments, boosts the clarity 

of speech during teleconferencing, and improves the post-

production editing process in content development [2]. This 

technique also offers advantages to interactive entertainment, 

language learning platforms, and security systems through 

enhanced audio experiences, isolated pronunciations, and 

improved speaker identification in loud conditions, 

respectively. Solid evidence from observational research 

suggests that recognizing a speaker's facial cues enhances an 

individual's ability to cope with perceptual uncertainty in noisy 

circumstances. Visual information acquired from the speaker's 

face aids the listener in distinguishing and understanding 

speech in the presence of background noise and potential 

speaker confusion [2]. 

Early works for speech separation solely utilized the audio 

signal [3-7]. The audio only speech separation problem is 

inherently challenging due to its ambiguity, making it difficult 

to achieve satisfactory outcomes without additional 

information, for example, prior knowledge or certain 

microphone configuration. Another barrier encountered in 

audio-only speech separation is the label permutation problem, 

which pertains to the challenge of accurately associating each 

separated audio source with its respective speaker [8]. 

The limitation of audio only systems led to the development 

of Audio-Visual source separation systems, which leverage 

both auditory and visual information to perform the separation 

process. In recent studies, researchers have employed video 

recordings to address the challenging cocktail party problem. 

These approaches leverage the information contained in video 

data to separate the speech of a specific speaker. By utilizing 

the speaker's facial expressions or lip movements captured in 

the corresponding video, these audio-visual models 

demonstrate remarkable outcomes. However, it is important to 

note that the effectiveness of the systems that solely depends 

on lip movement relies heavily on the availability of high 
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frame rate video. Therefore, their practical applicability is 

currently constrained to scenarios where such video resources 

are accessible. 

In this paper we present a hybrid deep learning model that 

is speaker-independent which follows a two-step process, 

beginning with feature extraction for both audio and visual 

inputs, followed by deep modal analysis. The utilization of 

facial attribute features as a means of identification allows for 

the discernment of the speaker's frequency spectrum or other 

auditory characteristics like tone, pitch, and voice timbre. The 

proposed model architecture depends upon the utilization of 

one-dimensional Convolutional Neural Networks (1D CNNs), 

a Dense Neural Network, and Long Short-Term Memory 

(LSTMs). The objective is to extract a single speech signal 

from a mixture of multiple auditory components, such as other 

speakers and noise from the surroundings. The training of our 

model took place on the extensive and demanding AVspeech 

dataset. Remarkably, the proposed method yielded top-tier 

results in audio-visual source separation on the AVspeech 

dataset, surpassing previous state-of-the-art approaches. 

The remainder of this paper is structured as follows: in 

Section 2 we have presented the related work, while Section 3 

delves into greater detail regarding the proposed audio-visual 

model. Section 4 outlines the experiments conducted and 

presents the corresponding results. Finally, Section 5 offers a 

conclusion to the paper. 

 

 

2. RELATED WORK 

 

The emergence of deep learning sparked advancement in a 

variety of fields [9-14], and the audio visual source separation 

is one of them. Speech signal separation is the main goal of the 

majority of audio-visual separation techniques. The 

permutation problem, which is a significant obstacle in speech 

separation, involves correctly assigning separated components 

to different speakers. 

Lu et al. [15] addressed the permutation problem by 

including visual information after the initial separation to fine-

tune how the components are separated. The same group of 

researchers [16] then proposed a method that integrates visual 

data with an audio-based deep clustering framework, resulting 

in the development of an audio-visual deep clustering model 

that is specifically made for distinguishing speech signals. 

Ephrat et al. [17] introduced a novel approach that integrates 

spectrograms with facial embeddings of all speakers detected 

in the audio sample. The purpose of this method is to design a 

model that can generate a complex mask that can be applied to 

the baseline spectrogram. This makes it possible to rebuild the 

complex spectrogram for each individual speaker and separate 

them from the other speakers in the audio mix. 

Chung et al. [18] used an alternative approach in cases 

where solely a profile image of the speaker is accessible, 

instead of a video representation, a different strategy is used. 

In this case, learned identification embeddings produced by 

leveraging a pretrained model specifically designed for facial 

images can aid in isolating the speaker's voice from the audio 

mixture. The model's prior learning on facial features 

facilitates the successful separation process. 

Gao and Grauman [19] proposed an approach that consists 

of audio and visual networks that are concurrently trained 

using a cross-modal consistency loss to ensure that the audio 

and visual features are properly synchronized.  In essence, the 

method employs a sequence of facial images and a combined 

audio input containing lip movements. Subsequently, it 

conducts a prediction process to generate a complex mask, 

which contributes to the overall processing procedure. 

Zhang et al. [20] proposed a novel Audio-Visual speech 

Separation (AVSS) model that focuses on isolating a target 

speaker's voice from a mixture of speakers. The method 

consists of two major steps: first, extracting speech-related 

visual features using joint audio-visual representation learning 

with supervision loss, and then improving these features via 

adversarial training. To capture temporal dependencies in 

audio-visual data, the AVSS model, which is implemented in 

the time domain, incorporates Temporal Convolutional Neural 

Networks (TCNN) blocks. The goal is to separate speech 

signals successfully in complex audio-visual settings. 

Makishima et al. [21] proposed a model with two sub-

networks for visual and auditory inputs. Embeddings are 

produced through different sub-networks, which are 

subsequently integrated and processed by a decoder network. 

The alignment of audio and visual data uses a loss function 

called cross-modal correspondence to produce better results. 

The blending of audio and visual components is enhanced by 

this alignment, producing superior outcomes. 

Li et al. [22] created a novel audio-visual deep learning 

technique that combines auditory and visual data to detect 

speech from many channels. The separation filters that extract 

the desired speech from a mixed input of microphones and 

video frames are constructed by a neural network. 

Additionally, they utilized a multi-task architecture to 

simultaneously perform voice detection and dereverberation 

tasks. 

Ong et al. [23] designed a cutting-edge method for real-time 

online multi-source separation that combines audio and visual 

data to determine the speakers' locations and separate the 

intended speech from background noise. They developed a 

deep neural network that integrates both visual and auditory 

features to carry out this processing. 

Oya et al. [24] proposed a method of audio-visual source 

separation that uses bounding boxes as a form of supervision. 

This method requires two phases: initially, it uses object 

identification to generate the necessary bounding boxes, and 

then it uses a neural network to carry out the actual separation 

process. 

Gu et al. [25] proposed a method for estimating 

beamforming filters in both the temporal and frequency 

domains that makes use of deep learning. This method 

employs a frequency-domain beamforming network and a 

time-domain beamforming network that work jointly to 

improve target speech while suppressing interfering sources. 

Table 1 illustrates key features, benefits, and limitations of 

previous related work and ours. 

The work [17] is the closest to our work. The key difference 

is that they use two streams, one for audio and one for video, 

each processed by separate deep models. These streams are 

then fused and passed to a joint audio-visual model. In contrast, 

our model processes audio and visual features using a single 

joint deep learning model. 

 

 

 

 

74



 

Table 1. Summary of related work 

 
Method Key Features Benefits Limitations 

Lu et al. [15] 
Utilizing optical flow features to fine-tune component 

separation after initial separation. 

Solving the permutation 

problem. 

Need for audio-visual 

synchronization. 

Lu et al. [16] 

AVDC network that clusters audio and visual data using 

convolutional and recurrent layers then utilize clustering 

approach to separates speech signals. 

Separate speech signals under 

adverse situations. 
Computationally expensive. 

Ephrat et al. 

[17] 

Dual-stream design for audio and video processing. 

Streams use different deep models for their tasks. These 

streams' results are then integrated and sent to a joint 

audio-visual model. 

Ability to separate speech while 

the intended speaker is out of 

view. 

Restricted in loud environment or 

when numerous speakers are 

speaking. 

Chung et al. 

[18] 

Identification embeddings were obtained using the 

speaker's profile image. This was done using a face-

specific pretrained model to help isolate the speaker's 

voice from the audio mix. 

Fast processing time. 

Assumptions of visible and 

stationary faces limit the model's 

real-world performance. 

Gao and 

Grauman [19] 

Two distinct networks, specifically an audio network and 

a visual network, both of which are CNNs. The networks 

are jointly trained by employing a cross-modal 

consistency loss. 

Performs well in challenging 

scenarios. 

Limited performance When 

speakers overlap or are not visible 

in the video. 

Zhang et al. 

[20] 

Time-domain AVSS model that uses Temporal 

Convolutional Neural Networks (TCNN) blocks to 

capture audio-visual data temporal dependencies. 

Enhancing speech-related visual 

features through adversarial 

training. 

The degradation of performance 

in complex scenarios. 

Makishima et 

al. [21] 

Two sub-networks generate audio-visual embeddings, 

which are concatenated and delivered via a decoder 

network. 

Cross-modal correspondence 

loss function that synchronizes 

the visual and audio data 

Visual data shortage may degrade 

system reliability. 

Li et al. [22] 

Estimates target speech separation filters from multiple 

microphones and video frames. A multi-task framework 

addresses dereverberation and voice recognition tasks. 

The efficacy of noise and 

reverberation removal 

The utilization of multi-channel 

audio signals. 

Ong et al. 

[23] 

Real-time online multi-source separation that estimates 

speaker position and separates target speech from 

background noise using audio and visual data. 

Excellent performance in noisy, 

reverberant situations 

The utilization of many 

microphones and cameras. 

Oya et al. 

[24] 

Two-step approach begins with object detection to 

acquire bounding boxes for supervision then a neural 

network assists separation. 

Manual annotation is not 

necessary. 

Depends on detection model 

accuracy. 

Gu et al. [25] 

Beamforming filters estimation in time and frequency by 

obtaining frequency-and time-domain beamforming 

networks. These networks boost target speech and 

minimize interference. 

Flexible and adaptable to diverse 

scenarios. 

Could increase computational 

complexity and training time. 

Our Proposed 

modal 

Speaker-independent, utilizing a pre-features extraction 

stage for both audio and visual features before proceeding 

on to the deep modal. 

Dimensionality reduction with 

stable training. 

System complexity increases 

slightly. 

 

 

3. PROPOSED AUDIO-VISUAL MODEL 

 

In this work we introduced a hybrid deep learning method 

for audio-visual speech separation. Our approach is speaker-

independent and leverages a multi-stream architecture to 

analyze visual streams containing detected faces alongside 

with auditory inputs. By integrating both visual and audio 

information, our model aims to effectively separate speech 

signals from complex audio-visual mixtures involving two 

speakers. A combination of Short-Time Fourier Transform 

(STFT) and Mel-Frequency Cepstral Coefficients (MFCCs) is 

used for audio feature extraction. The STFT is a technique for 

analyzing a signal's frequency content throughout short, 

overlapping time intervals it provides a time-localized 

frequency information when the frequency components of a 

signal fluctuate over time [26], while MFCCs possess the 

capability to effectively capture significant components of the 

spectral composition of audio signals, namely within the 

frequency ranges that hold the utmost relevance to human 

auditory perception [27]. Principal Component Analysis (PCA) 

is a dimension reduction technique with the primary objective 

of effectively reducing the dimensionality of a given dataset 

and identifying its most important elements by transforming it 

into a new, uncorrelated space defined by principle 

components [28]. It reduces computing complexity, training 

time, and overfitting risks for high-dimensional data. STFT 

and MFCC help extract robust characteristics, especially in 

speech and speaker recognition. STFT and MFCC are vital to 

identify speaker features and adjust to different acoustic 

settings. High dimensionality in short-time Fourier transform 

(STFT) analysis is addressed by MFCC. A logarithmic 

compression and mel-scale filterbank are applied to the STFT 

magnitude spectrum to compress and efficiently represent the 

audio signal. This combination also allows multimodal fusion, 

which integrates visual signals to improve performance. Lossy 

compression is used to convert the MFCC's two-dimensional 

output into a one-dimensional vector representation using 

vector quantization. As we are dealing with large dataset 

Principal Component Analysis (PCA) is used for visual feature 

extraction before the deep learning model. This method 

reduces computing complexity, training time, and overfitting 

risks for high-dimensional data. PCA reduces noise and speeds 

training convergence by prioritizing signal over noise. By 

reducing the correlation between highly correlated features, it 

successfully addresses multicollinearity. The audio and visual 

feature vectors that are first extracted are subsequently 

combined and passed to the deep model. For audio-visual 

source separation, the proposed deep modal is made up of 
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several layers and is mainly based on combining one-

dimensional convolutional neural networks (1D CNNs) and 

long short-term memory (LSTMs). It is more reliable to use 

1D CNNs for feature extraction because they can perform 

translation invariance and multimodal integration. This is 

because they are better at capturing localized patterns and 

temporal hierarchies in sequential input. The integration of 

LSTM enhances the model's ability to capture long-term 

dependencies and understand sequential context, which is of 

utmost importance in source separation tasks. LSTM memory 

cells store and utilize information effectively over long 

sequences, which make it easier for 1D CNNs to learn local 

patterns. The output of the deep model is a set of complex 

spectrogram masks, each of which corresponds to a detected 

face in the video (the proposed model is illustrated in Figure 

1) We can isolate the speech signals of each speaker while 

efficiently suppressing any interfering signals from other 

sources by multiplying the noisy input spectrograms with 

these masks. This method allows for a distinct separation of 

each speaker’s voices.

 

 
 

Figure 1. Proposed framework 

 

The mixture audio signal in the time domain is given by: 

 

𝑥(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) (1) 

 

The spectrogram of the audio signal in the frequency 

domain at frequency bin 𝑓 and time frame 𝜏 is given by: 

 

𝑋(𝑓, 𝜏) = 𝑆1(𝑓, 𝜏) + 𝑆2(𝑓, 𝜏) (2) 

 

We predict complex ratio masks (CRM) to accomplish 

separation, separating the corresponding speakers' clean 

speech from the mixture 𝑥. 

The estimated sound sources in the time domain at time t 

are given by: 

 

�̂�1(𝑡) = 𝑥(𝑡) ∗ 𝑚1(𝑡) 

�̂�2(𝑡) = 𝑥(𝑡) ∗ 𝑚2(𝑡) 
(3) 

 

The estimated sound sources in the frequency domain are 

given by: 

 

�̂�1(𝑓, 𝜏) = 𝑋(𝑓, 𝜏) ∗ 𝑀1(𝑓, 𝜏) 

�̂�2(𝑓, 𝜏) = 𝑋(𝑓, 𝜏) ∗ 𝑀2(𝑓, 𝜏) 
(4) 

 

3.1 Audio and video data representation 

 

Our model takes both audio and visual data as input. We 

calculate the short-time Fourier transform (STFT) for 3-

second audio segments to derive audio features. 

After the STFT we calculate Mel-frequency cepstral 

coefficients (MFCC) for further audio spectral feature 

extraction, it captures sound signal spectral features by 

converting the audio spectrum into a compact, perceptually 

useful form. Each time-frequency (TF) bin comprises both the 

real and imaginary components of a complex number, both of 

which are utilized as input. Additionally, we apply power-law 

compression, which involves applying a non-linear 

transformation to the audio signal in order to reduce amplitude 

variations between loud and quiet parts, hence preventing 

distortion and clipping while retaining perceived quality to 

prevent loud noise from overpowering faint audio signals [29]. 

Furthermore, to ensure consistency, the same processing is 

done to both the noisy signal and the clean reference signal. 

Given a video recording that may contain multiple speakers, 

first we convert the video into 75 frames per speaker, and then 

convert to grayscale images with a size of 128 × 720. The 

conversion to gray scale is highly sufficient since we are 

dealing with large number of image frames thus less 

processing cost [30]. 

For the face detection part, we use the multitask cascaded 

convolutional neural network (MTCNN) [31], which is 

designed to accurately detect faces and localize facial 

landmarks, such as the eyes, nose, and mouth in the images, 

we perform face detection in each frame (75 frames for each 

speaker in a 3-second video at 25 FPS) and extract face 

embedding for each face detected per frame. After face 

detection the frames are resized to a size of 160 × 160. The 

reasoning is that these embeddings preserve crucial 

information for recognizing countless faces while eliminating 

unimportant variations, like lighting differences between 

photos. For visual features extraction we used Principal 

component analysis (PCA) to characterize the pattern with the 

fewest number of features and to lower the dimensionality of 

the feature space without losing the most critical information 

for discriminating. 

Our method generates a multiplicative spectrogram mask 

that represents the correlations between clean speech and 

background noise in both time and frequency. To achieve this, 

we employ a complex ratio mask (CRM), which quantifies the 

relationship between the complex clean and noisy 

spectrograms. The CRM consists of real and imaginary 

components, which are assessed independently in the real 

domain. This allows us to accurately separate the desired 

speech from unwanted interference, leading to improved audio 

quality [32]. The complex ratio mask is given by: 

 

𝑀𝑟𝑒𝑎𝑙 =
𝑋𝑟𝑒𝑎𝑙 .  𝑆𝑟𝑒𝑎𝑙 + 𝑋𝑖𝑚𝑎𝑔 .  𝑆𝑖𝑚𝑎𝑔

|𝑋2| + 𝜖
 

𝑀𝑖𝑚𝑎𝑔 =
𝑋𝑟𝑒𝑎𝑙  .  𝑆𝑖𝑚𝑎𝑔 − 𝑋𝑖𝑚𝑎𝑔  .  𝑆𝑟𝑒𝑎𝑙

|𝑋2| + 𝜖
 

𝑀 = [𝑀𝑟𝑒𝑎𝑙 , 𝑀𝑖𝑚𝑎𝑔] 

(5) 
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3.2 Network architecture 

 

In our proposed model, both audio and visual features are 

processed jointly. After preprocessing the visual and auditory 

data, we fuse the extracted features using concatenation fusion, 

combining these features before passing them to the deep 

model (as depicted in Figure 2). Our deep learning model 

consists of a total 36 layers, 11 Convolutional layers with filter 

size of (16, 32, 64, 128, 256, 256, 512, 1024, 512, 128, 128) 

respectively for feature extraction, 11 MaxPooling layers with 

pool size 1 and stride of 1 to reduce the spatial size of the 

extracted features, 8 LeakyRelu layers with alpha of value 0.3, 

2 LSTM layers to learn the long term dependencies between 

the sequenced data, 2 dense layers with linear activation 

functions which we used as a collector for strong and close to 

strong features, and one dense layer that works as fully 

connected layer with softmax as activation function and finally 

one flatten layer that converts the multidimensional data into 

a one dimensional so it can be passed to the fully connected 

layer. The model deep learning layers specifications and 

parameters are listed in Table 2. 

 

 
 

Figure 2. Deep neural network architecture 

 

Table 2. The model layers details 

 

Layer 
Filter 

Size 

Kernal 

Size 
Stride 

Num. of 

Para. 

Conv1d-1 16 5 1 96 

MaxPool1D-1    0 

Max_Pooling1d_2    0 

LeakyReLu_1     

Conv1d_2 32 3 1 1568 

Max_Pooling1d_3    0 

LeakyReLu_2     

Conv1d_3 64 3 1 6208 

Max_Pooling1d_4    0 

LeakyReLu_3     

Conv1d_4 128 3 1 24704 

Max_Pooling1d_5    0 

LeakyReLu_4     

Dense_1    16512 

Conv1d_5 256 3 1 98560 

Max_Pooling1d_6    0 

LeakyReLu_5     

Conv1d_6 256 3 1 196864 

Max_Pooling1d_7    0 

LeakyReLu_6     

Dense_2    131584 

Conv1d_7 512 3 1 786944 

LeakyReLu_7     

Conv1d_8 1024 3 1 1573888 

LeakyReLu_8     

Conv1d_9 512 3 1 1573376 

Conv1d_10 128 5 1 327808 

Max_Pooling1d_8    0 

LSTM_1    1312768 

Max_Pooling1d_9    0 

Conv1d_11 128 5 1 327808 

Max_Pooling1d_10    0 

LSTM_2    22960 

Max_Pooling1d_11    0 

Flatten_1    0 

Dense_3    18692 

3.3 Implementation details 

 

All audio data is converted to a 16kHz sampling rate. The 

Short-Time Fourier Transform (STFT) is performed using a 

Hann window with duration of 25ms, a hop length of 10ms 

with approximately 60% overlapping between consecutive 

windows, and an FFT size of 512. This calculation yields an 

input audio feature represented by a matrix of dimensions 

257×298×2, containing scalar values. 

Before training and inference, we adjust the face 

embeddings from each video to match a frame rate of 25 

frames per second (FPS) by either removing or duplicating 

embeddings, this result in a visual stream with 75 face 

embeddings as the input. During training, we have employed 

100 epoch with a batch size of 64 samples and conduct training 

for 5 million steps (batches) using the Adam optimizer [33], 

which adjusts learning rates dynamically and incorporates 

momentum to efficiently optimize model parameters during 

training, with a learning rate of 0.001. 

 

 

4. EXPERIMENT AND RESULTS 

 

4.1 Dataset 

 

To evaluate and train our system, we have utilized the 

AVspeech dataset [17], which is a comprehensive audio-visual 

dataset featuring an abundance of speech recordings without 

any interfering background noises. Each segment within this 

dataset varies in length from 3 to 10 seconds and prominently 

features a single speaking individual whose face is clearly 

visible in the video, accompanied by audible speech in the 

soundtrack. 

This dataset comprises a substantial collection of more than 

4700 hours of video clips, showcasing approximately 150,000 

unique speakers from diverse language and demographic 
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backgrounds. The richness and diversity of this dataset provide 

valuable resources for assessing and enhancing the 

performance of our system. 

Our model is trained on segments of 3 seconds in length; 

however, during predictions, our model is capable of handling 

video segments of varying lengths. In the experiment, a 

partitioning scheme was employed where 70% of the available 

dataset was designated as the training set, while the remaining 

30% was allocated as the test set, no validation set was utilized, 

as neither parameter adjustment nor early stopping were 

conducted. 
 

4.2 Evaluation 

 

The evaluation of the proposed method requires precise 

measurements of signal-to-distortion (SDR) and source-to-

interference ratio (SIR), which are critical metrics for 

measuring the quality of separated signals. We compared our 

findings to those obtained in a previous studies conducted by 

[17, 20]. 

 

 
 

Figure 3. Spectrograms (a) The audio mixture. (b) Clean 

speaker 1, 2. (c) The estimated sources 

 

 
 

Figure 4. Waveforms (a) The audio mixture. (b) Clean 

speaker 1, 2. (c) The estimated sources 

 

The results of our evaluation, as shown in Table 3, 

demonstrated that our suggested method achieved better SDR 

and SIR values on the challenging AVspeech dataset. This 

performance indicates an improvement in the quality and 

accuracy of audio-visual source separation. The spectrograms 

and waveforms of the original, unprocessed audio as well as 

the estimated outputs of our model are clearly demonstrated in 

Figures 3 and 4. 

 

Table 3. Comparing with prior AVspeech dataset results 

 
Separation Results on the AVspeech Dataset 

Model SDR SIR 

Ephrat et al. [17] 10.3 - 

Zhang et al. [20] 12 - 

Proposed model (audio only) 17.8 15.2 

Proposed model (audio-visual) 19.7 16 

 

 

5. CONCLUSIONS 

 

This paper presents a speaker-independent hybrid deep 

learning model that employs a two-stage procedure. The first 

stage involves extracting features from both audio and visual 

inputs through the use of STFT with MFCC for audio features 

and PCA for visual features, while the second stage involves 

conducting deep learning modal analysis. The integration of 

facial attribute data improves the ability to distinguish between 

speakers by capturing not just vocal characteristics but also 

subtle facial expressions. This leads to a more thorough and 

relatable comprehension of the distinct audio sources. The 

model architecture described in this study relies on the 

incorporation of one-dimensional Convolutional Neural 

Networks (1D CNNs), a Dense Neural Network, and Long 

Short-Term Memory (LSTMs). The primary goal is to isolate 

a single speech signal from a mixture of other auditory 

elements, including additional speakers and ambient noise. 

The effectiveness of the proposed model was assessed using 

the well-known AVspeech dataset, achieving a notable source-

to-distortion ratio (SDR) of 19.7, yielding an improvement of 

7.7 SDR from recent work on the AVspeech dataset. 
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