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This paper addresses the research problem of Offline Arabic Handwriting Text Recognition 

(HTR). One of the most important approaches to HTR systems is deep learning. A large 

amount of annotated data is needed to train deep learning-based HTR systems. The Arabic 

language is spoken by hundreds of millions of people in North Africa and the Middle East. 

Writing styles and common words differ significantly between those regions. Due to the 

great diversity possible, designing a statistically represented and balanced database of 

Arabic handwritten texts by gathering and labeling the texts is an arduous task to achieve. 

One of the ways to enrich the training databases is by augmenting the existing data. We 

have developed a new data augmentation technique for Arabic handwritten texts using 

Moving Least Squares (MLS) to deform the images. This technique results in realistic 

images that look like manipulating real-world images, and the deformations are done using 

linear functions that produce deformations in real time. We aim to deform the training data 

images randomly in a way that the text present in the images is still recognizable by a 

human. This augmentation technique can be used directly on images to augment them 

unlike other techniques such as Generative Adversarial Networks (GAN) where they must 

be trained beforehand. At the same time, it produces new complex augmented images 

compared to simple traditional augmentation techniques such as rotations and translations. 

In addition to this augmentation technique, we used a deep learning system called 

Convolutional Recurrent Neural Networks (CRNN) to test the new technique, and we have 

experimented with a CRNN model that accepts small input-size images to boost the time 

needed for both training and image augmentations. All the experimentations are carried out 

on the Arabic IFN/ENIT database. The results show that the small input size CRNN model 

outperforms the large input size CRNN model by a big margin. The results also show that 

the integration of images augmented by the MLS technique can help the recognition system 

to generalize better on the test data, therefore, it can slightly improve the performance of 

the recognition system. 
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1. INTRODUCTION

The Arabic language is one of the most spoken languages 

in the world, and it is considered the official language of 

several countries. It is one of the six official languages of the 

United Nations (UN), and it is used in various official and 

unofficial documents by most Arabic speaking organizations. 

Organizations such as non-profits regularly conduct surveys 

that require filling out certain documents, to gather statistical 

information about a topic or region. Industries such as banking 

and healthcare routinely require their clients to write on 

documents. A common practice is to store documents in a 

digital format for fast, intelligent retrieval and automatic 

natural language processing operations, such as classification, 

clustering, and search engine ranking. Due to the big number 

of operations done daily, the process of reading these 

handwritten texts must be automated. For this reason, 

automatic Arabic handwriting text recognition systems are 

needed, and we aim to automatically recognize Arabic 

handwritten texts from photo images taken for Arabic texts. 

Thanks to this approach, we could eliminate the huge 

manpower that was usually needed to do this task manually 

and slowly, and speed up this task and make it more efficient. 

Arabic HTR can be divided into two different types of 

recognition, online and offline text recognition. Recognizing 

the text after it was already written on some kind of medium 

(e.g., a sheet of paper, tablet, official form), with the condition 

that the writing was already complete, is known by the name 

of offline text recognition. On the other hand, recognizing the 

text in real-time during writing on some kind of medium like 

a tablet using a digital pen is known as online text recognition. 

Historically speaking, early attempts to create optical 

character recognition (OCR) systems focused solely on 

recognizing predefined shapes of individual characters, 
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meaning that OCR systems were only capable of recognizing 

one type of font up to a maximum of 10 font types depending 

on the methods applied. Which led to the first generation of 

commercially available OCR systems for Latin scripts 

between 1960 and 1965. Yet, it took 30 years for the Arabic 

OCR systems to be available at the market in the 1990’s, due 

to the connectedness nature of Arabic words. A lot of details 

are presented by Iman Yousif et al. in their review [1] on 

Arabic HTR. Additionally, the systems that can be used to 

recognize Arabic HTR can be divided into two forms of 

systems, segmentation-based and segmentation-free systems. 

Segmentation-free approaches are also known as the holistic 

approaches, where each word or text is considered a class, and 

the system classifies each image into a class, in this case, a 

word or a text. Thus, the task of recognizing Arabic HTR is 

transformed into a classification problem. Consequently, this 

approach will inherit all the advantages and disadvantages of 

traditional classification systems. The main advantage is that 

the implementation of this type of system is straightforward 

compared to segmentation-based approaches, and one of the 

disadvantages is that the number of classes in these Arabic 

HTR systems will heavily depend on the number of words or 

texts present in the specific domain of recognition. We must 

also take into consideration that the words to be recognized 

will be very limited to the specific domain, and these systems 

will not be able to recognize any word that is not present in the 

specified domain. For this reason, these types of systems will 

perform better on constrained domains. The segmentation-

based approaches [2-8] rely on recognizing the characters 

present in the image one by one, instead of recognizing the text 

or the word as a whole. As we are trying to recognize the 

characters, this kind of system's class count is determined by 

the total amount of characters of the language in which the 

texts are written. Moreover, segmentation-based approaches 

are further subdivided into explicit and implicit segmentation 

methods. Images in the training dataset must be annotated at 

the character level in order to use explicit segmentation 

techniques. Each training image in the dataset should be 

segmented into sub-images, where each sub-image contains a 

character. While implicit segmentation approaches only 

require word-level annotations, (there is no need to segment 

the image into character sub-images during training) the 

system will try to recognize the characters implicitly. One 

notable advantage inherent in segmentation-based approaches 

lies in their adaptability across various domains. These 

systems possess the theoretical capacity to recognize any 

given word or line of text. Notably, implicit segmentation 

approaches offer an additional advantage over explicit 

approaches, necessitating substantially fewer labeled datasets 

for training compared to their explicit counterparts, rendering 

explicit segmentation-based approaches more challenging to 

train, as previously elucidated. Another thing to consider is 

that implementing segmentation-based systems is relatively 

difficult. Al Abodi et al. [6], Parvez and Mahmoud [7] and 

Elzobi et al. [8] worked with explicit segmentation strategies. 

While Jayech et al. [2], Amrouch et al. [3], El-Hajj et al. [4], 

and El Moubtahij et al. [5] used implicit segmentation 

strategies in their recognition systems. Segmentation-based 

approaches are also known as the analytic approach, and they 

tend to perform better than the segmentation-free approaches 

when we have a large vocabulary of words to be recognized. 

Other researchers have taken a different route, enhancing the 

recognition systems performance only by incorporating newly 

synthesized or augmented images to the training datasets. 

Recent research has focused on generating new synthesized 

augmented images using generative adversarial networks 

(GAN), which use two competing neural networks, one of the 

networks having the role of image generator and the other, the 

role of discriminator. The generator network tries to generate 

images as authentic as possible that look exactly like real 

images, and the discriminator network tries to determine 

whether the generated image is authentic or not. GANs have 

been proven effective in several areas of computer vision for 

generating fake images that appear authentic. For instance, 

Saabni et al. [9] developed a simple system that generates a 

synthetic dataset of Arabic words in a specific lexicon. They 

generate the word parts using a predefined large set of shapes 

of each Arabic character in each position. Graves [10] has 

developed an approach to generate new synthetic datasets for 

handwriting texts using Recurrent Neural Networks. This 

system generates highly realistic cursive handwriting texts in 

a wide variety of styles. Elarian et al. [11] adopted two 

concatenation models (Extended-Glyphs connection and 

Synthetic-Extensions connection) to synthesize Arabic words 

from segmented characters. Wigington et al. [12] have 

introduced two data augmentation and normalization 

techniques, which are used with a CNN-LSTM. Alonso et al. 

[13] proposed a system based on Generative Adversarial 

Networks (GAN) to generate new synthesized images for 

French and Arabic datasets. In their implementation of the 

GAN, they add an auxiliary network for text recognition, 

where they train the system with a balanced combination of an 

adversarial loss and a Connectionist Temporal Classification 

(CTC) loss. Jha et al. [14] used a Generative Adversarial 

Network (GAN) to augment data text images and 

experimented on several handwritten digits (Latin, Bangla, 

Devanagri, and Oriya). They also experimented with adding 

too many artificial augmented samples. Fogel et al. [15] 

followed a semi-supervised approach to generate images of 

handwritten words with arbitrary lengths using Generative 

Adversarial Networks (GAN). 

In this paper, we have developed a variation of 

Convolutional Recurrent Neural Networks (CRNN) [16], 

which is an implicit segmentation-based approach. An 

overview of the CRNN system is presented in Figure 1. Our 

modification proposal allows to use small images as input. 

These CRNN systems consist of three main blocks: a 

convolutional block, a recurrent block, and a transcription 

block. The transcription block is a Connectionist Temporal 

Classification (CTC) layer [17], that deals with unsegmented 

sequence inputs. We have also applied some traditional 

augmentation techniques to the Arabic IFN/ENIT database 

[18]. We finally concluded our research by developing a new 

text augmentation technique that is best suited to handwritten 

Arabic texts. This technique is based on the Moving Least 

Squares (MLS) [19] by Schaefer et al. to generate new images 

for training. 

 

 

2. METHODOLOGY 

 

Many different methods have been used in the research area 

of Arabic HTR. Some of these popular methods is deep 

learning-based methods. In this work, we have initially used a 

model called CRNN, where we employed the outcomes 

derived from the adaptation of the CRNN model, which was 

initially introduced in the study [20]. We used this model as a 

baseline. This model possesses the capability to accommodate 
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sizable images as input, thereby enabling us to investigate the 

hypothesis asserting that superior performance can be 

achieved by utilizing larger input-size images. Second, we 

have designed another variation of the CRNN model that can 

accept smaller input-size images, aiming to compare its 

performance with the former model. Third, we have 

supplemented the second CRNN model (the one that accepts 

small input-size images) with new images augmented from the 

chosen dataset by traditional augmentation techniques. This 

was done to check the effects of employing these new 

augmented images on our Arabic HTR model. Lastly, we have 

developed a new augmentation technique based on the MLS 

technique that better suits our case of study to recognize 

Arabic handwriting texts. All the details of the previously 

mentioned methods are discussed in the following subsections. 

 

 

 
 

Figure 1. Network configuration. The network has three components: 1) convolutional layers, which use the image as input to 

create sequences of features; 2) recurrent layers, which generate feature maps with context; 3) transcription layer, which converts 

a final label sequence from the character sequence 
Notes: Reprinted from the study [20]. Reprinted with permission. 

 

2.1 Large input-size and small input-size models 

 

The network architecture of the two models follows the 

same CRNN flow, they just differ in the size of the input 

images they accept, the number of layers, and some kernel and 

stride sizes for some layers. The large input size model and the 

small input size model architectures are described in detail 

respectively in Tables 1 and 2. The networks are defined in the 

tables starting at the lowest point and moving upward. The first 

step involves normalizing the input images after scaling them 

to (64, 512), (32, 128), respectively. We used convolutional 

layers for the first two layers, and then the Rectified Linear 

Unit (ReLU) activation function. To expedite training, the 

BatchNormalization layer is applied after every convolutional 

layer save for the initial layers. Our models were designed 

using a VGG-like approach, with 3 × 3 convolution kernels 

and a gradual increase in feature maps from 64 to 512. The last 

convolutional layer in both models use 2 × 2 convolution 

kernels. To minimize the size of the feature maps, we 

additionally applied 2 × 2 MaxPooling layers following the 

convolutional layers, with the exception of the last 

MaxPooling layer in the large input size model, and the last 

two MaxPooling layers in the small input size model, where 

we used a 2 × 1 MaxPooling window and a 2 × 1 stride. The 

prescribed adjustments were implemented to produce wide 

feature maps, allowing us to predict every Arabic word. 

Consequently, the resultant output of the CNN block is a 

sequence of 31 vectors of feature maps. These 31 vectors 

adequately enable the prediction of all Arabic words present 

in the language. The choice of number of layers, their order, 

kernel sizes, strides and padding sizes, was specifically made 

to design an architecture that produces a sequence of 31 

feature vectors to be used later to predict the sequence of 

characters present in the image. If we randomly choose the 

previous configuration, we will get an architecture that 

produces a different number of sequence vectors or no 

sequence at all, which does not conform to our specified 

requirements. To adapt the CNN block's output to the proper 

shape of the recurrent layers input, the network features a 

unique layer called "MapToSequence." It will then be fed to 

the recurrent layers as a sequence of feature vectors, 𝑋 =
[𝑥1, 𝑥2, ⋯ , 𝑥𝑇], where the recurrent layers use each vector 𝑥𝑡 
from the sequence vectors to create a new contextual feature 

vector, 𝑦𝑡 . 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑇]  is the resulting sequence of 

contextual feature vectors. Fully connected layers are 

positioned after the recurrent layers in order to predict the label 
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distribution. The CTC part of the model requires these fully 

connected layers. In our case, the Arabic characters represent 

the labels that we are attempting to recognize. One character 

prediction is made for each contextual feature vector. The 

contextual feature vectors were extracted through the use of 

deep Bidirectional Long Short-Term Memory (Bi-LSTM) 

recurrent layers. In the original image, as seen in Figure 2, 

certain characters cover multiple neighboring regions. 

 

 
 

Figure 2. The area of receptivity. The original input image's 

regions are represented by each receptive field 
Notes: Reprinted from [20]. Reprinted with permission. 

 

Because of this, the non-contextual sequential features 

generated by the CNN layers are not the ideal choice when 

attempting to recognize characters that are stretched across 

multiple receptive fields. To extract features with context, we 

used RNNs; however, since vanilla RNNs are known to be 

inefficient at capturing long-term contextual information, we 

specifically used LSTM layers for this purpose. Utilizing Bi-

LSTM, we were also able to obtain contextual information 

from the past as well as the future, which is important for text 

recognition because of its nature. Additionally, we achieved a 

deep extraction of contextual information by stacking two Bi-

LSTM layers on top of each other. Figure 3 is a representation 

of a deep Bi-LSTM network. 

 

 
 

Figure 3. Our architecture employs a deep bidirectional 

LSTM, which combines forward (from left to right) and 

backward (from right to left) LSTMs to produce a 

bidirectional structure. Our deep bidirectional LSTM is 

constructed by vertically stacking multiple bidirectional 

LSTMs 
Notes: Reprinted from the study [20]. Reprinted with permission. 

Table 1. Network configuration summary of Large Input-

Size Model. The uppermost row denotes the top layer. Within 

this context, ‘s’, ‘k’, ‘d’, and ‘p’ correspond to strides, Kernel 

size, dropout, and padding size, in that order. The variable 

"chars" represents the count of characters within the language 

constituting the dataset 

 
Type Configurations 

Transcription - 
Dense #units: chars + 1, activation: softmax, 

regularization: L2 

Bi-LSTM #hidden units: 128, d: 0.2 

Bi-LSTM #hidden units: 128, d: 0.2 

Map-To-Sequence - 
Activation ReLU 

BatchNormalization  - 

Convolution #maps: 512, K: 2 × 2, S: 1, P: Valid  

MaxPooling  Window: 2 × 1, S: 2 × 1  

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same  

Activation ReLU 

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same  

Input 64 × 512 black and white image- 
Notes: Reprinted from the study [20]. Reprinted with permission. 

 

A dropout of 0.2 was set on the recurrent layers and the 

weights of these layers were optimized with backpropagation 

through time algorithm. Finally, the output of the recurrent 

layers is fed to the transcription layer. The transcription layer 

functions akin to a translator, using the CTC technique [17] for 

training and inference on unsegmented data utilising recurrent 

layers. The CTC technique converts the sequence of letters 

predicted by the recurrent layers into a true sequence of labels. 

For the CTC method to work properly, the output of the 

Recurrent layers must be softmax with one more unit than 

there are labels (Characters) in the targeted dataset. The 

activation of the first units represents the probability of 

predicting that particular label (Character) at that specific 

timestep. The activation of the newly added unit means a 

‘blank’, or no label. Jointly, these softmaxed outputs represent 

the probabilities of all possible ways of aligning all the 
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possible label sequences given an image input to the network. 

The network will be trained with a CTC loss function as 

described in the original work. 

 

Table 2. Network configuration summary of Small Input-

Size Model. The uppermost row denotes the top layer. Within 

this context, ‘s’, ‘k’, ‘d’, and ‘p’ correspond to strides, Kernel 

size, dropout, and padding size, in that order. The variable 

"chars" represents the count of characters within the language 

constituting the dataset 

 
Type Configurations 

Transcription - 
Dense #units: chars + 1, activation: softmax, 

regularization: L2 

Bi-LSTM #hidden units: 128, d: 0.2 

Bi-LSTM #hidden units: 128, d: 0.2 

Map-To-Sequence - 
Convolution #maps: 512, K: 2 × 2, S: 1, P: Valid  

MaxPooling  Window: 2 × 1, S: 2 × 1  

BatchNormalization  - 

Activation ReLU 

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same  

BatchNormalization  - 

Activation ReLU 

Convolution #maps: 512, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 1, S: 2 × 1 

Activation ReLU 

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 256, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 128, K: 3 × 3, S: 1, P: Same  

MaxPooling  Window: 2 × 2, S: 2 

Activation ReLU 

BatchNormalization  - 

Convolution #maps: 64, K: 3 × 3, S: 1, P: Same  

Activation ReLU 

Input 64 × 512 black and white image- 

 

2.2 Traditional augmentation techniques 

 

We have followed a traditional data augmentation technique 

to deal with an unbalanced dataset, as some words are really 

under-represented. We have augmented the dataset and 

generated new images by applying four main augmentation 

strategies that can suit the sequential nature of Arabic texts. 

First, we rotated the images by 4 degrees counter-clockwise 

direction around its center. Second, we have rotated the images 

by another 4 degrees but this time in a clockwise direction 

around its center. Third, we have dilated the text in the images 

by reinforcing the thickness of the text that appears in them. 

Fourth and last, we have translated the texts in images to the 

left by adding white pixels to the left of the images. An 

example of these augmentations is shown in Figure 4. 

 

2.3 The proposed data augmentation method 

 

To generate new augmented images for our training, we 

have used a technique of image deformation based on Moving 

Least Squares (MLS). This technique was first described in the 

study [19], and we specifically used the similarity deformation 

transformation because it best suits the case of Arabic 

handwritten texts. The newly generated deformed images are 

either slightly different from the original images or very 

different from them, depending on the applied deformation 

parameters to obtain these new deformed images. For these 

deformations to take place, the user must first select some 

parameters, the parameters are a set of fiducial points that will 

be moved to new positions.  

 

 
 

Figure 4. An example of the four traditional augmentation 

techniques: Original image, left translation, rotation by 04 

degrees, rotation by 356 degrees, and text dilation 

 

We randomly select these fiducial points 𝑝  by sampling 

them from a discrete uniform distribution of the size of the 

images. The fiducial points to be sampled are equal to 4𝐿, 

where 𝐿 is the length of the sequence of characters present in 

the current image that we want to augment from the training 

set. After that, we augment the images by randomly moving 

the fiducial points 𝑝 to the new coordinates 𝑞 within a random 

radius of 𝑅. To get the new augmented image, we apply the 

similarity deformation based on Moving Least Squares (MLS) 

on an input image. Given a point 𝑣 from the input image, the 

transformation for this 𝑣 based on the fiducial points 𝑝 when 

moved to the new positions 𝑞 is 

 

𝑇𝑣(𝑞) = (𝑣 − 𝑝∗)𝑀 + 𝑞∗ (1) 

 

where, 𝑀 is a linear transformation matrix of a constant size 

of 2 × 2, and it is constrained to have the property of 𝑀𝑇𝑀 =
𝜆2𝐼 for some scalar 𝜆. The 𝑝∗ and 𝑞∗are the weighted centroids 

of the initialized fiducial points 𝑝 and 𝑞 respectively 

 

𝑝∗ =
∑ 𝑤𝑖𝑝𝑖
4𝐿
𝑖=1

∑ 𝑤𝑖
4𝐿
𝑖=1

, 𝑞∗ =
∑ 𝑤𝑖𝑞𝑖
4𝐿
𝑖=1

∑ 𝑤𝑖
4𝐿
𝑖=1

,  (2) 

 

In the above equations, 𝑝𝑖  and 𝑞𝑖are row vectors and the 

weights 𝑤𝑖  for the point 𝑣 have the form 

 

𝑤𝑖 =
1

|𝑝𝑖−𝑣|
2𝑎 , 𝑝𝑖 ≠ 𝑣  (3) 
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We can observe that when 𝑣  approaches 𝑝𝑖 , 𝑤𝑖  increases 

significantly, which means that 𝑇𝑣(𝑝𝑖) = 𝑞𝑖. And it also means 

that the points close to 𝑝𝑖  will be also close to the new point 𝑞𝑖 
in the deformed image. Note that, if 𝑝𝑖 = 𝑞𝑖 , then each 

𝑇𝑣(𝑣) = 𝑣 for all 𝑣 and, thus, 𝑇 is the identity transformation 

function. We obtain the best transformation 𝑇𝑣(𝑣)  by 

minimizing 

 

∑ 𝑤𝑖|𝑇𝑣(𝑝𝑖) − 𝑞𝑖|
24𝐿

𝑖=1   (4) 

 

 

3. EXPERIMENTS 

 

All experimentation details about the dataset, the role of 

image sizes, the role of traditional data augmentation 

techniques, and the role of the newly proposed data 

augmentation technique to improve recognition performance 

are included in the following subsections. 

 

3.1 Dataset details 

 

All experiments were carried out on the IFN/ENIT database, 

developed by Pechwitz et al. [18]. The database contains 

26,400 images of handwritten Tunisian Arabic town/village 

names. These represent more than 210,000 characters. It was 

created by 411 distinct writers and divided into seven sets (a, 

b, c, d, e, f, and s), all of which were written by Tunisians with 

the exception of set s, which was written by UAE-based 

writers. 

 

3.2 Training details of small input-size and large input-size 

models 

 

The images contained in the Tunisian dataset are of 

significant dimensions, typically exceeding 1000 pixels in 

width and surpassing 200 pixels in height. Consequently, we 

postulate that diminishing the size of these images through 

resizing to smaller dimensions would result in a decline in the 

model's performance. Consequently, we obtained the 

outcomes using the CRNN model outlined in the study [6], 

which preserved the original large image sizes. Specifically, 

all images were resized to dimensions of (64, 512), 

representing a substantial input size. 

We have also tested the opposite hypothesis that presumes 

that reducing the size of the images will not affect the 

performance of the model. For this, we have resized all the 

images to the size (32, 128). We have tested this hypothesis by 

designing another variation of the CRNN model that can 

accept images of smaller sizes. 

We developed our networks in TensorFlow v2, using 

customised implementations of the MapToSequence layer, the 

transcription layer, and the BK Tree data structure (written in 

Python 3). The large input size model has 9,186,105 

parameters, whereas the small input size model has 6,634,617 

parameters. Because of the large input size of the first model, 

we need eight (08) times more memory space for both the ram 

and the GPU ram compared to the second small input size 

model to be able to train the first large input size model. We 

trained our models using pairs of training images and the 

corresponding ground-truth label sequences, with a batch size 

of 256 and two types of GPU: Tesla P100 with 16GB of RAM 

and Tesla T4 with 16GB of RAM. We stopped training when 

reaching convergence at epoch number 53 for the large input 

size model, while the small input size model reached 

convergence at epoch number 19. For the model with a large 

input size, we optimised using the Stochastic Gradient Descent 

(SGD) algorithm with a momentum of 0.9 and a learning rate 

of 0.01. For the smaller input size model, we utilized the Adam 

optimizer with a learning rate of 0.001. The training for the 

larger input size model lasted two hours, with an average of 

126 seconds for every epoch. It took around 36 minutes, with 

114 seconds for each epoch for the small input size model. 

 

3.3 Training details of the CRNN model with traditional 

augmented images 

 

All four augmentations are applied to the dataset images one 

after another, which means that the size of the dataset has 

increased five (5) times, and the model will receive during 

training five different versions of the same image 

consecutively. The first image without augmentation, the 

second one with a rotation of 4 degrees counter-clockwise 

direction, the third one with a rotation of 4 degrees clockwise 

direction, the fourth one with dilation of the text, and lastly the 

fifth one with a left translation of the text. The 

experimentations of these augmentation strategies are carried 

out on the smaller input-size CRNN model. 

 

3.4 Training details of the CRNN model with MLS 

augmented images 

 

We have applied the MLS technique to generate three new 

augmented images for each image in the dataset. Firstly, we 

randomly select the control points 𝑝 for each image that we 

want to augment. Then, we randomly chose the new positions 

𝑞 for the augmentation to take place. Each point in the control 

points 𝑝 will be randomly selected from a discrete uniform 

distribution of the values in the half-open interval [0, Image 

Width), and [0, Image Height) to obtain the width and height 

coordinates of the point. These new positions 𝑞 are within a 

radius 𝑅  from the original control points 𝑝 . The distance 

between the control points coordinates of 𝑝  and the 

corresponding destination points coordinates of q will 

determine how much deformation will be applied to the image 

of interest. As long as the distance between the p and the 

corresponding q is close, the newly generated image will keep 

a lot of its original meaning and context. The inverse holds 

true, provided that there is a signicant distance between them, 

the newly generated image will lose a lot of its original 

meaning and context. We manually tested several values of the 

radius 𝑅 and visually observed which values would be 

effective for our case study. When we tested with large values, 

the deformation result was not good and the text present in the 

image was completely unreadable to the human eye, that's why 

we decided to choose the values that do not result in a total 

loss of readability of the text. We deform each image of 

interest three times, one with a small value of the radius R, 

another one with a medium value of the radius, and the last 

one with a relatively big value of it. We named them based on 

their deformation effect on the image of interest respectively, 

soft deformation, medium deformation, and hard deformation. 

Some examples of images augmented with these deformations 

are shown in Figure 5. 

We kept in consideration that all the previous deformations 

will not affect the overall meaning and context of each original 

image, for which a human can still be able to read the content 

of each image correctly. After generating the three new images 

based on the three deformation variations, the soft, the medium, 
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and the hard one, we feed them along the original undeformed 

image to the small input size version of the CRNN model and 

train with them until convergence. 

 

 
 

Figure 5. Three examples of augmented images using the MLS augmentation technique with: Soft deformation, medium 

deformation, and hard deformation 

 

 
 

Figure 6. Losses during training and validation as a function of epoch count 

 

In Figure 6 we respectively plot the training loss, and the 

validation loss of our models (Large Input Size Model, Small 

Input Size Model, Small Input Size Model with Traditional 

Augmented Images, and Small Input Size Model with MLS 

Augmented Images) as a function of the number of epochs. 

 

3.5 Results and discussion 

 

Numerous research teams have carried out experiments on 

the IFN/ENIT database using various training scenarios. Each 

team implemented its unique training strategy. In our case, we 

have opted to train the model on sets a, b, c, and d, while 

conducting validation on set e and performing testing on set f. 

This selection is motivated by the scenario's popularity and its 

alignment with our specic requirements, making it the most 

suitable and convenient option. The results of all experiments 

are shown in Table 3. The calculation of the accuracy is not 

straightforward, because of the nature of the predictions made 

by our models, which predict a sequence of characters instead 

of just one class. For this reason, we come up with this way of 

calculating the accuracy: if the model makes any mistake in 

any of the predicted characters of the predicted text, we simply 

consider the predicted text to be wrong. Otherwise, the 

predicted text is considered a true label prediction. We further 

reinforce the performance of our models by comparing the 

predicted texts with a dictionary of accepted predictions in a 

specific domain (in this case, the Tunisian city names) with the 

BK-Tree data structures. 
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Table 3. Accuracy of word recognition in training, validation, and testing conducted on the IFN/ENIT database for all 

experiments 

  
IFN/ENIT Dataset Version: v2.0p1e 

  

Sets 

Accuracy % 

Large Input-

Size Model 

Small Input-

Size Model 

Small Input-Size Model with 

Traditional Augmented Images 

Small Input-Size Model with MLS 

Augmented Images 

Training a,b,c, d 99.9 99.9 99.9 99.9 

Validation E 80.97 81.02 81.17 80.82 

Testing F 79.95 81.54 80.59 81.81 

 

We can see that the large input size model has the worst 

performance on the test set f, whereas the small input size 

model has outperformed it by a big margin of 1.59%. As a 

result, we can see that the assumption that the large input size 

model would outperform the small input size model was 

wrong. The opposite was correct. We can also see that the 

model that employs the MLS technique to augment the images 

has performed the best on the test set f, compared to other 

experiments, where it outperformed the small input size model 

with a small margin of 0.27%. Table 4 displays the 

comparative outcomes of prior systems. 

 

Table 4. Accuracy of word recognition across many systems 

that were evaluated on set e and trained on sets a, b, c, and d 

 
System Accuracy % 

Parvez and Mahmoud (2013) [7] 79.58 

CNN-HMM (Amrouch et al. 2018 [3]) 89.23 

Alkhateeb et al. (2011) [21] 
DBN (66.65) 

HMM (82.3) 

El Moubtahij et al. (2017) [5] 78.95 

Hamdani et al. (2009) [22] 81.93 

Kessentini et al. (2012) [23] 79.6 

DBN (Jayech et al. 2016) [24] 78.5 

Our model with MLS Augmented Images 81.17 

 

 

4. CONCLUSION 

 

In this study, we developed a CRNN variant that accepts 

small input images to recognize offline Arabic handwritten 

text. We compared its performance with a large input size 

CRNN model and observed that the small input size model 

performed better. Therefore, our conclusion suggests that the 

adoption of large input-size models may not be imperative. 

Instead, employing a small input size model offers reduced 

memory space by a factor of 8, nearly quadruple faster 

convergence during training, and a 27% reduction in number 

of parameters, while in the meantime benefiting from better 

performance.  

Moreover, we explored traditional augmentation techniques 

and introduced a novel MLS-based augmentation technique 

for experimentation. Our proposed augmentation technique 

exhibited promising results on the test set in comparison to 

other experiments. Further research is recommended to 

investigate the possible limitations of this novel augmentation 

technique and to leverage its capabilities in the development 

of new data augmentation strategies tailored specifically for 

offline Arabic handwritten texts. 
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