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Text detection in natural scene images presents significant challenges, particularly in 

detecting irregular shapes. As a result of the limited receptive field of CNNs, existing 

methods have difficulty capturing long-range relationships between distant component 

regions. This study introduces an innovative method for identifying irregular text in images 

of natural scenes. The approach utilizes a U-net architecture combined with connected 

component analysis, resulting in improved accuracy in detecting text components and 

reducing the identification of non-character text components. Additionally, our strategy 

incorporates the use of graph convolution networks (GCN) to deduce adjacency relations 

among text components. The integration of GCNs introduces a sophisticated mechanism 

for inferring adjacency relations, contributing significantly to the advancement of text 

detection in natural scene images. Our method's efficacy is showcased through 

experimental assessments on three publicly available datasets: "ICDAR2013," "CTW-

1500," and "MSRA-TD500." 
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1. INTRODUCTION

Irregular Text detection [1] has been a prominent research 

area in computer vision and image processing in recent years. 

The task of automatically locating and extracting text from 

images has gained significant attention and has seen 

remarkable advancements. This surge in interest is driven by 

the increasing demand for applications that involve text 

analysis, such as document understanding, scene recognition, 

image captioning, augmented reality, and text-based 

information retrieval. In natural scene images, text can take on 

various irregular or arbitrary shapes that differ from the 

standardized and structured text typically found in documents 

or books. Unlike conventional text, which is typically aligned 

horizontally and follows a consistent layout, irregular text in 

natural scenes can be distorted, curved, skewed, rotated, or 

have other deformations. 

Many factors can contribute to irregular text shapes in 

natural scene images. First, the text may be present on objects 

with non-planar surfaces, such as street signs, product 

packaging, or vehicle number plates. These objects can have 

varying shapes and orientations, leading to text that conforms 

to the object's contours or perspectives. Second, the presence 

of text in natural scenes can be influenced by environmental 

factors and human interventions. For example, graffiti or 

handwritten messages may appear on walls, sidewalks, or 

public spaces, adopting unique shapes and styles. Similarly, 

text displayed on billboards, banners, or advertisements may 

undergo distortions due to wind, wear and tear, or artistic 

choices. Moreover, irregular text shapes can also emerge from 

the inherent characteristics of the scene itself. In landscapes or 

scenic images, text may be incorporated into the natural 

elements or structures, such as text carved on rocks, etched on 

trees, or integrated into architectural designs. Natural scene 

images often contain complex backgrounds and varying 

lighting conditions. This adds to the challenge of detecting 

irregular text shapes as the text may blend into the background 

or be affected by shadows, occlusions, or other visual 

distractions. Overcoming these challenges requires robust 

algorithms and models specifically designed for detecting 

irregular text shapes. 

Irregular text shapes [2] can be found in different languages 

and scripts. The ability to accurately identify irregular text 

shapes across multiple languages and scripts is essential for 

applications involving multilingual environments, such as 

international signage recognition, translation services, or 

cross-lingual information retrieval. 

It is crucial for several applications to be able to detect and 

understand irregular text shapes in natural scene images. It 

enables tasks such as scene understanding, visual content 

analysis, autonomous driving, text-based information retrieval, 

augmented reality, and more. Researchers and practitioners 

strive to develop robust computer vision algorithms and 

models capable of effectively handling these irregular text 

shapes, contributing to advancements in various fields. 

GNN-based irregular text detection methods have shown 

promising results in handling complex text layouts, such as 

curved or perspective text, text in cluttered backgrounds, or 

text with various orientations. By capturing the structural 

dependencies among text components, GNNs can effectively 
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model the contextual information necessary for accurate 

detection and localization of irregular text. 

Hence in this we are aggregating both the transformer and 

GNN based methods for irregular text detection. 

We have made three main contributions: 

• Utilizing the U-Net architecture, we perform feature 

extraction, and character center point estimation is achieved 

through connected component analysis. 

• We represent each text region as a node and employ Graph 

Neural Networks (GNNs) to build a local inference graph. 

• The integration of the inference graph and the deep 

relational inference network enhances our ability to 

comprehend the relationships and interactions among 

character text components in a more holistic manner. Here is 

the structure of the research. Section 2 examines various 

papers on text detection. Section 3 presents the proposed 

architecture for scene text detection. Section 4 entails an 

experimental analysis on datasets, along with the evaluation 

metrics for the proposed methodology. The paper concludes 

with a final section summarizing the findings. 

 

 

2. RELATED WORK 

 

Irregular text detection [3-6], which focuses on identifying 

text in non-standard or non-horizontal orientations, has gained 

significant attention in recent years. This challenging task has 

been tackled in various ways by researchers. Here are some 

notable methods: 

(1) Stroke Width Transform (SWT): The SWT algorithm 

identifies text regions based on the variations in stroke width. 

It detects regions where the stroke width is relatively constant, 

which is indicative of text, and distinguishes them from non-

text regions. 

(2) Connected Component Analysis: This approach 

segments the image into connected components and analyzes 

their properties to identify irregular text. By considering 

attributes like aspect ratio, height, or geometric relationships 

between components, irregular text regions can be detected. 

(3) Hough Transform: The Hough Transform is a widely 

used technique for detecting lines and shapes in images. By 

applying the Hough Transform specifically for text detection, 

researchers have successfully identified irregular text by 

detecting lines or curves that represent the text shape. 

(4) Deep Learning Based Methods: The development of 

deep learning has contributed to the development of CNNs that 

can detect irregular texts [7-10]. These models are trained on 

annotated datasets to learn the complex patterns and 

characteristics of irregular text, enabling them to accurately 

detect and localize such text in images. 

(5) Graph Neural Networks (GNN): GNNs have also been 

utilized for irregular text detection tasks [11]. By representing 

the image as a graph and leveraging the graph structure, GNNs 

can capture the relationships between text elements and 

effectively identify irregular text regions. 

(6) Hybrid Approaches: Some methods combine multiple 

techniques to improve irregular text detection. 

In particularly, Transformers are neural network models 

that excel in capturing long-range dependencies and modeling 

contextual information. Transformer-based methods have 

emerged as powerful techniques for irregular text detection 

[12, 13], leveraging their ability to capture long-range 

dependencies and handle complex spatial relationships. These 

methods have shown promising results in accurately 

identifying and localizing irregular text regions in images. 

Here are some notable approaches: 

(1) Mask TextSpotter: This method combines the 

Transformer architecture with a mask-based text detection 

framework. It first generates text proposals using region-based 

methods and then refines them using a Transformer-based 

network. By modeling the contextual information and 

capturing the relationships between text elements, Mask 

TextSpotter achieves precise irregular text detection. 

(2) Border Detectors: Border detectors based on 

Transformers aim to detect the boundaries of irregular text 

regions. By using the self-attention mechanism of 

Transformers, irregular text regions of arbitrary shapes [14, 15] 

can be accurately localized by capturing both local and global 

context. 

(3) TextPerceiver: TextPerceiver is a recent approach that 

combines the Perceiver model, a variant of the Transformer, 

with a segmentation head. It operates on the entire image and 

learns to attend to relevant text regions, allowing for effective 

irregular text detection. The model can adapt to various text 

shapes and orientations, making it suitable for challenging 

scenarios. 

(4) TextFuseNet: CNNs and Transformers are both used in 

TextFuseNet. It employs a multi-branch architecture where 

CNNs capture local features, while Transformers model global 

context for irregular text detection. By fusing the information 

from different branches, TextFuseNet achieves robust 

performance in detecting irregular text regions. 

(5) LayoutLM: Although primarily designed for document 

layout analysis, LayoutLM, which is based on the Transformer, 

can also be utilized for irregular text detection. By treating text 

detection as a sequence labeling task, LayoutLM captures the 

spatial dependencies of irregular text elements and accurately 

identifies them. 

As a technique for detecting irregular text in images, graph 

neural networks have emerged as one of the most powerful. 

As graphs are modeled as edges and nodes in a graph, GNN-

based methods use text components to represent images. 

Our goal in this article is to provide you with a brief 

summary of the latest advances in detecting text in images that 

have arbitrary and irregular shapes [16, 17]. Recent research 

has been focusing on the detection of text in scenes of various 

orientations, forms, and layouts. Several studies [18-23] have 

been published on the topic of detecting irregular text because 

of the considerable interest in this area of text detection. The 

following four groups best describe the scope of these 

investigations. 

Regression Based Approaches: Regression-based 

approaches have been used to identify scene text using text 

bounding boxes. Various approaches have been developed in 

this category, such as Textboxes [24], ABCnet [25], EAST 

[26], and the adaptive boundary proposal network proposed by 

authors [27]. 

To handle rectangular candidate boxes with long sliding 

windows and convolution kernels, textboxes use horizontal 

text processing and has trouble with text that isn't perfectly 

rectangular. The output of ABCnet is influenced by the over-

reliance on control points in the description of non-rectangular 

text shapes. EAST is built to provide quick and precise results 

for text detection in natural settings. Further, a boundary 

proposal network was developed in the previous paper to help 

detect arbitrary-shaped text. It produced accurate boundaries 

without the need for further post-processing. 

While these regression-based approaches have shown 
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promising results in detecting horizontal and multi-oriented 

text, they may struggle to do so when presented with scene 

texts that have very wide aspect ratios and are oriented in 

unexpected ways. 

Segmentation Based Approaches: These have emerged as 

another approach for text detection, relying on classification at 

pixel-level [28-31]. Text segmentation zones are identified 

using deep convolutional neural networks, and then the boxes 

are created using postprocessing. PSEnet [28] presents a 

progressive scale expansion post-processing approach that 

greatly enhances detection precision. In contrast, Pixellink [29] 

overcomes the problem of textual closeness by foreseeing 

pixel connections between distinct instances of text. 

According to the study [30], pixels are classified into groups 

using feature distances through pixel embedding. 

There are obvious benefits to using segmentation-based 

approaches for both text & non-text segmentation [32, 33]. It 

is possible, however, for irrelevant non-characters to be 

misclassified as characters during the text segmentation areas 

training process. This can lower the quality of the 

segmentation findings by causing problems with text line 

adherence. 

Connected component Based Approaches: Text detection 

systems employ these methods, which first detect individual 

text entries, then link or group these into complete text 

instances after a post-processing step. As a result of their 

flexible representation and adaptability [34-37], these methods 

have gained popularity in the detection of arbitrarily shaped 

text. 

Using ordered discs and text centerlines to model text 

instances, TextSnake [37] represents text of varying shapes 

successfully. When it comes to inference, however, TextSnake 

still needs to rely on laborious post-processing procedures like 

centralising, striding, and sliding. Each text instance is built 

from ordered rectangular components, including text and non-

text, in DRRG's text detection approach. 

Text regions are typically divided into several pieces 

consisting of both text and non-text components by these 

methods that work on specific text parts. The computational 

cost and difficulty may rise if many non-text parts must be 

generated all at once. The authors [38] present a method for 

multidirectional text detection that uses exhaustive 

segmentation to provide potential character candidates. To 

foretell character region maps and affinity maps, CRAFT [39] 

uses semi-supervised learning. These techniques can decrease 

computing complexity and difficulty by limiting their 

attention to character regions inside text components. 

Relational inference is an essential aspect of connected 

component-based methods, as their performance relies heavily 

on the grouping of text lines. Methods like Pixellink utilize 

embedding features to generate text areas and provide instance 

information. In the case of CRAFT [39], affinity maps are 

predicted through weakly supervised learning. 

However, the receptive field of the CNN limits the efficacy 

of these approaches, making it difficult to capture relationships 

between distant component areas utilising local convolutional 

operators. Graph convolutional networks (GCNs) were 

created by the authors [40] to overcome this shortcoming by 

allowing for local graph-based reasoning and deduction of the 

likelihood of links between a component and its neighbours. 

On open-source datasets, their technique outperformed 

previous best practices. 

To accomplish iterative boundary deformation, the authors 

[40] present a model that combines GCN with recurrent neural 

network (RNN). The goal of this iterative procedure is to 

produce a text instance with a more precise form. Their 

approach performed exceptionally well on difficult text-in-

the-wild datasets like TotalText [41]. 

Transformer Based Approaches: Computer vision [42-

45] has grown in popularity since their introduction for 

machine translation [46]. With DETR [47], object detection 

was treated as a set prediction problem instead of being a 

complex post-processing problem. In spite of these challenges, 

DETR continued to investigate detection transformers due to 

inefficient utilization of high-resolution features and slow 

training convergence. For instance, Deformable-DETR [48] 

addressed these issues by focusing on sparse features. DE-

DETR [49] identified sparse feature sampling as a crucial 

factor for data efficiency. In the Transformer decoder, 

dynamic anchor boxes were introduced to enhance training 

through DAB-DETR [50]. 

Limitations of the Exisiting approaches are: 

(1) Existing methods struggle with detecting irregular 

shapes in natural scene images. 

(2) Limited receptive fields of Convolutional Neural 

Networks (CNNs) make it difficult to capture long-range 

relationships between distant text component regions. 

(3) Existing methods may inaccurately identify non-

character text components, leading to false positives. 

(4) Capturing adjacency relations among text components 

is crucial for accurate text detection. 

Advantages of our Proposed approach 

(1) Our approach employs a U-net architecture, which is 

particularly effective in capturing irregular shapes. This 

architecture, combined with connected component analysis, 

enhances the detection of irregular text shapes, addressing a 

significant challenge in text detection. 

(2) Our method integrates graph convolution networks 

(GCN), enabling the deduction of adjacency relations among 

text components. This innovation allows for a more 

comprehensive understanding of long-range relationships, 

enhancing the model's ability to connect and identify distant 

text components. 

(3) By combining U-net architecture with connected 

component analysis, our approach enhances the accuracy of 

text component detection and reduces the likelihood of 

misidentifying non-character text components. This results in 

a more precise and reliable text detection system. 

(4) The integration of GCNs introduces a sophisticated 

mechanism for inferring adjacency relations. This step 

significantly contributes to the advancement of text detection 

by providing a more nuanced understanding of the spatial 

relationships between text components. 

 

 

3. PROPOSED METHOD 

 

In this section, we delve into several key aspects of our 

methodology for text detection in natural scenes. Firstly, we 

elucidate the intricacies of Character Center Point Estimation, 

employing the U-Net architecture to achieve precise 

identification. This step ensures accurate localization of 

character center points, a fundamental element for effective 

text detection. Secondly, we detail the Construction of the 

Local Inference Graph, where each identified text region is 

represented as a node, and Graph Neural Networks (GNNs) 

are utilized to establish a comprehensive local graph. This 

graph captures adjacency relations, enhancing our model's 
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ability to understand intricate connections among text 

components. Additionally, we explore the Comprehensive 

Exploration of Proximity Relationships, aiming to provide a 

holistic understanding of the spatial relationships between text 

elements. Lastly, we discuss Text Line Formation, 

emphasizing the strategic organization of identified text 

components into coherent lines. The combination of these 

components forms a robust and innovative approach to address 

challenges in text detection, particularly in scenes with 

irregular shapes and long-range dependencies. 

 

 
 

Figure 1. Proposed architecture for scene text detection 

 

Figure 1 depicts the general architecture of our method, 

outlining the several processes involved in the framework. 

Extraction of text components, construction of a local 

inference graph, inference of deep adjacency relations, and 

production of text lines make up the framework. At first, we 

use the U-net architecture is applied for feature extraction and 

connected component analysis is used for character center 

point estimation to the last layer of U-Net [51]. Then, we 

create a local inference network that stands in for the innate 

connection relationships among the character text components 

by capitalising on their fundamental features. The deep 

relational inference network uses this local inference graph to 

reason about the causal relationships between the constituent 

parts of a character string. At last, the separated connected 

regions are used to categorise the reasoning outcomes obtained 

into individual text instances. 

 

3.1 Character center point estimation using U-Net 

 

An input image with characters or text regions can be 

processed by the U-Net architecture (Figure 2). Both an 

encoder path and a decoder path make up this system. 

Convolutional and pooling operations are applied to the input 

image in the encoder route in order to extract pertinent features 

at various levels. The input's abstract representations are 

captured by the pooling layers as they progressively decrease 

the spatial dimensions. 

At the bottleneck layer, the spatial dimensions are 

significantly reduced, but the learned features are highly 

abstract and semantically rich. The decoder path starts with up 

sampling operations to restore the spatial dimensions, 

followed by convolutional layers that refine the features. 

Skip connections, which link comparable feature maps 

between the encoder and decoder paths, are a crucial 

component of the U-Net design. The localization of character 

centre points is facilitated by these links, which allow low-

level and high-level features to be combined. They also aid in 

maintaining spatial information and fine-grained features from 

previous network stages. 

 

 
 

Figure 2. Block diagram of U-Net utilizing the static 

heatmap for scene text detection 
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The final layer of the U-Net architecture produces 

predictions, typically in the form of a heatmap. For character 

center point estimation, the output layer can be designed to 

predict the likelihood or probability of each pixel being a 

character center point. This is accomplished using a sigmoid 

activation function that generates pixel-wise predictions 

between 0 and 1. 

To identify the character center points, a thresholding 

operation is applied to the heatmap. Pixels with values above 

a certain threshold are considered potential character center 

points. This thresholding step creates a binary mask, where 

values above the threshold are set to 1 and the rest to 0. 

Connected component analysis is then applied to the binary 

mask. Connected component analysis is represented in 

Algorithm 1. This analysis identifies and labels connected 

regions in the binary image, where each labeled region 

represents a group of adjacent pixels. 

 

Algorithm 1 Character Center Point estimation using 

Connected Component Analysis (CCA) 

 

Input: Binary image (after thresholding) 

 

Output: Connected components 

 

Algorithm CCA (binaryImage): 

components= [ ] 

labelCounter=1 

Algorithm dfs(pixel, component): 

component.add(pixel) 

binaryImage[pixel]=labelCounter 

neighbors=getNeighbors(pixel) 

for neighbor in neighbors: 

if binaryImage[neighbor]==1: 

dfs(neighbor, component) 

for each pixel in binaryImage: 

if binaryImage[pixel]==1: 

component=new empty component 

dfs(pixel, component) 

components.add(component) 

labelCounter+=1 

return components 

 

To filter out small connected components that may 

correspond to noise or artifacts, a filtering step based on 

component area is performed. Components below a certain 

area threshold are removed, retaining larger and more 

meaningful components that are more likely to represent 

character center points. 

For each remaining connected component, the centroid 

(center of mass) is computed by averaging the x and y 

coordinates of all pixels within the component. These 

computed centroids represent the estimated character center 

points. 

Optionally, additional refinement techniques can be applied 

to improve the accuracy of the character center points. These 

techniques may include centroid shift correction, sub-pixel 

precision estimation, or the incorporation of geometric 

constraints. 

By following the procedure of connected component 

analysis and the subsequent steps, the U-Net architecture can 

effectively identify and extract the character center points 

from the binary mask, providing a more precise localization of 

the character positions. 

3.2 Construction of the local inference graph 

 

The next step, after character center point estimation, we 

use a graph convolution network for inferring adjacency 

relationships between text components. Text components are 

represented by character center points according to this 

method. Each piece of text represents a node in the network. 

Inference time and complexity would increase if all nodes 

were used for inference directly. A local inference graph is 

constructed for this purpose in DRRG, which includes the 

pivot node and its neighbours up to the second order. First-

order neighbours are the eight nodes immediately adjacent to 

the pivot, while second-order neighbours are the four nodes 

immediately adjacent to the first-order neighbours. Our 

method, in contrast to DRRG, takes into account only the 

immediate neighbours of each node. This reduces the number 

of nodes involved in the reasoning process by choosing the 

pivot node, four neighbouring nodes of the first order, and two 

neighbouring nodes of the second order. Figure 3 elaborates 

on the steps taken to construct the local inference graph. A 

node's adjacency is determined by evaluating the affinity, 

between it and the pivot node. The affinity, As between a pivot 

node pn and another node is defined as follows: 

 

𝐴𝑠 = 1 −
𝐴𝑝𝑟

max(𝐻, 𝑊)
 (1) 

 

𝐴𝑝𝑟 = √(𝑀𝑝 − 𝑀𝑟) 2 + (𝑁𝑝 − 𝑁𝑟) 2 (2) 

 

where, H and W represents height and width of the images and 

Apr represents Euclidean distance between two nodes p and r. 

 

 
 

Figure 3. Construction of local inference graph 

 

3.3 Comprehensive exploration of proximity relationships 

 

Text nodes are connected in the local inference graph in an 

accurate manner. However, the adjacency relations between 

these nodes cannot be accurately represented by a link 

mapping or embedding mapping approach. To overcome this 

shortcoming, we present a Graph Convolutional Network 

(GCN)-based deep relational inference network. Inferring 

proximity relations between text component nodes is possible 

with the help of this network. A pivot's relationships with its 

first-order neighbours are an important part of the deep 

adjacency relation inference procedure. It is also important to 

note that the characteristics of a node can be influenced by its 

neighbors. Hence, fusion features are supplied for the first-

order neighbours by second-order neighbours. Two common 

types of inputs to the GCN are a feature matrix (denoted by 

Fm) and an adjacency matrix (denoted by Am). Here is how 

these two matrices are calculated: 

Feature-Matrix (Fm): Each text component of the same 

text instance is represented by a rotating rectangle, and these 

rectangles share certain geometric properties. We use a 

combination of deep features and geometric properties as 
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features for the textual parts. After a text component has been 

extracted, we can acquire its deep features by mapping its 

characteristics to the RROI-Align layer. At the same time, we 

calculate the text component's geometric properties using its 

X, Y, W, H, and attributes. We embed text components 

geometric qualities into high-dimensional spaces in order to 

derive geometric characteristics from text [8, 24, 25]. Eq. (3) 

and Eq. (4) provide the formulas for determining these 

embeddings. The feature matrix Fm, which represents the text 

components and it is the outcome of combining the features 

with the geometric characteristics. 

 

∈2𝑏
(𝑧)

= (cos (
𝑧

10002𝑏 𝐶∈⁄ )), j (0, C/2a-1) (3) 

 

∈2𝑎+1
(𝑧)

= sin (
𝑧

10002𝑏 𝐶∈⁄ )
 
, j (0, C/2a-1) (4) 

 

Adjacency-Matrix (Am): Inference graph nodes are 

connected to produce the adjacency matrix Am. If node a of the 

text component is connected to node bof the local inference 

graph, then Am (a, b) =1, and otherwise Am (a, b) =0. 

Adjacency analysis between a node and itself is superfluous, 

thus we set Am (a, a) =0. 

Graph convolutional network: The local inference graph 

is inferred using a GCN-based inference network based on the 

feature matrix (Fm) and the adjacency matrix (Am). Layer k's 

feature matrix is referred to as Fk, and its corresponding 

convolutional layer is defined as follows. 

 

𝐹𝑘 = 𝜎((𝐹𝑚
𝑘⨁ 𝐺𝑋𝑘)𝑊𝑘) (5) 

 

𝐺 = (𝐷
−1

2⁄  𝐴𝐷
−1

2⁄ ) (6) 

 

𝐷𝑖,𝑖 = ∑ 𝐴𝑖,𝑗

𝑗  

 
(7) 

 

In the equation, Xk represents the feature matrix of size 

N×din, where N represents the text components number and din 

is the feature dimension of the input nodes. Similarly, Fk 

represents the feature matrix of size N×dout, where dout is the 

feature dimension of the output nodes. Λ represents diagonal 

matrix, & G illustrates the symmetric normalized Laplacian of 

size ((N×N)). The symbol ⊕ denotes concatenation. Wk is the 

weight matrix of layer k, & σ represents a nonlinear activation 

function. Training involves only computing gradients for the 

nodes that are 1-order neighbours, since we are primarily 

interested in connecting the pivot node with its first-order 

neighbours, while testing involves the classification of 1-order 

nodes. 

 

3.4 Text line formation 

 

As part of the Comprehensive Exploration of Proximity 

Relationships, we summarize the probabilities from all the 

local inference graphs to derive the adjacency probability 

matrix (S). When deciding whether or not to keep an edge 

between two nodes, the threshold (TH) is used. If S(a, b) is 

greater than a threshold value, S(a, b) is set to 1; otherwise, 

S(a, b) is set to 0. By using BFS, we find the related subgraphs 

(L = L1, L2, ..., Lk) in the whole, which we will call L=L1, 

L2, ..., Lk. Each line of text in the set L is represented by a 

subgraph in L. Nodes inside each subgraph are subsequently 

sorted to complete the procedure. 

4. EXPERIMENTAL SETUP 

 

4.1 Datasets 

 

ICDAR2013 Dataset: By separating the training from the 

testing sets and removing duplicate images, the ICDAR2013 

dataset was created from the ICDAR2011 benchmark. 

Annotations have been modified for a subset of ground-truth 

annotations. We used 229 images for training and 233 for 

testing, resulting in a dataset of 482 images. The vast majority 

of the pictures are from nature, and the majority of the texts 

are horizontal or nearly horizontal. 

MSRA(TD500) Dataset: Pocket camera indoor (office, 

mall) and outdoor (street) photos make up the bulk of the 

MSRA-TD500. Signs, doorplates, and warning signs 

predominate indoors, while guide-boards & bill-boards take 

up the bulk of exterior imagery. Images are available in 

dimensions ranging from 1296x864 to 1920x1280. The 

collection contains text in several formats, including a wide 

range of languages, scripts, sizes, colours, and orientations 

(including but not limited to Chinese, English, and 

combinations). 

CTW (1500) Dataset: It contains 1500 images: 1000 for 

training & 500 for testing. There are 10,751 photographs of 

cropped text included, with an additional 3,530 images of bent 

text. The pictures were collected by hand from various sources, 

including the web, image databases like Google Open-Image, 

and mobile phone cameras. There is a lot of horizontal text in 

the dataset, as well as text in other orientations. 

Total text dataset: The Total-Text dataset includes 1,255 

high-dimensional images for training and 300 for testing. Text 

in a variety of orientations, including horizontal, multi-

oriented, and curved text, are included in this collection. The 

text examples include both polygon and word-level 

annotations, providing additional information about the 

marked areas. The Totaltext dataset is an essential resource for 

developing and evaluating text detection and recognition 

algorithms. 

 

4.2 Implementation details 

 

Our network relies on the Resnet-50 architecture, which has 

undergone pre-training utilizing the ImageNet dataset. We use 

a two-stage training procedure that begins with two epochs of 

pre-training on the SynthText dataset and concludes with 600 

epochs of fine-tuning on a targeted benchmark dataset. In the 

first round of training, we randomly crop text sections, scale 

them up to 512 pixels wide, and divide them into 12 batches. 

To train the model, we employ the Adam optimizer with a 

learning rate set at 104. 

During the fine-tuning phase, we employ a multi-scale 

training strategy. Text regions are randomly cropped and 

resized to three distinct dimensions: 640×640 with a batch size 

of 8, 800×800 with a batch size of 4, and 960×960 with a batch 

size of 4. During the fine-tuning process, we transition to using 

the SGD optimizer with an initial learning rate of 0.01. This 

learning rate is decreased by a factor of 0.8 every 100 epochs. 

Moreover, we incorporate fundamental data augmentation 

methods, including rotations, crops, color variations, and 

partial flipping. The hyperparameters associated with the local 

graph remain constant during both the training and testing 

stages. All experiments are performed on a single GPU (RTX-

2080Ti) utilizing PyTorch 1.2.0. 
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4.3 Assessment criteria 

 

The role of evaluation metrics is pivotal when assessing the 

performance of algorithms designed for irregular text 

detection. These criteria serve as quantitative measures for 

evaluating the accuracy and efficacy of the detection system. 

Various evaluation metrics are commonly employed to assess 

irregular text detection in a standardized manner. 

One commonly used metric is bounding box-based 

evaluation, where metrics such as “precision”, “recall”, & “F1-

score” are computed based on the accuracy of the predicted 

bounding boxes compared to ground truth annotations. An 

indication of precision is the proportion of instances of 

irregular text that have been correctly localized out of all the 

predicted instances. Recall calculates the proportion of 

correctly detected instances out of all the ground truth 

instances, while F1-score provides a balanced evaluation by 

taking into account both precision and recall. 

Another metric is pixel-level evaluation, which involves 

measuring the accuracy of the pixel-wise segmentation masks 

for irregular text. In this particular context, the widely utilized 

evaluation metric is Intersection over Union (IoU), which 

calculates the overlap between the predicted mask and the 

ground truth mask. Higher IoU values indicate better 

segmentation accuracy. 

Other evaluation metrics commonly employed in the 

assessment of irregular text detection encompass Average 

Precision (AP), which evaluates precision at various recall 

levels, and the F-measure, which combines precision and 

recall to provide a consolidated assessment. 

The selection of appropriate evaluation metrics depends on 

factors such as the specific characteristics of irregular text, the 

complexity of the detection task, and the desired trade-off 

between precision and recall. It is important to choose metrics 

that align with the objectives and requirements of the irregular 

text detection system being evaluated. 

Precision evaluates the ratio of accurately identified text 

instances to all the text instances detected by the system. It 

emphasizes the accuracy of positive predictions, serving as an 

indicator of how effectively the algorithm recognizes true 

positive text regions. Recall, also known as sensitivity, 

measures the proportion of correctly detected text instances 

out of all the actual text instances present in the dataset. It 

emphasizes the ability of the algorithm to capture all the 

positive instances, minimizing false negatives. 

The F1-score represents a balanced assessment of the 

algorithm's performance as it is a harmonic mean of precision 

and recall. It offers a comprehensive measure that takes into 

account both precision and recall simultaneously. It takes into 

account both precision and recall, giving equal importance to 

false positives and false negatives. 

Additional evaluation metrics for text detection could 

encompass Intersection over Union (IoU), which quantifies 

the degree of overlap between the predicted text regions and 

the ground truth regions, as well as Average Precision (AP), 

which determines the average precision across various recall 

levels. 

 

4.4 Ablation study 

 

4.4.1 Exploring the impact of u-net architecture for text 

component extraction through ablation study 

We performed ablation experiments on three datasets, 

namely Total text, CTW (1500), MSRA (TD500), to assess the 

effectiveness of the relational reasoning network. The 

experimental results are presented in Table 1. In order to 

mitigate the influence of data on the results, our model was 

initially pre-trained using SynthText and subsequently fine-

tuned using Totaltext & CTW (1500). For MSRA (TD500), 

which includes both English and Chinese text, we pre-trained 

our network using ICDAR2017-MLT. The maximum 

dimensions of the images in Totaltext, CTW (1500), and 

MSRA (TD500) were restricted to 1,280, 1,024, and 640, 

respectively, while maintaining their original aspect ratios. 

We have enhanced our method based on the DRRG and 

DPText-DETR approach and conducted a comparative 

analysis of the experimental results with DRRG. Figure 4 

presents a visual comparison of the text components generated 

by various methods. A statistical comparison has also been 

conducted between the two approaches regarding the no. of 

text components & detection results. Table 1 shows that our 

text component generation method led to significant 

reductions in text component numbers and detection times. 

Furthermore, the results indicate that our method effectively 

reduces the number of non-character text components while 

improving the overall performance of text detection. 

 

Table 1. Experimental results focusing on the extraction of 

text components 

 
Dataset Models P R F 

CTW (1500) 

DRRG [11] 83.8 81.5 82.6 

TD-GCN [40] 86.7 85.4 86.1 

Proposed 89.5 88.4 89.2 

MSRA(TD500) 

DRRG [11] 88.1 82.3 85.1 

TD-GCN [40] 89.7 85.1 87.4 

Proposed 90.2 88.9 89.2 

Total text 

DRRG [11] 83.1 85.9 84.5 

TD-GCN [40] 89.1 84.4 86.1 

Proposed 90.4 88.4 89.1 

 

 
 

Figure 4. Bar graph illustration of text component extraction 

 

4.4.2 Ablation experiment on local inference graph 

Methods that employ feature extraction networks for direct 

text region detection often face challenges when it comes to 

accurately segmenting text lines. Instances where two text 

regions are mistakenly merged into one region. To address 

these issues and improve text region segmentation, our 

approach utilizes a relation inference network that leverages 

the adjacency relationships between text components. 

Experimental results on the MSRA (TD500) & CTW (1500) 

datasets demonstrate the effectiveness of our adjacency 

inference network were shown in Table 2. Figure 5 presents a 

visual comparison of the text components generated by 

various methods. The local inference ablation experiments 

reveal significant improvements, with precision, recall, and F-

measure on MSRA (TD500) and on CTW (1500). These 
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performance improvements further validate the efficacy of our 

proposed adjacency inference network. 

 

Table 2. Experimental results focussing on inference graph 

 
Dataset Models P R F 

CTW (1500) 

DRRG [11] 83.1 80.6 81.8 

TD-GCN [40] 86.7 85.4 86.1 

Proposed 91.2 89.9 87.3 

MSRA(TD500) 

DRRG [11] 83.2 78.5 80.8 

TD-GCN [40] 89.7 85.1 87.4 

Proposed 90.5 87.4 89.5 

Total text 

DRRG [11] 83.1 85.9 84.5 

TD-GCN [40] 89.1 84.4 86.1 

Proposed 90.3 88.9 88.4 

 

 
 

Figure 5. Bar graph illustration of local inference graph 

 

4.3 Results & Interpretations 

 

4.3.1 Empirical investigations conducted on the ICDAR (2013) 

dataset 

We conducted experiments utilizing the ICDAR (2013) 

dataset, and Figure 6 showcases selected examples of the 

obtained outcomes. The experimental results highlight that the 

approach proposed in this paper showcases exceptional 

performance in detecting text on this specific dataset. To 

further evaluate its effectiveness, we compared our method's 

detection results with those of other existing text detection 

approaches. Our method performs best in the text detection 

performance evaluation with precision 92.8%, recall 87.1%, 

and F-measure 89.9% as demonstrated in Table 3. 

Significantly, our method surpasses other methods in terms of 

recall rate and F-measure. 

 

 
 

Figure 6. Detection samples from the proposed method on 

the ICDAR (2013) dataset 

Table 3. Experimental results conducted on the ICDAR 

(2013) dataset using different methods 

 
Reference P R F 

[52] 83.5 77.2 80.2 

[38] 87.3 81.1 84.3 

[53] 90.0  80.0 85.0 

[54] 94.0 69.0 80.0 

[40] 92.8 87.1 89.9 

Proposed model 94.1 89.4 89.8 

 

4.3.2 Empirical investigations conducted on the dataset 

MSRA(TD500) 

Using the MSRA(TD500) dataset, we evaluated our method 

on a multilanguage dataset. Figure 7 showcases selected 

examples of the experimental outcomes obtained, while Table 

4 presents a comparative analysis between our method and 

other existing approaches. As shown in Table 4, our method 

achieved 89.7% precision, 85.1% recall, and 87.4% F-measure 

values in the MSRA(TD500) dataset. Notably, our approach 

outperforms other methods in terms of both recall rate and F-

measure, showcasing its superiority in detecting 

multilanguage scene text. 

 

 
 

Figure 7. Detection samples from the proposed method on 

the dataset MSRA(TD500) 

 

Table 4. Experimental results conducted on the 

MSRA(TD500) dataset using different methods 

 
Reference P R F 

[55] 86.0 70.0 77.0 

[6] 87.4 75.9 81.3 

[39] 88.2 78.2 82.9 

[14] 81.6 77.2 79.3 

[15] 85.0 82.0 83.0 

[35] 88.1 82.3 85.1 

[12] 90.2 81.9 85.8 

[13] 90.9 83.8 87.2 

[32] 91.5 83.3 87.2 

[40] 89.7 85.4 86.1 

Proposed model 92.3 87.8 89.3 
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4.3.3 Empirical investigations conducted on the CTW (1500): 

Moreover, we selected the CTW (1500) dataset so that we 

could assess our method's robustness to detect irregular scene 

text. Figure 8 presents several examples showcasing the 

experimental outcomes achieved using our method. As shown 

in Table 5, our method outperforms other methods. 

Remarkably, the results presented in Table 5 highlight that our 

method surpasses alternative approaches in terms of recall rate 

and F-measure, attaining impressive values of 85.4% and 86.1% 

respectively. As a result, we were able to detect irregular and 

multidirectional scene text accurately with the help of our 

method. 

 

 
 

Figure 8. Detection samples from the proposed method on 

the CTW (1500) dataset 

 

 

Table 5. Results obtained from experiments conducted on the 

CTW (1500) dataset using different methods 

 
Reference P R F 

[33] 84.5  82.8 83.6 

[6] 83.0  79.8 81.4 

[27] 87.7  80.6 84.0 

[39] 86.0  81.1 83.5 

[14] 85.1  78.2 81.5 

[11] 85.9  83.0 84.4 

[40] 86.7 85.4 86.1 

Proposed model 91.6 87.3 89.6 

 

 

4.3.4 Empirical investigations conducted on the dataset 

Totaltext 

The primary emphasis of the Total-Text dataset lies in 

curved and multi-oriented texts, offering annotations at the 

word level. During testing, we resize the images to ensure the 

shortest side is 512 pixels, and we maintain the longest side 

not exceeding 1,280 pixels. We present some visually 

impressive results in Figure 9. The effectiveness of our 

approach is evaluated by comparing its performance with 

other methods, as presented in Table 6. The images 

demonstrate that our method excels at accurately detecting 

irregular texts at the word level and effectively separating 

closely positioned text instances of various shapes. The 

performance surpasses that of other existing methods by a 

significant margin, indicating the effectiveness and superiority 

of our approach. 

 

Table 6. Results obtained from experiments conducted on the 

Totaltext dataset using different methods 

 
Reference P R F 

[33] 85.6 75.7 80.3 

[6] 81.2 79.9 80.6 

[28] 84.02 77.9 80.87 

[55] 82.1 80.9 81.5 

[23] 87.6 79.3 83.3 

[11] 86.54 84.93 85.73 

Proposed model 89.9 89.2 87.96 

 

 
 

Figure 9. Detection samples from the proposed method on 

the dataset Totaltext 

 

 

5. CONCLUSION 

 

In summary, this paper introduces an innovative approach 

to irregular text detection using a graph convolution network 

along with U-Net for character center point estimation and 

connected component analysis. Our method demonstrates 

robustness and effectiveness in accurately detecting irregular 

scene text across various datasets. For future work, we aim to 

address challenges such as overlapping-text, low resolution-

text, and partially occluded-text. Additionally, we plan to 

integrate our approach with text recognition to create an end-

to-end solution covering both text detection and recognition. 

It's crucial to acknowledge the limitations related to datasets, 

languages, and text types and explore ways to enhance the 

model's generalizability across diverse scenarios. 
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