
Data Augmentation for Offline Arabic Handwritten Text Recognition Using Moving Least

Squares

Mohamed Amine Chadli1 , Rochdi Bachir Bouiadjra1* , Abdelkader Fekir1 , Jesus Martínez‑Gómez2 ,

José A. Gámez2

1 Computer Science Department, University of Mustapha Stambouli, Mascara 29000, Algeria
2 Computing Systems Department, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain

Corresponding Author Email: r.bachir-bouiadjra@univ-mascara.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380101 ABSTRACT

Received: 19 July 2023

Revised: 3 November 2023

Accepted: 8 December 2023

Available online: 29 February 2024

This paper addresses the research problem of Offline Arabic Handwriting Text Recognition

(HTR). One of the most important approaches to HTR systems is deep learning. A large

amount of annotated data is needed to train deep learning-based HTR systems. The Arabic

language is spoken by hundreds of millions of people in North Africa and the Middle East.

Writing styles and common words differ significantly between those regions. Due to the

great diversity possible, designing a statistically represented and balanced database of

Arabic handwritten texts by gathering and labeling the texts is an arduous task to achieve.

One of the ways to enrich the training databases is by augmenting the existing data. We

have developed a new data augmentation technique for Arabic handwritten texts using

Moving Least Squares (MLS) to deform the images. This technique results in realistic

images that look like manipulating real-world images, and the deformations are done using

linear functions that produce deformations in real time. We aim to deform the training data

images randomly in a way that the text present in the images is still recognizable by a

human. This augmentation technique can be used directly on images to augment them

unlike other techniques such as Generative Adversarial Networks (GAN) where they must

be trained beforehand. At the same time, it produces new complex augmented images

compared to simple traditional augmentation techniques such as rotations and translations.

In addition to this augmentation technique, we used a deep learning system called

Convolutional Recurrent Neural Networks (CRNN) to test the new technique, and we have

experimented with a CRNN model that accepts small input-size images to boost the time

needed for both training and image augmentations. All the experimentations are carried out

on the Arabic IFN/ENIT database. The results show that the small input size CRNN model

outperforms the large input size CRNN model by a big margin. The results also show that

the integration of images augmented by the MLS technique can help the recognition system

to generalize better on the test data, therefore, it can slightly improve the performance of

the recognition system.

Keywords:

off-line handwritten recognition, Arabic

script, IFN/ENIT database, convolutional

neural network, recurrent neural network,

connectionist temporal classification,

synthetic data, data augmentation

1. INTRODUCTION

The Arabic language is one of the most spoken languages

in the world, and it is considered the official language of

several countries. It is one of the six official languages of the

United Nations (UN), and it is used in various official and

unofficial documents by most Arabic speaking organizations.

Organizations such as non-profits regularly conduct surveys

that require filling out certain documents, to gather statistical

information about a topic or region. Industries such as banking

and healthcare routinely require their clients to write on

documents. A common practice is to store documents in a

digital format for fast, intelligent retrieval and automatic

natural language processing operations, such as classification,

clustering, and search engine ranking. Due to the big number

of operations done daily, the process of reading these

handwritten texts must be automated. For this reason,

automatic Arabic handwriting text recognition systems are

needed, and we aim to automatically recognize Arabic

handwritten texts from photo images taken for Arabic texts.

Thanks to this approach, we could eliminate the huge

manpower that was usually needed to do this task manually

and slowly, and speed up this task and make it more efficient.

Arabic HTR can be divided into two different types of

recognition, online and offline text recognition. Recognizing

the text after it was already written on some kind of medium

(e.g., a sheet of paper, tablet, official form), with the condition

that the writing was already complete, is known by the name

of offline text recognition. On the other hand, recognizing the

text in real-time during writing on some kind of medium like

a tablet using a digital pen is known as online text recognition.

Historically speaking, early attempts to create optical

character recognition (OCR) systems focused solely on

recognizing predefined shapes of individual characters,

Revue d'Intelligence Artificielle
Vol. 38, No. 1, February, 2024, pp. 1-9

Journal homepage: http://iieta.org/journals/ria

1

https://orcid.org/0000-0001-8623-9618
https://orcid.org/0000-0002-7514-2025
https://orcid.org/0000-0001-7107-8241
https://orcid.org/0000-0002-4000-1951
https://orcid.org/0000-0003-1188-1117
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380101&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380101&domain=pdf

meaning that OCR systems were only capable of recognizing

one type of font up to a maximum of 10 font types depending

on the methods applied. Which led to the first generation of

commercially available OCR systems for Latin scripts

between 1960 and 1965. Yet, it took 30 years for the Arabic

OCR systems to be available at the market in the 1990’s, due

to the connectedness nature of Arabic words. A lot of details

are presented by Iman Yousif et al. in their review [1] on

Arabic HTR. Additionally, the systems that can be used to

recognize Arabic HTR can be divided into two forms of

systems, segmentation-based and segmentation-free systems.

Segmentation-free approaches are also known as the holistic

approaches, where each word or text is considered a class, and

the system classifies each image into a class, in this case, a

word or a text. Thus, the task of recognizing Arabic HTR is

transformed into a classification problem. Consequently, this

approach will inherit all the advantages and disadvantages of

traditional classification systems. The main advantage is that

the implementation of this type of system is straightforward

compared to segmentation-based approaches, and one of the

disadvantages is that the number of classes in these Arabic

HTR systems will heavily depend on the number of words or

texts present in the specific domain of recognition. We must

also take into consideration that the words to be recognized

will be very limited to the specific domain, and these systems

will not be able to recognize any word that is not present in the

specified domain. For this reason, these types of systems will

perform better on constrained domains. The segmentation-

based approaches [2-8] rely on recognizing the characters

present in the image one by one, instead of recognizing the text

or the word as a whole. As we are trying to recognize the

characters, this kind of system's class count is determined by

the total amount of characters of the language in which the

texts are written. Moreover, segmentation-based approaches

are further subdivided into explicit and implicit segmentation

methods. Images in the training dataset must be annotated at

the character level in order to use explicit segmentation

techniques. Each training image in the dataset should be

segmented into sub-images, where each sub-image contains a

character. While implicit segmentation approaches only

require word-level annotations, (there is no need to segment

the image into character sub-images during training) the

system will try to recognize the characters implicitly. One

notable advantage inherent in segmentation-based approaches

lies in their adaptability across various domains. These

systems possess the theoretical capacity to recognize any

given word or line of text. Notably, implicit segmentation

approaches offer an additional advantage over explicit

approaches, necessitating substantially fewer labeled datasets

for training compared to their explicit counterparts, rendering

explicit segmentation-based approaches more challenging to

train, as previously elucidated. Another thing to consider is

that implementing segmentation-based systems is relatively

difficult. Al Abodi et al. [6], Parvez and Mahmoud [7] and

Elzobi et al. [8] worked with explicit segmentation strategies.

While Jayech et al. [2], Amrouch et al. [3], El-Hajj et al. [4],

and El Moubtahij et al. [5] used implicit segmentation

strategies in their recognition systems. Segmentation-based

approaches are also known as the analytic approach, and they

tend to perform better than the segmentation-free approaches

when we have a large vocabulary of words to be recognized.

Other researchers have taken a different route, enhancing the

recognition systems performance only by incorporating newly

synthesized or augmented images to the training datasets.

Recent research has focused on generating new synthesized

augmented images using generative adversarial networks

(GAN), which use two competing neural networks, one of the

networks having the role of image generator and the other, the

role of discriminator. The generator network tries to generate

images as authentic as possible that look exactly like real

images, and the discriminator network tries to determine

whether the generated image is authentic or not. GANs have

been proven effective in several areas of computer vision for

generating fake images that appear authentic. For instance,

Saabni et al. [9] developed a simple system that generates a

synthetic dataset of Arabic words in a specific lexicon. They

generate the word parts using a predefined large set of shapes

of each Arabic character in each position. Graves [10] has

developed an approach to generate new synthetic datasets for

handwriting texts using Recurrent Neural Networks. This

system generates highly realistic cursive handwriting texts in

a wide variety of styles. Elarian et al. [11] adopted two

concatenation models (Extended-Glyphs connection and

Synthetic-Extensions connection) to synthesize Arabic words

from segmented characters. Wigington et al. [12] have

introduced two data augmentation and normalization

techniques, which are used with a CNN-LSTM. Alonso et al.

[13] proposed a system based on Generative Adversarial

Networks (GAN) to generate new synthesized images for

French and Arabic datasets. In their implementation of the

GAN, they add an auxiliary network for text recognition,

where they train the system with a balanced combination of an

adversarial loss and a Connectionist Temporal Classification

(CTC) loss. Jha et al. [14] used a Generative Adversarial

Network (GAN) to augment data text images and

experimented on several handwritten digits (Latin, Bangla,

Devanagri, and Oriya). They also experimented with adding

too many artificial augmented samples. Fogel et al. [15]

followed a semi-supervised approach to generate images of

handwritten words with arbitrary lengths using Generative

Adversarial Networks (GAN).

In this paper, we have developed a variation of

Convolutional Recurrent Neural Networks (CRNN) [16],

which is an implicit segmentation-based approach. An

overview of the CRNN system is presented in Figure 1. Our

modification proposal allows to use small images as input.

These CRNN systems consist of three main blocks: a

convolutional block, a recurrent block, and a transcription

block. The transcription block is a Connectionist Temporal

Classification (CTC) layer [17], that deals with unsegmented

sequence inputs. We have also applied some traditional

augmentation techniques to the Arabic IFN/ENIT database

[18]. We finally concluded our research by developing a new

text augmentation technique that is best suited to handwritten

Arabic texts. This technique is based on the Moving Least

Squares (MLS) [19] by Schaefer et al. to generate new images

for training.

2. METHODOLOGY

Many different methods have been used in the research area

of Arabic HTR. Some of these popular methods is deep

learning-based methods. In this work, we have initially used a

model called CRNN, where we employed the outcomes

derived from the adaptation of the CRNN model, which was

initially introduced in the study [20]. We used this model as a

baseline. This model possesses the capability to accommodate

2

sizable images as input, thereby enabling us to investigate the

hypothesis asserting that superior performance can be

achieved by utilizing larger input-size images. Second, we

have designed another variation of the CRNN model that can

accept smaller input-size images, aiming to compare its

performance with the former model. Third, we have

supplemented the second CRNN model (the one that accepts

small input-size images) with new images augmented from the

chosen dataset by traditional augmentation techniques. This

was done to check the effects of employing these new

augmented images on our Arabic HTR model. Lastly, we have

developed a new augmentation technique based on the MLS

technique that better suits our case of study to recognize

Arabic handwriting texts. All the details of the previously

mentioned methods are discussed in the following subsections.

Figure 1. Network configuration. The network has three components: 1) convolutional layers, which use the image as input to

create sequences of features; 2) recurrent layers, which generate feature maps with context; 3) transcription layer, which converts

a final label sequence from the character sequence
Notes: Reprinted from the study [20]. Reprinted with permission.

2.1 Large input-size and small input-size models

The network architecture of the two models follows the

same CRNN flow, they just differ in the size of the input

images they accept, the number of layers, and some kernel and

stride sizes for some layers. The large input size model and the

small input size model architectures are described in detail

respectively in Tables 1 and 2. The networks are defined in the

tables starting at the lowest point and moving upward. The first

step involves normalizing the input images after scaling them

to (64, 512), (32, 128), respectively. We used convolutional

layers for the first two layers, and then the Rectified Linear

Unit (ReLU) activation function. To expedite training, the

BatchNormalization layer is applied after every convolutional

layer save for the initial layers. Our models were designed

using a VGG-like approach, with 3 × 3 convolution kernels

and a gradual increase in feature maps from 64 to 512. The last

convolutional layer in both models use 2 × 2 convolution

kernels. To minimize the size of the feature maps, we

additionally applied 2 × 2 MaxPooling layers following the

convolutional layers, with the exception of the last

MaxPooling layer in the large input size model, and the last

two MaxPooling layers in the small input size model, where

we used a 2 × 1 MaxPooling window and a 2 × 1 stride. The

prescribed adjustments were implemented to produce wide

feature maps, allowing us to predict every Arabic word.

Consequently, the resultant output of the CNN block is a

sequence of 31 vectors of feature maps. These 31 vectors

adequately enable the prediction of all Arabic words present

in the language. The choice of number of layers, their order,

kernel sizes, strides and padding sizes, was specifically made

to design an architecture that produces a sequence of 31

feature vectors to be used later to predict the sequence of

characters present in the image. If we randomly choose the

previous configuration, we will get an architecture that

produces a different number of sequence vectors or no

sequence at all, which does not conform to our specified

requirements. To adapt the CNN block's output to the proper

shape of the recurrent layers input, the network features a

unique layer called "MapToSequence." It will then be fed to

the recurrent layers as a sequence of feature vectors, 𝑋 =
[𝑥1, 𝑥2, ⋯ , 𝑥𝑇], where the recurrent layers use each vector 𝑥𝑡
from the sequence vectors to create a new contextual feature

vector, 𝑦𝑡 . 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑇] is the resulting sequence of

contextual feature vectors. Fully connected layers are

positioned after the recurrent layers in order to predict the label

3

distribution. The CTC part of the model requires these fully

connected layers. In our case, the Arabic characters represent

the labels that we are attempting to recognize. One character

prediction is made for each contextual feature vector. The

contextual feature vectors were extracted through the use of

deep Bidirectional Long Short-Term Memory (Bi-LSTM)

recurrent layers. In the original image, as seen in Figure 2,

certain characters cover multiple neighboring regions.

Figure 2. The area of receptivity. The original input image's

regions are represented by each receptive field
Notes: Reprinted from [20]. Reprinted with permission.

Because of this, the non-contextual sequential features

generated by the CNN layers are not the ideal choice when

attempting to recognize characters that are stretched across

multiple receptive fields. To extract features with context, we

used RNNs; however, since vanilla RNNs are known to be

inefficient at capturing long-term contextual information, we

specifically used LSTM layers for this purpose. Utilizing Bi-

LSTM, we were also able to obtain contextual information

from the past as well as the future, which is important for text

recognition because of its nature. Additionally, we achieved a

deep extraction of contextual information by stacking two Bi-

LSTM layers on top of each other. Figure 3 is a representation

of a deep Bi-LSTM network.

Figure 3. Our architecture employs a deep bidirectional

LSTM, which combines forward (from left to right) and

backward (from right to left) LSTMs to produce a

bidirectional structure. Our deep bidirectional LSTM is

constructed by vertically stacking multiple bidirectional

LSTMs
Notes: Reprinted from the study [20]. Reprinted with permission.

Table 1. Network configuration summary of Large Input-

Size Model. The uppermost row denotes the top layer. Within

this context, ‘s’, ‘k’, ‘d’, and ‘p’ correspond to strides, Kernel

size, dropout, and padding size, in that order. The variable

"chars" represents the count of characters within the language

constituting the dataset

Type Configurations

Transcription -
Dense #units: chars + 1, activation: softmax,

regularization: L2

Bi-LSTM #hidden units: 128, d: 0.2

Bi-LSTM #hidden units: 128, d: 0.2

Map-To-Sequence -
Activation ReLU

BatchNormalization -

Convolution #maps: 512, K: 2 × 2, S: 1, P: Valid

MaxPooling Window: 2 × 1, S: 2 × 1

Activation ReLU

BatchNormalization -

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same

Activation ReLU

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same

Input 64 × 512 black and white image-
Notes: Reprinted from the study [20]. Reprinted with permission.

A dropout of 0.2 was set on the recurrent layers and the

weights of these layers were optimized with backpropagation

through time algorithm. Finally, the output of the recurrent

layers is fed to the transcription layer. The transcription layer

functions akin to a translator, using the CTC technique [17] for

training and inference on unsegmented data utilising recurrent

layers. The CTC technique converts the sequence of letters

predicted by the recurrent layers into a true sequence of labels.

For the CTC method to work properly, the output of the

Recurrent layers must be softmax with one more unit than

there are labels (Characters) in the targeted dataset. The

activation of the first units represents the probability of

predicting that particular label (Character) at that specific

timestep. The activation of the newly added unit means a

‘blank’, or no label. Jointly, these softmaxed outputs represent

the probabilities of all possible ways of aligning all the

4

possible label sequences given an image input to the network.

The network will be trained with a CTC loss function as

described in the original work.

Table 2. Network configuration summary of Small Input-

Size Model. The uppermost row denotes the top layer. Within

this context, ‘s’, ‘k’, ‘d’, and ‘p’ correspond to strides, Kernel

size, dropout, and padding size, in that order. The variable

"chars" represents the count of characters within the language

constituting the dataset

Type Configurations

Transcription -
Dense #units: chars + 1, activation: softmax,

regularization: L2

Bi-LSTM #hidden units: 128, d: 0.2

Bi-LSTM #hidden units: 128, d: 0.2

Map-To-Sequence -
Convolution #maps: 512, K: 2 × 2, S: 1, P: Valid

MaxPooling Window: 2 × 1, S: 2 × 1

BatchNormalization -

Activation ReLU

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same

BatchNormalization -

Activation ReLU

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 1, S: 2 × 1

Activation ReLU

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same

MaxPooling Window: 2 × 2, S: 2

Activation ReLU

BatchNormalization -

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same

Activation ReLU

Input 64 × 512 black and white image-

2.2 Traditional augmentation techniques

We have followed a traditional data augmentation technique

to deal with an unbalanced dataset, as some words are really

under-represented. We have augmented the dataset and

generated new images by applying four main augmentation

strategies that can suit the sequential nature of Arabic texts.

First, we rotated the images by 4 degrees counter-clockwise

direction around its center. Second, we have rotated the images

by another 4 degrees but this time in a clockwise direction

around its center. Third, we have dilated the text in the images

by reinforcing the thickness of the text that appears in them.

Fourth and last, we have translated the texts in images to the

left by adding white pixels to the left of the images. An

example of these augmentations is shown in Figure 4.

2.3 The proposed data augmentation method

To generate new augmented images for our training, we

have used a technique of image deformation based on Moving

Least Squares (MLS). This technique was first described in the

study [19], and we specifically used the similarity deformation

transformation because it best suits the case of Arabic

handwritten texts. The newly generated deformed images are

either slightly different from the original images or very

different from them, depending on the applied deformation

parameters to obtain these new deformed images. For these

deformations to take place, the user must first select some

parameters, the parameters are a set of fiducial points that will

be moved to new positions.

Figure 4. An example of the four traditional augmentation

techniques: Original image, left translation, rotation by 04

degrees, rotation by 356 degrees, and text dilation

We randomly select these fiducial points 𝑝 by sampling

them from a discrete uniform distribution of the size of the

images. The fiducial points to be sampled are equal to 4𝐿,

where 𝐿 is the length of the sequence of characters present in

the current image that we want to augment from the training

set. After that, we augment the images by randomly moving

the fiducial points 𝑝 to the new coordinates 𝑞 within a random

radius of 𝑅. To get the new augmented image, we apply the

similarity deformation based on Moving Least Squares (MLS)

on an input image. Given a point 𝑣 from the input image, the

transformation for this 𝑣 based on the fiducial points 𝑝 when

moved to the new positions 𝑞 is

𝑇𝑣(𝑞) = (𝑣 − 𝑝∗)𝑀 + 𝑞∗ (1)

where, 𝑀 is a linear transformation matrix of a constant size

of 2 × 2, and it is constrained to have the property of 𝑀𝑇𝑀 =
𝜆2𝐼 for some scalar 𝜆. The 𝑝∗ and 𝑞∗are the weighted centroids

of the initialized fiducial points 𝑝 and 𝑞 respectively

𝑝∗ =
∑ 𝑤𝑖𝑝𝑖
4𝐿
𝑖=1

∑ 𝑤𝑖
4𝐿
𝑖=1

, 𝑞∗ =
∑ 𝑤𝑖𝑞𝑖
4𝐿
𝑖=1

∑ 𝑤𝑖
4𝐿
𝑖=1

, (2)

In the above equations, 𝑝𝑖 and 𝑞𝑖are row vectors and the

weights 𝑤𝑖 for the point 𝑣 have the form

𝑤𝑖 =
1

|𝑝𝑖−𝑣|
2𝑎 , 𝑝𝑖 ≠ 𝑣 (3)

5

We can observe that when 𝑣 approaches 𝑝𝑖 , 𝑤𝑖 increases

significantly, which means that 𝑇𝑣(𝑝𝑖) = 𝑞𝑖. And it also means

that the points close to 𝑝𝑖 will be also close to the new point 𝑞𝑖
in the deformed image. Note that, if 𝑝𝑖 = 𝑞𝑖 , then each

𝑇𝑣(𝑣) = 𝑣 for all 𝑣 and, thus, 𝑇 is the identity transformation

function. We obtain the best transformation 𝑇𝑣(𝑣) by

minimizing

∑ 𝑤𝑖|𝑇𝑣(𝑝𝑖) − 𝑞𝑖|
24𝐿

𝑖=1 (4)

3. EXPERIMENTS

All experimentation details about the dataset, the role of

image sizes, the role of traditional data augmentation

techniques, and the role of the newly proposed data

augmentation technique to improve recognition performance

are included in the following subsections.

3.1 Dataset details

All experiments were carried out on the IFN/ENIT database,

developed by Pechwitz et al. [18]. The database contains

26,400 images of handwritten Tunisian Arabic town/village

names. These represent more than 210,000 characters. It was

created by 411 distinct writers and divided into seven sets (a,

b, c, d, e, f, and s), all of which were written by Tunisians with

the exception of set s, which was written by UAE-based

writers.

3.2 Training details of small input-size and large input-size

models

The images contained in the Tunisian dataset are of

significant dimensions, typically exceeding 1000 pixels in

width and surpassing 200 pixels in height. Consequently, we

postulate that diminishing the size of these images through

resizing to smaller dimensions would result in a decline in the

model's performance. Consequently, we obtained the

outcomes using the CRNN model outlined in the study [6],

which preserved the original large image sizes. Specifically,

all images were resized to dimensions of (64, 512),

representing a substantial input size.

We have also tested the opposite hypothesis that presumes

that reducing the size of the images will not affect the

performance of the model. For this, we have resized all the

images to the size (32, 128). We have tested this hypothesis by

designing another variation of the CRNN model that can

accept images of smaller sizes.

We developed our networks in TensorFlow v2, using

customised implementations of the MapToSequence layer, the

transcription layer, and the BK Tree data structure (written in

Python 3). The large input size model has 9,186,105

parameters, whereas the small input size model has 6,634,617

parameters. Because of the large input size of the first model,

we need eight (08) times more memory space for both the ram

and the GPU ram compared to the second small input size

model to be able to train the first large input size model. We

trained our models using pairs of training images and the

corresponding ground-truth label sequences, with a batch size

of 256 and two types of GPU: Tesla P100 with 16GB of RAM

and Tesla T4 with 16GB of RAM. We stopped training when

reaching convergence at epoch number 53 for the large input

size model, while the small input size model reached

convergence at epoch number 19. For the model with a large

input size, we optimised using the Stochastic Gradient Descent

(SGD) algorithm with a momentum of 0.9 and a learning rate

of 0.01. For the smaller input size model, we utilized the Adam

optimizer with a learning rate of 0.001. The training for the

larger input size model lasted two hours, with an average of

126 seconds for every epoch. It took around 36 minutes, with

114 seconds for each epoch for the small input size model.

3.3 Training details of the CRNN model with traditional

augmented images

All four augmentations are applied to the dataset images one

after another, which means that the size of the dataset has

increased five (5) times, and the model will receive during

training five different versions of the same image

consecutively. The first image without augmentation, the

second one with a rotation of 4 degrees counter-clockwise

direction, the third one with a rotation of 4 degrees clockwise

direction, the fourth one with dilation of the text, and lastly the

fifth one with a left translation of the text. The

experimentations of these augmentation strategies are carried

out on the smaller input-size CRNN model.

3.4 Training details of the CRNN model with MLS

augmented images

We have applied the MLS technique to generate three new

augmented images for each image in the dataset. Firstly, we

randomly select the control points 𝑝 for each image that we

want to augment. Then, we randomly chose the new positions

𝑞 for the augmentation to take place. Each point in the control

points 𝑝 will be randomly selected from a discrete uniform

distribution of the values in the half-open interval [0, Image

Width), and [0, Image Height) to obtain the width and height

coordinates of the point. These new positions 𝑞 are within a

radius 𝑅 from the original control points 𝑝 . The distance

between the control points coordinates of 𝑝 and the

corresponding destination points coordinates of q will

determine how much deformation will be applied to the image

of interest. As long as the distance between the p and the

corresponding q is close, the newly generated image will keep

a lot of its original meaning and context. The inverse holds

true, provided that there is a signicant distance between them,

the newly generated image will lose a lot of its original

meaning and context. We manually tested several values of the

radius 𝑅 and visually observed which values would be

effective for our case study. When we tested with large values,

the deformation result was not good and the text present in the

image was completely unreadable to the human eye, that's why

we decided to choose the values that do not result in a total

loss of readability of the text. We deform each image of

interest three times, one with a small value of the radius R,

another one with a medium value of the radius, and the last

one with a relatively big value of it. We named them based on

their deformation effect on the image of interest respectively,

soft deformation, medium deformation, and hard deformation.

Some examples of images augmented with these deformations

are shown in Figure 5.

We kept in consideration that all the previous deformations

will not affect the overall meaning and context of each original

image, for which a human can still be able to read the content

of each image correctly. After generating the three new images

based on the three deformation variations, the soft, the medium,

6

and the hard one, we feed them along the original undeformed

image to the small input size version of the CRNN model and

train with them until convergence.

Figure 5. Three examples of augmented images using the MLS augmentation technique with: Soft deformation, medium

deformation, and hard deformation

Figure 6. Losses during training and validation as a function of epoch count

In Figure 6 we respectively plot the training loss, and the

validation loss of our models (Large Input Size Model, Small

Input Size Model, Small Input Size Model with Traditional

Augmented Images, and Small Input Size Model with MLS

Augmented Images) as a function of the number of epochs.

3.5 Results and discussion

Numerous research teams have carried out experiments on

the IFN/ENIT database using various training scenarios. Each

team implemented its unique training strategy. In our case, we

have opted to train the model on sets a, b, c, and d, while

conducting validation on set e and performing testing on set f.

This selection is motivated by the scenario's popularity and its

alignment with our specic requirements, making it the most

suitable and convenient option. The results of all experiments

are shown in Table 3. The calculation of the accuracy is not

straightforward, because of the nature of the predictions made

by our models, which predict a sequence of characters instead

of just one class. For this reason, we come up with this way of

calculating the accuracy: if the model makes any mistake in

any of the predicted characters of the predicted text, we simply

consider the predicted text to be wrong. Otherwise, the

predicted text is considered a true label prediction. We further

reinforce the performance of our models by comparing the

predicted texts with a dictionary of accepted predictions in a

specific domain (in this case, the Tunisian city names) with the

BK-Tree data structures.

7

Table 3. Accuracy of word recognition in training, validation, and testing conducted on the IFN/ENIT database for all

experiments

IFN/ENIT Dataset Version: v2.0p1e

Sets

Accuracy %

Large Input-

Size Model

Small Input-

Size Model

Small Input-Size Model with

Traditional Augmented Images

Small Input-Size Model with MLS

Augmented Images

Training a,b,c, d 99.9 99.9 99.9 99.9

Validation E 80.97 81.02 81.17 80.82

Testing F 79.95 81.54 80.59 81.81

We can see that the large input size model has the worst

performance on the test set f, whereas the small input size

model has outperformed it by a big margin of 1.59%. As a

result, we can see that the assumption that the large input size

model would outperform the small input size model was

wrong. The opposite was correct. We can also see that the

model that employs the MLS technique to augment the images

has performed the best on the test set f, compared to other

experiments, where it outperformed the small input size model

with a small margin of 0.27%. Table 4 displays the

comparative outcomes of prior systems.

Table 4. Accuracy of word recognition across many systems

that were evaluated on set e and trained on sets a, b, c, and d

System Accuracy %

Parvez and Mahmoud (2013) [7] 79.58

CNN-HMM (Amrouch et al. 2018 [3]) 89.23

Alkhateeb et al. (2011) [21]
DBN (66.65)

HMM (82.3)

El Moubtahij et al. (2017) [5] 78.95

Hamdani et al. (2009) [22] 81.93

Kessentini et al. (2012) [23] 79.6

DBN (Jayech et al. 2016) [24] 78.5

Our model with MLS Augmented Images 81.17

4. CONCLUSION

In this study, we developed a CRNN variant that accepts

small input images to recognize offline Arabic handwritten

text. We compared its performance with a large input size

CRNN model and observed that the small input size model

performed better. Therefore, our conclusion suggests that the

adoption of large input-size models may not be imperative.

Instead, employing a small input size model offers reduced

memory space by a factor of 8, nearly quadruple faster

convergence during training, and a 27% reduction in number

of parameters, while in the meantime benefiting from better

performance.

Moreover, we explored traditional augmentation techniques

and introduced a novel MLS-based augmentation technique

for experimentation. Our proposed augmentation technique

exhibited promising results on the test set in comparison to

other experiments. Further research is recommended to

investigate the possible limitations of this novel augmentation

technique and to leverage its capabilities in the development

of new data augmentation strategies tailored specifically for

offline Arabic handwritten texts.

REFERENCES

[1] Yousif, I., Shaout, A. (2014). Off-Line handwriting

Arabic text recognition: A survey. International Journal

of Advanced Research in Computer Science and

Software Engineering, 4(9): 68-82.

[2] Jayech, K., Mahjoub, M.A., Amara, N.E.B. (2016).

Synchronous multi-stream hidden markov model for

offline Arabic handwriting recognition without explicit

segmentation. Neurocomputing, 214: 958-971.

https://doi.org/10.1016/j.neucom.2016.07.020

[3] Amrouch, M., Rabi, M., Es-Saady, Y. (2018).

Convolutional feature learning and CNN based HMM for

arabic handwriting recognition. In: Mansouri, A., El

Moataz, A., Nouboud, F., Mammass, D. (eds) Image and

Signal Processing. ICISP 2018. Lecture Notes in

Computer Science, vol 10884. Springer, Cham.

https://doi.org/10.1007/978-3-319-94211-7_29

[4] El-Hajj, R., Likforman-Sulem, L., Mokbel, C. (2005).

Arabic handwriting recognition using baseline dependant

features and hidden Markov modeling. In Eighth

International Conference on Document Analysis and

Recognition (ICDAR'05), Seoul, Korea (South), pp. 893-

897. https://doi.org/10.1109/ICDAR.2005.53

[5] El Moubtahij, H., Halli, A., Satori, K. (2017). Using

features of local densities, statistics and HMM toolkit

(HTK) for offline Arabic handwriting text recognition.

Journal of Electrical Systems and Information

Technology, 4(3): 387-396.

https://doi.org/10.1016/j.jesit.2016.07.005

[6] Al Abodi, J., Li, X. (2014). An effective approach to

offline Arabic handwriting recognition. Computers &

Electrical Engineering, 40(6): 1883-1901.

https://doi.org/10.1016/j.compeleceng.2014.04.014

[7] Parvez, M.T., Mahmoud, S.A. (2013). Arabic

handwriting recognition using structural and syntactic

pattern attributes. Pattern Recognition, 46(1): 141-154.

https://doi.org/10.1016/j.patcog.2012.07.012

[8] Elzobi, M., Al-Hamadi, A., Al Aghbari, Z., Dings, L.,

Saeed, A. (2014). Gabor wavelet recognition approach

for off-line handwritten Arabic using explicit

segmentation. In: S. Choras, R. (eds) Image Processing

and Communications Challenges 5. Advances in

Intelligent Systems and Computing, vol 233. Springer,

Heidelberg. https://doi.org/10.1007/978-3-319-01622-

1_29

[9] Saabni, R.M., El-Sana, J.A. (2013). Comprehensive

synthetic Arabic database for on/off-line script

recognition research. International Journal on Document

Analysis and Recognition (IJDAR), 16(3): 285-294.

https://doi.org/10.1007/s10032-012-0189-5

[10] Graves, A. (2013). Generating sequences with recurrent

neural networks. arXiv preprint arXiv:1308.0850.

https://doi.org/10.48550/arXiv.1308.0850

[11] Elarian, Y., Ahmad, I., Awaida, S., Al-Khatib, W.G.,

Zidouri, A. (2015). An Arabic handwriting synthesis

system. Pattern Recognition, 48(3): 849-861.

http://dx.doi.org/10.1016/j.patcog.2014.09.013

8

http://dx.doi.org/10.1016/j.patcog.2012.07.012
http://dx.doi.org/10.1007/s10032-012-0189-5

[12] Wigington, C., Stewart, S., Davis, B., Barrett, B., Price,

B., Cohen, S. (2017). Data augmentation for recognition

of handwritten words and lines using a CNN-LSTM

network. 2017 14th IAPR International Conference on

Document analysis and Recognition (ICDAR), Kyoto,

Japan, pp. 639-645.

https://doi.org/10.1109/ICDAR.2017.110

[13] Alonso, E., Moysset, B., Messina, R. (2019). Adversarial

generation of handwritten text images conditioned on

sequences. 2019 International Conference on Document

Analysis and Recognition (ICDAR), Sydney, NSW,

Australia, pp. 481-486.

https://doi.org/10.1109/ICDAR.2019.00083

[14] Jha, G., Cecotti, H. (2020). Data augmentation for

handwritten digit recognition using generative

adversarial networks. Multimedia Tools and

Applications, 79: 35055-35068.

https://doi.org/10.1007/s11042-020-08883-w

[15] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S.,

Litman, R. (2020). Scrabblegan: Semi-supervised

varying length handwritten text generation. In: 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA, 2020, pp.

4323-4332.

https://doi.org/10.1109/CVPR42600.2020.00438

[16] Shi, B., Bai, X., Yao, C. (2016). An end-to-end trainable

neural network for image-based sequence recognition

and its application to scene text recognition. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 39(11): 2298-2304.

https://doi.org/10.1109/TPAMI.2016.2646371

[17] Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.

(2006). Connectionist temporal classication: Labelling

unsegmented sequence data with recurrent neural

networks. In Proceedings of the 23rd International

Conference on Machine Learning, pp. 369-376.

https://doi.org/10.1145/1143844.1143891

[18] Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N.,

Amiri, H. (2002). IFN/ENIT-database of handwritten

Arabic words. In Proceeding of CIFED, pp. 127-136.

[19] Schaefer, S., McPhail, T., Warren, J. (2006). Image

deformation using moving least squares. In ACM

SIGGRAPH 2006 Papers, pp. 533-540.

https://doi.org/10.1145/1179352.1141920

[20] Chadli, M.A., Bachir Bouiadjra, R., Fekir, A. (2023).

Offline arabic handwritten text recognition for

unsegmented words using convolutional recurrent neural

network. In: Salem, M., Merelo, J.J., Siarry, P., Bachir

Bouiadjra, R., Debakla, M., Debbat, F. (eds) Artificial

Intelligence: Theories and Applications. ICAITA 2022.

Communications in Computer and Information Science,

vol 1769. Springer, Cham. https://doi.org/10.1007/978-

3-031-28540-0_22

[21] AlKhateeb, J.H., Pauplin, O., Ren, J., Jiang, J. (2011).

Performance of hidden Markov model and dynamic

Bayesian network classifiers on handwritten Arabic word

recognition. Knowledge-Based Systems, 24(5): 680-688.

https://doi.org/10.1016/j.knosys.2011.02.008

[22] Hamdani, M., El Abed, H., Kherallah, M., Alimi, A.M.

(2009). Combining multiple hmms using online and o-

line features for off-line Arabic handwriting recognition.

In 2009 10th International Conference on Document

Analysis and Recognition, Barcelona, Spain, pp. 201-205.

https://doi.org/10.1109/ICDAR.2009.40

[23] Kessentini, Y., Paquet, T., Hamadou, A.B. (2010). Off-

line handwritten word recognition using multistream

hidden Markov model. Pattern Recognition Letters,

31(1): 60-70.

https://doi.org/10.1016/j.patrec.2009.08.009

[24] Jayech, K., Mahjoub, M.A., Amara, N.E.B. (2016).

Arabic handwritten word recognition based on dynamic

Bayesian network. The International Arab Journal of

Information Technology, 13(6B): 1024-1031.

9

https://doi.org/10.1109/ICDAR.2017.110
https://link.springer.com/article/10.1007/s11042-020-08883-w
http://dx.doi.org/10.1109/ICDAR.2009.40
http://dx.doi.org/10.1016/j.patrec.2009.08.009

