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Intelligent Transportation Systems (ITS) have extensively utilized driver behavior 

monitoring systems to mitigate the risk of traffic accidents caused by factors such as 

aggression and distraction. However, existing methods often rely on computer vision 

techniques, raising concerns about privacy violations and vulnerability to spoofing attacks. 

These attacks can potentially result in inaccurate analysis of driver behavior and 

compromise the effectiveness of the system. To mitigate this issue, the proposed system 

relies on in-vehicle sensors and the driving signal obtained from the CAN-BUS, which 

provide direct and reliable measurements of driver behavior. By analyzing real-time data 

collected from multiple drivers, the hybrid deep learning model is trained to recognize 

patterns and characteristics indicative of safe and unsafe driving behavior. The driving 

signal obtained from the Controller Area Network bus (CAN-BUS), including acceleration, 

RPM, speed, accelerator pedal value, and throttle position signal, etc., is utilized to 

recognize safe and unsafe driver behavior. The utilization of a hybrid deep learning model, 

which combines Convolutional Neural Network (CNN) and Long Short-Term Memory 

(LSTM), is a deliberate choice in order to harness the respective advantages of both 

methods. This decision is driven by the aim to overcome the challenges encountered by 

previous approaches by capitalizing on the strengths of CNN and LSTM. The model is 

trained and tested on a real-time dataset collected from multiple drivers. Experimental 

results demonstrate the effectiveness of the proposed method in accurately detecting driver 

behavior, addressing the public health concern of traffic accidents. 
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1. INTRODUCTION

To ensure safe and responsible driving, drivers must remain 

fully attentive to their performance and diligently concentrate 

on the road ahead of them [1]. Unfortunately, the driver's 

consideration can be easily diverted by various activities, 

events, and surroundings, leading to distractions that can 

compromise safe driving practices [2]. Driver distraction may 

occur in a variety of ways, such as visual (when a driver's eyes 

are taken off the road), manual (when a driver's hands are 

taken off the wheel), and cognitive (when a driver loses 

concentration on the road) [3]. These types of distractions can 

significantly increase the risk of a car crash or other types of 

accidents. 

The increasing usage of vehicles in modern times has 

resulted in undesirable consequences, such as traffic 

congestion, accidents, injuries, fatalities, and financial losses. 

A survey conducted by the National Highway Traffic Safety 

Administration (NHTSA) and Virginia Tech Transportation 

Institute (VTTI) revealed that a minimum of 80% of accidents 

and 65% of near-accidents that take place every day on roads 

and highways are associated with distractions or poor 

decision-making while driver driving on roads and highways 

[4, 5]. Additionally, secondary tasks such as visual, auditory, 

and haptic-related tasks, like using vehicle displays, listening 

to the radio, or using a smartphone, can still affect driving 

safety [6]. 

The concept of driver behaviour is intricate and pertains to 

the Driver's ability to manage and control the vehicle in a 

specific environment and context for each driving scenario [7]. 

The Driver plays a crucial role in ensuring driving safety as 

they manage and manoeuvre the vehicle through a set of 

actions. 

Research and technology advancements have led to 

significant developments in driver behavior detection. Various 

approaches are being explored, including computer vision-

based methods, sensor-based techniques, biometric data 

analysis, and machine learning algorithms [8-15]. Computer 

vision techniques employ cameras and video data to track 

driver behavior, facial expressions, and eye movements, 

enabling detection of distractions and fatigue. However, 

concerns regarding privacy violations and occasional failures 

in specific situations have been raised despite notable progress 

in computer vision and camera-based human identification. 

 However, combining these technologies can help us get 

closer to our objective of creating a reliable end to end system 

for tracking the risk of driver distraction in commonplace 

circumstances [16]. An offering method for tracking drivers' 
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actions as well as carrying out modern technology and 

advances in artificial intelligence (AI) gives us various 

capabilities that can significantly expand our potential in this 

area [17]. Improved CAN-BUS and electronics have also been 

developed for analysis, real-time monitoring, reporting, and 

command over potentially distracting automated decision-

making by applying deep learning to big datasets generated via 

CAN-BUS sensor. 

To achieve the highest accuracy with the smallest time 

window size and the least amount of data, we propose an in-

vehicle sensor based system for the detection of aggressive 

driving in real-time behaviours using Convolutional Neural 

Networks (CNN) combined with Recurrent Neural Networks 

(RNN/LSTM). The following contributions assist the paper in 

achieving its main goal. 

• An efficient deep-learning model is proposed to 

detect aggressive Driver behaviour utilizing in-vehicle data 

from CAN-BUS sensor. The architecture we have proposed 

achieves better performance than existing state-of-the-art 

methods. It demonstrates improved accuracy, effective 

memory use, and reduced computational complexity. 

• Our proposed framework for driver behaviour can 

achieve classification with a shorter time-series window as 

compared to prior research. 

• Our study specifically examines the impact of 

anomaly data presence and window size, which refers to the 

number of time steps and the level of overlap achieved through 

sliding windows, on the accuracy of the results. 

 

 
2. RELATED WORK 

 
Classification of driving behaviour has received a lot of 

research over the past few years. To develop a self-driving 

system, preliminary research has been done to develop 

dynamic models of the interaction between humans and 

vehicles [18]. 

The most dependable way to collect data from naturalistic 

experiments is to use in-vehicle sensors, which is 

recommended [19-21]. These include requiring drivers to 

repeatedly perform synthetic tasks aggressively and safely 

when performing manoeuvres in a controlled setting, such as 

braking, accelerating, turning, etc. One method that is not 

feasible for obtaining ground truth data on unsafe driving is to 

request individuals to engage in risky driving behaviour on 

public roads on purpose was done to more accurately identify 

driving manoeuvres like starting, stopping, passing, etc. [22-

24]. Driver behavior analysis using CAN-BUS data has 

garnered significant attention, utilizing various techniques 

ranging from traditional methods to machine learning and 

deep learning approaches. 

Different ML tools have been successfully applied in this 

field using supervised and unsupervised learning methods. 

One of the primary challenges facing supervised learning 

models in classifying driving styles is the lack of external 

knowledge or "ground truth" regarding what constitutes safe 

versus unsafe driving. However, unsupervised models rarely 

succeed in producing classifications that can be directly 

connected to driving safety. Several methods for labelling 

driving behaviour have been suggested in research utilizing 

supervised learning methods [25]. 

 

 

2.1 Traditional machine learning techniques 

 

In recent years, machine learning techniques have gained 

prominence, enabling automated feature extraction and 

modeling of driver behavior. Algorithms such as decision trees, 

random forests, and support vector machines have been used 

to classify driver actions based on CAN-BUS and IMU data. 

Chen et al. [26] used an inertial measuring unit (IMU) 

sensor to examine drivers' behavior when making left- and 

right-hand turns. To identify the Driver when turning, the 

scholar observed the characteristics provided. The vehicle's 

acceleration at the end of the arch and the deviation of the 

given acceleration along the end of the turning axis were 

among the data gathered for the Driver's behaviour 

classification. 

Carmona et al. [22] Use a piece of improvised hardware that 

combines data from the CAN bus with information from the 

GPS and Inertial Measurement Unit (IMU). In several 

experiments, the exact route was then driven twice by ten 

drivers in a normal and aggressive manner. Aggressive 

behaviour was graded by Japanese risk consultants [27]. They 

were used to generate driver profiles and ranged from one to 

five, with five being the most aggressive. Additionally, in 

order to encourage drivers to adopt safer driving habits based 

on the Korean Roadway Operating Guidelines, researchers 

developed a framework to recognize potentially aggressive 

driving behaviors. They also provided feedback to drivers. 

Drivers were categorized into low, medium, and high 

aggressiveness levels [28]. Inertial signals were also used by 

Zylius [29] to distinguish between aggressive and safe driving 

habits. The drivers in Lithuania were divided into two groups 

(aggressive and safe) due to the experts' assistance in 

identifying the safe and aggressive signals. Existing 

approaches for driver behavior detection, such as Support 

Vector Machines (SVM), Random Forests (RF), and Artificial 

Neural Networks (ANN), often rely on manual feature 

engineering. These methods require domain expertise to 

handcraft relevant features from the raw sensor data. However, 

this process can be time-consuming and may not effectively 

capture complex behavior patterns. 

 

2.2 Deep learning technique 

 

Such Convolutional Neural Networks are deep learning 

algorithms. (CNN) [30-34], Recurrent Neural Network (RNN), 

clustering, etc. Have been put into practice for numerous 

driver-style applications [35]. Recurrent neural network (RNN) 

architectures have been demonstrated to be effective at 

modelling driver behaviour in the studies [36] and [37]. RNN 

was trained using data collected by smartphone sensors, and it 

has produced noteworthy results for characterizing driving 

behaviour. Chen et al. [38] Have presented the development, 

architecture, and technological aspects of the cognitive 

internet of vehicles. The authors covered real-time driver 

monitoring methods that can significantly lower traffic 

accidents. All concepts above, frameworks, and projects 

attempted to manage and control the driver distraction factor, 

but none succeeded. Additionally, none of these studies 

addressed the problem of efficiently and dependably managing 

sizable data volumes gathered from numerous remote sensors 

and cars. Table 1 presents the driver behavior based on unseen 

data collected from various sources such as CAN-Bus, IMU 

(Inertial Measurement Unit), GPS, etc., as observed in 

previous studies.
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Table 1. Related research of driver behaviour detection 

 

Research 

Data Used 
Driver Behavior 

Analyzed 
Model 

Window-

Overlap 

Anomaly 

Detection 
Experiment 

Hardware 
Features 

Al-Rakhami 

et al. [39] 
public data [40] 

Accel x, Accel y, Accel z, 

Gyro x, Gyro y, Gyro z 

Non-aggressive, Aggressive 

breaking, Aggressive 

acceleration, Aggressive left 

lane change, Aggressive right 

lane change 

DNN N/A N/A 

Alamri et al. 

[40] 

Used Shimmer 

Version 3 

wearable body 

sensors 

Accel x, Accel y, Accel z, 

Gyro x, Gyro y, Gyro z 

Non-aggressive, Aggressive 

breaking, Aggressive 

acceleration, Aggressive left 

lane change, Aggressive right 

lane change 

DCNN 4-0.4 N/A 

Chen et al. 

[26] 
Android app 

gyroscope, accelerometer, and 

magnetometer 
Safe, un safe SVM, RF N/A N/A 

Carmona et 

al. [22] 

SIMBA, GPS, 

IMU 

Mean throttle, STD RPM, 

Mean speed 
Safe, un safe GMM 20-10 N/A 

Lee and 

Jang [28] 

digital tachograph 

(DTG) 
Speed, Acceleration, raw data Aggressive, safe 

Self-organizing 

map (SOM) and 

K-means 

clustering 

15-10 N/A 

Ma et al. 

[41] 

Racelogic’s 

VBOX3i, and 

IMU 

Latitude, Longitude, Heading, 

Velocity, Height, Vertical 

velocity, Longitudinal 

acceleration, Lateral 

acceleration 

aggressive, normal, and 

cautious 

k-means 

clustering 
10 N/A 

Andria et al. 

[42] 

MPU 6050, OBD 

(ELM327), and 

GPS 

Vehicle speed variation, 

Engine rotation speed 

Variation, Mean acceleration, 

Standard deviation of 

acceleration 

Aggressive, safe N/A N/A N/A 

Shahverdy 

et al. [24] 
OBD, smartphone 

acceleration, gravity, throttle, 

speed, and Revolutions Per 

Minute (RPM 

normal, aggressive, distracted, 

drowsy, and drunk 
2D- CNN 50 N/A 

Al-Hussein 

et al. [32] 

OBD, IMU, 

Lidar, ultrasonic 

Speed, Distance to Vehicle 

Ahead, Acceleration, 

Deceleration, Steering 

Safe, Aggressive 
CNN, RNN, 

DNN 
10 N/A 

 

 

3. METHODOLOGY 

 

This section presents an overview of the data collection 

process from in-vehicle sensors, followed by data processing 

techniques and the use of deep learning models for driver 

behavior classification. The subsequent evaluation and 

validation procedures were employed to ensure the reliability 

and accuracy of the models, while a separate analysis of 

robustness was conducted to assess their performance in the 

presence of anomalies. 

 

3.1 Data description 

 

3.1.1 Participants 

A cohort of 4 full-time male drivers was recruited for this 

study. The drivers in the study had an age range of 20 to 40 

years, with an average age of 26.3 years and a standard 

deviation of 7.3 years. Their driving experience ranged from 4 

to 20 years, with an average of 7 years and a standard deviation 

of 7 years. To minimize systematic errors, naturalistic driving 

experiments were conducted using identical equipment for all 

participants. 

During the testing phase, real-world driving data was 

collected to analyze each driver's response to more than four 

ride requests throughout a single day of journeys. To ensure 

uniformity, all drivers were instructed to utilize the vehicle 

between 1 p.m. and 4 p.m. and were exposed to identical 

weather and road conditions. Prior to participation, informed 

consent was obtained from all participants, and measures were 

taken to prioritize driver safety and maintain the 

confidentiality of their data. 

 

 
 

Figure 1. Driver route loop 

 

The data acquisition experiment took place in an urban 

environment that encompassed a variety of road types. These 

included express lanes, arterial roads, continuous curved roads, 

one roundabout, and six signalized intersections. The chosen 
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location provided a diverse range of driving scenarios for data 

collection. The specific road types and their spatial 

arrangement within the urban area are visually depicted in 

Figure 1. This comprehensive selection of road configurations 

ensures the inclusion of various driving scenarios, allowing for 

a comprehensive analysis of driver behavior and performance 

within an urban context. the participants were exposed to 

identical weather conditions during the testing period. While 

the specific details of the weather conditions are not mentioned 

in the provided information, measures were taken to ensure 

uniformity among participants. 

 

3.1.2 Design and installation of the data acquisition system 

Data collection involved the utilization of three distinct 

sensor types to gather relevant information. These sensors 

encompassed the measurement of the accelerator pedal value, 

throttle position signal, coolant temperature, long-term fuel 

trim bank 1, and short-term fuel trim bank 1. 

Additionally, RPM, speed derived from the OBD-II UART 

sensor, yaw angle ascertained from the MPU5060 sensor, and 

vehicle location acquired from the Adafruit GPS breakout 

were recorded. By incorporating these sensor technologies, a 

comprehensive dataset was compiled, facilitating the analysis 

of various vehicle parameters and characteristics. Figure 2 

illustrates the physical circuit setup for the in-vehicle sensors, 

including the OBD-II UART sensor, Adafruit GPS breakout, 

and MPU5060 sensor. This schematic representation 

showcases the interconnection and positioning of these 

sensors within the vehicle. The circuit design ensures the 

accurate and reliable acquisition of data from these sensors, 

enabling the collection of essential information for the study. 

These sensors were configured to record data at a sampling 

rate of 1Hz, where the average value of all the data within one 

second was considered as the representative value for that 

particular second. Figure 3 provides a visual representation of 

this data sampling process. 

 

3.1.3 Normalization of features and sample structure 

Data preparation is essential of deep learning pipeline, a 

two-step process of standardization was employed. The first 

step involved mean subtraction, where the mean value of the 

data was subtracted from each data point. This process helps 

center the data around zero, making it easier for the model to 

learn and converge efficiently. The second step involved 

division by the standard deviation, which scales the data to 

have a unit variance. By dividing each data point by the 

standard deviation, the data was normalized and brought to a 

common scale, minimizing the impact of varying magnitudes 

among different features. This standardization process ensures 

that each feature contributes equally during the training phase, 

preventing any particular feature from dominating the learning 

process. By undergoing this two-step data preparation process, 

the deep learning pipeline was able to handle the input data 

effectively and improve the model's performance and 

generalization capabilities. 

 

 
 

Figure 2. Physical circuit of in-vehicle sensors

 

 

 
 

Figure 3. Visual representation of collected data
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𝜇 =
1

𝑀
∑ 𝑑𝑖

𝑀

1

 (1) 

 

𝜎 = √
∑ (𝑑𝑖 − 𝜇)𝑀

1

𝑀
 (2) 

 

𝑑𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑑𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜇

𝜎
 (3) 

 

Eq. (3) outlines the process of standardization, where each 

data point (𝑑𝑎𝑐𝑡𝑢𝑎𝑙 ) is subtracted by the mean (μ) and divided 

by the standard deviation (σ). This standardization process 

ensures that the data is transformed to have a mean of 0 and a 

standard deviation of 1, enabling fair comparisons and analysis 

across the dataset. 

A sliding window approach with a step size of 10 seconds 

and an overlap window of 9 seconds was applied to the in-

vehicle sensor data collected from the OBD-II UART sensor, 

Adafruit GPS breakout, and MPU5060 sensor. This sliding 

window technique facilitated the segmentation of the 

continuous sensor data into smaller, temporally overlapping 

windows for analysis. By setting the step size to 1 seconds and 

the overlap window to 9 seconds, a significant portion of the 

data was shared between adjacent windows, ensuring a 

comprehensive coverage of the sensor readings as shown in 

Figure 4. This approach allowed for the extraction of temporal 

patterns and trends in the sensor data, enabling the 

investigation of dynamic changes in vehicle performance, 

location, and orientation over time. It also facilitated the 

application of various time-series analysis techniques to derive 

meaningful insights from the collected sensor data. 

 

 
 

Figure 4. Overlapping window sliding 

 

3.2 Classification model 

 

Driving datasets can be understood as collections of 

sequential data points arranged in a time series structure. 

These time series problems being classified into two 

categories according to the number of variables involved: 

univariate time series, which focus on a single variable, and 

multivariate time series, which incorporate multiple variables. 

In the context of driving datasets, it is common to have at least 

four time series features such as speed, acceleration, etc. This 

suggests that a time series with multiple variables 

classification issue can be used to frame the challenge of driver 

categorization. In the subsequent stage of our methodology, 

the dataset was transformed into a 3-dimintion array structure 

(features, samples, steps), where features denote the features 

number, samples represent the samples number in the dataset, 

and steps corresponds to window size. 

To enhance the classification of time series data, Karim et 

al. [43] introduced hybrid deep learning model including Fully 

Convolution network with Long short-term memory (FCN-

LSTM) network, as illustrated in Figure 5. By employing the 

FCN-LSTM architecture, the researchers achieved remarkable 

improvements and enhanced accuracy across a variety of time 

series classification challenges with minimum data 

preprocessing. The FCN-LSTM model combines the strengths 

of Convolutional Neural Networks (CNNs), which are 

renowned for their effectiveness in time series classification, 

with Long Short-Term Memory (LSTM) networks to capture 

temporal dependencies within the sequences. 

In this study, we employing driving data along with FCN-

LSTM to classify drivers. Without any previous feature 

engineering, such as the use of statistical characteristics, the 

data was simply entered into the model. We can attain an ideal 

preprocessing time using this approach. Each of these methods, 

as shown in Figure 5, uses the same data input, but from 

several angles. The data is delivered to the CNN block as a 

univariate time series with several time steps. k This change is 

made to lessen the problem of the data rapidly becoming 

overfit. 

According to Figure 5, the FCN-LSTM architecture 

incorporates both a fully convolutional block and an LSTM 

block with dropout, as described in the study [43]. The fully 

convolutional block comprises three successive temporal 

convolutional blocks with filter widths of 128, 256, and 128, 

respectively, following the convolution block structure 

proposed by Wang et al. [44]. Each convolutional block 

consists of batch normalization [45], followed by a temporal 

convolutional layer with a momentum of 0.99 and an epsilon 

value of 0.001. A ReLU activation function is applied after the 

convolutional layer. Subsequently, a global average pooling 

operation is performed after the last convolution block. 

 

 
 

Figure 5. FCN-LSTM proposed model 

 

Concurrently, the time series input undergoes a dimension 

shuffle layer to reorganize its structure. The resulting 

transformed time series is subsequently fed into the LSTM 

block, which consist of LSTM layer. A dropout layer is 

applied after the LSTM block. The output from the global 

pooling layer and the LSTM block is merged through 

concatenation and then forwarded to a softmax classification 

layer. 

Long short-term memory networks (LSTMs) have emerged 

as an advancement over conventional recurrent neural 

networks, addressing the challenge of vanishing gradients. 

LSTMs tackle this problem by incorporating memory cells and 

gating mechanisms that effectively regulate the storage and 

retrieval of past states. In each time step, an LSTM maintains 
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a hidden vector (h) and a memory vector (m), which play a 

crucial role in controlling state updates and generating outputs. 

The data is divided into 10-time increments, where each 

increment represents a time series of 10 seconds. The 

architecture utilizes a dual-branch structure to process the data. 

In the first branch, the data is processed through the CNN 

block. The CNN block treats the data as a univariate time 

series with multiple time steps. 

In the second branch, the data undergoes a dimension 

shuffle operation before entering the LSTM block. This 

operation reshapes the data, allowing the LSTM block to 

interpret it as a multivariate time series. The dimension shuffle 

layer rearranges the data to be perceived as 10 variables with 

a single time step. This transformation enables the LSTM 

block to effectively model temporal dependencies and capture 

the dynamics of driver behavior over time. 

The outputs from both branches, representing the spatial 

features from the CNN block and the temporal patterns from 

the reshaped data in the LSTM block, are concatenated. This 

concatenation integrates the spatial and temporal information 

in a seamless manner. By combining these components, the 

FCN-LSTM architecture captures both local spatial features 

and global temporal dependencies, resulting in a more 

comprehensive understanding and accurate prediction of 

driver behavior. 

 

 

4. PERFORMANCE EVALUATION 

 

4.1 Experiment setup 

 

To investigate driver behaviour using the FCN-LSTM deep 

learning model, a dataset was collected specifically for this 

study. The dataset comprises driving data captured from 

various sensors and devices installed in vehicles (explained in 

section 3.1). The collected dataset was divided into training 

and testing sets using an 80:20 ratio. This means that 80% of 

the data was allocated for training the FCN-LSTM model, 

while the remaining 20% was reserved for evaluating its 

performance. The splitting process was carried out randomly 

to ensure representative samples in both sets. 

To assess the performance of the FCN-LSTM model, 

various evaluation metrics were utilized. These metrics 

include accuracy, precision, recall, and F1-score. 

 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
 (4) 

 

Precision = TP/(TP + FP) (5) 

 

R𝑒𝑐𝑎𝑙𝑙 = TP/(TP + FN) (6) 

 

F1 − measure =
2 × (Presicsion x Recall)

(Presion + Recall)
 (7) 

 

Additionally, confusion matrices were generated to gain 

insights into the classification results and identify any 

potential biases or errors. 

The deep learning methodologies utilized in this research 

are extensively elucidated in Table 2. Based on the collected 

data, the driver behaviour classification techniques employed 

were evaluated using diverse metrics, and their rankings are 

presented as follows: FCN-LSTM>1D CNN, LSTM>ANN. 

The performance results presented in the tables unequivocally 

indicate that the proposed approach outperforms other existing 

methodologies. All experiments were conducted moderate 

performance capabilities equipped with suitable hardware 

Core (TM) i7-6600U, including GPUs (NVIDIA Quadro 

M500M), to accelerate the training process. The FCN-LSTM 

model was implemented using TensorFlow 2.6 as deep 

learning frameworks. 

 

Table 2. User-defined parameter for proposed model 

 
Model Parameters 

ANN 3 Layer, 30 neuron 

LSTM 2 Layer, 20 neuron 

1D CNN 3 Layer, 128 units 

 

4.2 Results and discussion 

 

To assess the performance of our models, we conducted a 

comparative analysis with several other methods as depicted 

in Table 2 using the same evaluation metrics. 

Furthermore, the FCN-LSTM algorithm emerged as the 

most effective approach for driver behaviour classification. 

The proposed technique showcased superior performance 

across various metrics, such as accuracy, F1-score, and Area 

under the curve. The evaluation of the four machine learning 

methods (ANN, CNN, LSTM, FCN-LSTM) according to 

different window sizes with overlap revealed consistent 

superiority of the FCN-LSTM model over the other models. 

The tables (Tables 3-6) showcase the metric performance of 

the proposed models for different window sizes-overlap size 

in seconds: (5-3), (10-5), (10-7), and (10-9). Table 3 reveals 

the performance of the models for the window size- overlap 

size of (5-3) seconds. The FCN-LSTM model outperformed 

the other models with the highest accuracy of 94.39%, an F1 

score of 94%, and an impressive AUC of 94.10%. 

Moving to Table 4, which represents the metric 

performance for the window size of (10-5) seconds, we can 

observe that the FCN-LSTM model again exhibited superior 

performance. It achieved an exceptional accuracy of 96.23%, 

an F1 score of 96.00%, and an AUC of 96.16%. 

 

Table 3. The metric performance of the proposed models for 

window size (5-3) second 

 
Model Accuracy F1 Score AUC 

ANN 92.89% 93.00% 92.38% 

1D CNN 93.84% 94.00% 93.39% 

LSTM 93.16% 93.00% 92.62% 

FCN-LSTM 94.39% 94.00% 94.10% 

 

Table 4. The metric performance of the proposed models for 

window size (10-5) second 

 
Model Accuracy F1 Score AUC 

ANN 82.19% 82% 81.36% 

1D CNN 92.81% 93% 92.34% 

LSTM 93.15% 93% 92.86% 

FCN-LSTM 96.23% 96% 96.16% 

 

In Table 5, corresponding to the window size of (10-7) 

seconds, the FCN-LSTM model continued to demonstrate 

remarkable performance. It achieved an accuracy of 95.46%, 

an F1 score of 96.00%, and an AUC of 95.96%. Lastly, Table 

6 presents the metric performance for the window size of (10-

9) seconds. In this case, the FCN-LSTM model maintained its 

58



 

exceptional performance, achieving a remarkable accuracy of 

99.01%, an F1 score of 99.00%, and an AUC of 98.87%. 

 

Table 5. The metric performance of the proposed models for 

window size (10-7) second 

 
Model Accuracy F1 Score AUC 

ANN 91.96% 92% 91.59% 

1D CNN 94.02% 94% 93.68% 

LSTM 95.88% 96% 95.59% 

FCN-LSTM 95.46% 96% 95.96% 

 

Table 6. The metric performance of the proposed models for 

window size (10-9) second 

 
Model Accuracy F1 Score AUC 

ANN 92.02% 92% 91.55% 

1D CNN 98.42% 98% 98.28% 

LSTM 96.77% 97% 96.65% 

FCN-LSTM 99.01% 99% 98.87% 

 

Overall, the tables demonstrate that the FCN-LSTM model 

consistently outperformed other models across different 

window sizes. It achieved higher accuracy, F1 score, and AUC 

values, indicating its effectiveness in accurately classifying 

driver behaviour. These findings highlight the superiority of 

the FCN-LSTM model over alternative approaches, 

underscoring its potential for real-world driver behaviour 

classification tasks. 

 

 
 

Figure 6. FCN-LSTM proposed model 

 

The accuracy of the proposed models exhibits variation 

across different window sizes and overlaps. Figure 6 depicts 

the accuracy curves for the proposed models (ANN, LSTM, 

CNN, FCN-LSTM) for four distinct window sizes. For the 

initial window size of (5-3) seconds, the proposed models 

achieve a notably high accuracy level. However, as the 

window size increases to 10 seconds while reducing the 

overlap to 50%, the accuracy tends to decrease. Conversely, 

for the third window size, where the overlap increases to 7 

seconds, the accuracy shows improvement. These findings 

emphasize the influence of window size and overlap on the 

accuracy of the models. Notably, the models demonstrate the 

highest accuracy when the overlap size is 9 seconds, 

representing 90% of the signal. However, Smaller window 

sizes capture fine-grained details, while larger window sizes 

capture long-term dependencies. Higher overlaps enhance 

temporal context, while reduced overlaps may limit contextual 

information. 

 

 
 

Figure 7. Accuracy learning curve of the FCN-LSTM 

 

Figure 7 illustrating the training accuracy and validation 

accuracy for the FCN-LSTM model with a window size of 

(10-9) seconds over 300 epochs provids valuable insights into 

the model's performance throughout the training process. The 

training accuracy curve represents the accuracy achieved by 

the model on the training dataset at each epoch. It shows how 

well the model is learning from the training data over time. 

The validation accuracy curve, on the other hand, illustrates 

the accuracy of the model on a separate validation dataset at 

each epoch. The validation dataset serves as a benchmark to 

evaluate the model's generalization and performance on 

unseen data. 

 

4.3 Robustness to data anomalies 

 

The accuracy of driver behaviour heavily depends on the 

reliability of car sensor data. However, sensors are vulnerable 

to malfunctions, failures, and potential hacking, which can 

introduce inaccuracies and abnormal data into the model. This 

can result in incorrect predictions. To address this challenge, 

it is important for a driver behaviour system to incorporate 

mechanisms that can effectively detect and correct anomalies, 

ensuring accurate predictions. To evaluate the model's 

performance in the presence of anomalies, a proposed 

robustness analysis aims to assess its ability to maintain 

accurate predictions even when anomalous data is present. 

 

Table 7. The metric performance of the proposed models for 

window size (10-9) second 

 
Anomaly 

Rate 

Anomaly 

Duration 
ANN LSTM 1DCNN 

FCN-

LSTM 

0% 
1 s 92.30 96.56 98.14 99.01 

10 s 92.30 96.56 98.14 99.01 

1% 
1 s 92.23 96.42 97.94 98.35 

10 s 92.09 96.56 98.07 98.35 

10% 
1 s 91.40 96.01 97.66 98.14 

10 s 90.92 95.46 97.11 98.28 

30% 
1 s 89.82 95.39 95.74 97.04 

10 s 89.89 93.33 95.74 97.04 

50% 
1 s 87.83 94.91 93.67 95.19 

10 s 86.73 90.44 93.74 94.43 
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To conduct our analysis, we select a subset of random 

sensors from a total of 12 features for modification. In this case, 

we choose 7 sensors to be modified. We simulate different 

rates of anomalies, specifically 1%, 10%, 30% and 50% of the 

total samples from the validation set. For each rate, we 

introduce random values into the selected 7 features, thereby 

modifying the data. Additionally, we simulate two different 

anomaly durations, namely 1 second and 10 seconds. The 

performance of the FCN-LSTM model surpasses that of the 

other models consistently across various anomaly rates and 

durations, as demonstrated in Table 7. It attains the highest 

accuracy in the majority of cases, indicating its superior 

performance compared to the alternative models. 

 

 

5. CONCLUSIONS 

 

This paper highlights the significant promise and potential 

of driver behavior classification using deep learning models 

with in-vehicle data. The utilization of deep learning models 

such as ANN, LSTM, CNN, and FCN-LSTM has 

demonstrated high accuracy in analyzing and classifying 

driver behavior by leveraging the rich information captured by 

in-vehicle sensors. These models extract meaningful patterns 

and features from sensors like accelerometers, gyroscopes, and 

GPS data. However, certain challenges remain in this field, 

including ensuring data privacy and security, addressing the 

interpretability of deep learning models, and promoting their 

explain ability. Additionally, the generalization of models 

across diverse driving scenarios and the scalability of real-time 

applications requires further investigation. Despite these 

challenges, driver behavior classification based on deep 

learning with in-vehicle data has showcased promising results. 

The advancements in driver behavior classification using deep 

learning models have the potential for significant real-world 

impact. Firstly, they can greatly enhance driver safety by 

providing insights into driver behavior patterns and 

identifying risky behaviors. Moreover, these models can 

contribute to the development of intelligent transportation 

systems by enabling a deeper understanding of driver behavior 

in various driving scenarios. Continued research and 

development in this area will drive further advancements and 

practical applications in the analysis of driver behavior. 
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