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 In the agricultural sector, soil quality plays a pivotal role in determining crop types. 

Traditional manual soil analysis can be time-consuming and reliant on a limited number of 

experts, often resulting in insufficient knowledge about local soil conditions. For accurate 

soil classification process, this study develops a Dwarf Mongoose Optimization with DL 

Based Soil Classification (DMODL-SC) model. The presented DMODL-SC technique 

majorly recognizes different kinds of soil using CV and DL models. In the presented 

DMODL-SC technique, bilateral filtering (BF) technique is used for noise removal process 

which eradicate the presence of noise exist in the soil images and enhances its quality. In 

addition, the presented DMODL-SC technique employs capsule network (CapsNet) model 

for feature extraction process. Moreover, Denoising Auto Encoder (DAE) is exploited for 

the identification and classification of soil. Since the manual hyperparameter tuning is a 

tedious process, the DMO algorithm is applied to tune the hyperparameters related to the 

DAE model. To demonstrate the enhanced performance of the projected DMODL-SC 

system, an extensive range of experiments were performed. The comparison study reported 

the improvised soil classification performance of the DMODL-SC technique over other 

approaches with maximum accuracy of 95.92%. 
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1. INTRODUCTION 

 

Precision agriculture allows precise consumption of inputs 

like fertilizers, seed, water, and pesticides timely for the crop 

to maximize quality, yields, and productivity [1, 2]. By 

deploying sensors for mapping fields and data collection, 

farmers could understand the field in a better way conserve the 

resource being used, and decrease adversarial effects on the 

environment. Mostly, the farmers practice outdated farming 

patterns for deciding on crops to be cultivated in the field [3]. 

But the farmer doesn’t perceive crop yields as interdependent 

on climatic conditions and soil characteristics. Forecasting the 

variety of crops in specific regions is a challenging and very 

difficult task since it is influenced by the climatic parameters 

and type of soil [4]. Moreover, the crop is based on the type of 

technique utilized by farmers in field-to-field, thus forecasting 

the performance of Crop types in the parametric perspective is 

challenging. With the growing population, it exists a 

substantial demand for crops worldwide [5]; therefore, farmer 

needs that aware of crop variety which is fixable to the soil 

type and geographical location [6]. Thus, there is a need for 

providing timely-based, accurate data according to the soil 

type to the farmers and climatic parameters, helping them 

make better decisions for their soil, resulting in great 

productivity and profitability [7]. 

Climatic parameters like, precipitation, sunlight, 

temperature and humidity employ a reflective effect on crop 

yields. Their complex interaction directly influences crop 

progress, improvement as well as complete productivity. 

Temperature affects amount of plant development and 

flowering while precipitation ranks are serious for sufficient 

soil moisture. Sunlight and humidity are vital for 

photosynthesis as well as creation of plant structures [7]. But, 

huge challenge in predicting crop yields lies in complex nature 

of weather parameters, their temporal and spatial variations, 

nonlinear relations among these aspects and crop results. 

Furthermore, weather change presents extra irregularity that 

makes complex to accurately expect how shifts in climatic 

situations will influence prospect crop yields that highlighting 

requirement for advanced modeling as well as data-driven 

techniques in agricultural estimating. The superior of accurate 

crop variety is dominant in enhancing agricultural harvest. 

Dissimilar crop variations varying acceptance levels for exact 

environmental circumstances, types of soil and geographical 

areas. 

Soil plays a vital part in hydrologic sequence by performing 

as a reservoir for water and simplifying its effort via landscape. 

The soil's capability is to grip and relief water effects 

availability for crops, surface runoff and groundwater recharge. 

Soil assets and their relations with vegetation and precipitation 

command its part in changeable water quality and flow. 

Modeling surface excess is vital to water and soil conservation 
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efforts as it aids to forecast water movement across scenery. 

Surface runoff techniques consider causes like vegetation 

cover, type of soil, topography, and precipitation to pretend 

water movement paths and recognize prospective 

sedimentation and erosion threats. By evaluating and 

modifying surface runoff, land managers and conservationists 

can able to decrease soil erosion, guard water excellence, and 

improve complete sustainability in environmental and 

agricultural situations. Flooding and Erosion caused by 

uncontrollable runoff, mostly down-stream, cause damage to 

agricultural land and manmade structure [8]. Consequently, 

modelling surface runoff is a critical part of soil and water 

conservation effort including but has not been constrained to, 

predictive floods, and monitoring soil, soil erosion, and water 

quality [9]. Soil could be classified into silty sand, clayey sand, 

sandy clay, humus clay, clay, clayey peat, and peat. Numerous 

soil classifier techniques are presented in this work. The 

boundary and signal energy model for feature extraction [10]. 

This study develops a Dwarf Mongoose Optimization with 

DL Based Soil Classification (DMODL-SC) model. The 

presented DMODL-SC technique majorly recognizes different 

kinds of soil using CV and DL models. In the presented 

DMODL-SC technique, bilateral filtering (BF) technique is 

used for noise removal process. In addition, the presented 

DMODL-SC technique employs capsule network (CapsNet) 

model for feature extraction process. Moreover, DMO with 

denoising auto encoder (DAE) is exploited for the 

identification and classification of soil. To demonstrate the 

enhanced performance of the projected DMODL-SC system, 

an extensive range of experiments were performed. 

 

 

2. RELATED WORKS 

 

Xiao et al. [11] devise an ML technique for integrating the 

CPTU data and borehole in a rigorous Bayesian structure and 

identifying and separating noisy CPTU data without 

subjective judgments that give to add reliable property 

evaluation and soil classifier. The CPTU data and borehole-

reported soil types will be treated as 2 kinds of evidence of 

authentic soil types. Shivhare and Cecil [12] formulated a 

mechanism for classifying the soil at their optimum attempt 

through extraction of its nature and features. The mechanism 

will use Gabor Wavelet and SVM to recognize soil variety and 

categorize for superior recommendation. 

In the study [13], the authors sightsee a liquid crystal 

tunable filter (LCTF)-related mechanism and devise a 3D-

CNN for soil classifications. The research scholars initially 

gain a group of soil compressing measurements through lower 

spatial resolution detectors, and soil hyperspectral imageries 

were rebuilt with enhanced resolution from the spatial along 

with the spectral domains through compressive sensing (CS) 

technique. In the study [14], the authors have created cloud-

related agricultural structure that empowers Indian 

agriculturalists, agro industries, and agricultural departments 

for extracting valuable agricultural data. The modelled 

agricultural cloud structure offers 2 services they are crop 

yield prediction as a service and soil classification as service. 

In order to classifier of soil, hybrid SVM (M-SVM) and for 

wheat yield forecast, modified ANN (M-ANN) has been 

formulated. 

Bouayad et al. [15] modelled enforcement of the Gaussian 

mixture (GM) technique for classifier of the soil utilizing 

several cone penetration tests (CPT). The GM method will 

categorize the CPT data through indication of probability 

density function. A GM method related expectation 

maximization (EM) technique includes Bayesian information 

criterion (BIC) to select optimum count of clusters was 

formulated through 6 real CPT data. Radhika and Madhavi 

Latha [16] introduce a complete classifier technique for 

classifying soil textures by utilizing Linear Discriminant 

Analysis (LDA). The authors would take the Physico-

chemical property of soils including potassium, soil moisture, 

power conductivity, temperature, available nitrogen, pH, 

accessible phosphorus, and organic carbon, as independent 

variables, whereas type of soil will be considered as the 

dependent variable. 

An important study of DL-Based Soil Classification 

techniques is vital essential for complete hyperparameter 

tuning. DL models shown extraordinary potential in soil 

detection, optimum structure of hyperparameters remains a 

serious but frequently ignored feature of model improvement. 

The excellent of hyperparameters contains batch sizes, 

learning rates, regularization methods, network designs which 

considerably effects a model's performance. A detailed fine-

tuning and exploration of these hyperparameters leads to 

enhanced model accurateness, simplification, and sturdiness 

that finally improves practical applicability of these techniques 

in everyday farming and environmental situations. This study 

gap is vital for connecting complete potential of DL in soil 

classification as well as addressing most difficult challenges in 

exactness farming and land organization. 

 

 

3. THE PROPOSED MODEL 

 

3.1 Image pre-processing 

 

In the presented DMODL-SC technique in Figure 1, the BF 

technique is used for noise removal process. The BF approach 

offers the advantage of automated censoring, less noise, 

rotation symmetric, and ease to design [17]. The input image 

may have noises, involving salt pepper noise, Gaussian, etc. 

Noise removal application preserves the information on the 

input data similarly. The BF method is employed for denoising 

the input images. This is accomplished by integrating two 

Gaussian filters, viz., the spatial domain, another one that 

operates the intensity domain, and the one that is functioning. 

The resultant at 𝑝 pixel place was determined as: 

 

𝐹(𝑝) =
1

𝑁
∑ 𝑒

−‖𝑞−𝑝‖2

2𝜀𝑒
2

−|𝐹(𝑞)−𝐹(𝑝)|2

2ℰ𝑆
2 𝐹(𝑞)𝑧𝜖𝑆(𝑝)   (1) 

 

Now, the normalization constant is denoted by 𝑁 , 𝑆(𝑝) 

characterize a pixel spatial neighborhood 𝐹(𝑝), and variable 

𝜀𝑒𝜀𝑟  are governing weightedin the domain of spatial and 

intensity begin with fall off. 

 

𝑒
−‖𝑞−𝑝‖2

2𝜀𝑒
2

𝑒
−|𝐹(𝑞)−𝐹(𝑝)|2

2𝜀𝑒
2

  
(2) 

 

The BF was employed in texture removal, tone mapping, 

volumetric de‐noising, and another application like de‐noising 

the image is utilized. They could produce simpler conditions 

for downsampling the procedure and accomplish acceleration 

by demonstrating in the augmented space; with 2 

nonlinearities, the BF has been implemented as linear 

convolutional. 
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Figure 1. Block diagram of DMODL-SC system 

 

3.2 Feature extraction using CapsNet 

 

At this stage, the presented DMODL-SC technique 

employed the CapsNet model for feature extraction process. A 

primary advantage of CapsNet is that holds the features of 

further concrete characteristics that aretakenfor understanding 

how and what is the network learning. The CapsNet can able 

to encode spatial information and distinguish amongst 

different orientations, poses, and textures [18]. The capsule is 

a collection of neurons, thereby each capsule has an activity 

vector interconnected with it that captures many instant 

parameters to recognize specific type of object or its part. The 

orientation and length of vector presented the possibility or 

probability of existence of that object and the generalization 

pose. This vector was passed onto the upper level capsule in 

lower layer capsule. The coupling coefficient occurs amongst 

the capsule layers. Once the prediction by the lower level 

capsule equals the result of existing capsule, the values of 

coupling coefficient amongst them increase, computed by 

using softmax function. Particularly, once the existing capsule 

recognizes a tight cluster of previous prediction, and intensely 

represent the existence of that object, its results in a high 

probability are also identified as routing by agreement. Figure 

2 illustrates the architecture of CapsNet module: 

 

�̂�𝑗|𝑖
∧= 𝑊𝑖𝑗𝑢𝑖 (3) 

 

In Eq. (3), �̂�𝑗|𝑖
 represent the results of prediction vector of 

upper‐level 𝑗𝑡ℎ  capsules, 𝑊𝑖𝑗  and 𝑢𝑖  indicates the weight 

matrixes and prediction vector of 𝑖-𝑡ℎ capsules in lower layer. 

It captures spatial connection and interaction amongst objects 

and sub‐objects. In Eq. (4), based on degree of agreement 

among nearby layer capsules, the coupling coefficient was 

evaluated by means of softmax function: 

 

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)
  (4) 

where,𝑏𝑖𝑗  indicates the  𝑙𝑜𝑔  probability among 2 capsules, 

initialization to 0, and 𝑘 denotes the capsule count. The input 

vector 𝑠𝑗  to 𝑗𝑡ℎ  layer capsules that a weight sum of �̂�𝑗|𝑖
∧ 

vector learned by routing method is calculated by the 

following equation: 

 

𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖   (5) 

 

Finally, a squashing purpose which incorporates squashing 

and unit scaling (Eq. (6)) was implemented for restraining the 

value of outcomes in the range among [0, 1], thus evaluating 

the probability as: 

 

‖𝑠𝑗‖
2𝑣𝑗 = 1 + ‖𝑠𝑗‖

2 𝑠𝑗

‖𝑠𝑗‖
  (6) 

 

The loss function (interconnected to capsule from the 

concluding layer, while 𝑚 + 𝑎𝑟𝜄𝑑 m‐ are set as 0.9 and 0.1 

resp. 

 

𝑙𝑘 = 𝑇𝑘max (0,𝑚+ − ||𝑣𝑘||)
2 + 𝜆(1 −

𝑇𝑘) 𝑚𝑎𝑥 (0, ||𝑣𝑘|| − 𝑚−)2  
(7) 

 

In Eq. (7), the value 𝑇𝑘  is 1 to accurate labels and 0 

otherwise, 𝜆 represents the constant that value is 0.5. The first 

term can be evaluated for correcting labels, and the next term 

evaluates incorrect labels. 

 

 
 

Figure 2. Structure of CapsNet 

 

3.3 Soil classification using DAE 

 

For soil classification, the DAE model is applied. DAE is a 

novel deep network which encompasses AE using different 

hidden layers and takes sensitive power [19]. For classifier 

issue, the softmax classification is extensively chosen by the 

resulting layer. Then, reformation of input instance with less 

error: 

 

(𝑋, 𝑌) = {(𝑥(𝑛), 𝑦(𝑛))|𝑛 = 1,2, … , 𝑁)}  (8) 

 

Now, 𝑦(𝑛)  represent aninstance trademark 𝑥(𝑛). The 

instance count can be represented by N. For all the instances 

of trained data 𝑥(𝑛) , code encoding through ℎ(𝑛) = 𝑓(𝑥(𝑛)) 

afterward, decode ℎ(𝑛)  for recreating with 𝑥(𝑛) = 𝑔(ℎ(𝑛)), 𝑓 

and 𝑔 are encoder and decoder parameters. 

 

ℎ(𝑛) = 𝑠(𝑊𝑥(𝑛) + 𝑏)  (9) 

 

𝑥(𝑛) = 𝑠(𝑊ℎ(𝑛) + 𝑏)  (10) 

 

The sigmoid function was characterized by 𝑠(∙) a trained 

data by means of energy consumption in the following: 

 

(𝜃) =
1

𝑁
∑

1

2

𝑁
𝑛=1 ||𝑥(𝑛) − 𝑥||2

2  (11) 
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Variable absence from 𝑠&𝜃  from linear transformation. 

Standard AE is fundamental for the DAE system which 

encoded 𝑥(𝑛)  to hidden notation ℎ(𝑛1)  that is given to 

subsequent input port of DAE. The resulting layer is 

comprised of top hidden layer to monitor the trained system. 

Each layer produces a better outcome due to the training of 

designed parameters. Fine-tuning is widely employed in NN 

as a global optimized algorithm therefore it improves accuracy 

of the DAE. 

 

𝐽(𝑊, 𝑏; 𝑥(𝑛), 𝑦(𝑛)) =
1

2
||𝑦(𝑛) − 𝑦(𝑛)||2

2  (12) 

 

The energy function 𝐽(𝑊, 𝑏) forces the outcomes closer to 

true label all over the whole preparation and determines the 

fine-tuning procedure. 

 

𝐽(𝑊, 𝑏) =
1

𝑁
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑛), 𝑦(𝑛))𝑁

𝑛=1   (13) 

 

In Eq. (13), (𝑊, 𝑏) = {(W(𝑙), 𝑏(𝑙))|1 = 1,2, … , 𝐿} indicates 

encoder constraint of the entire layer. 

 
3.4 Parameter tuning using DMO algorithm 

 
In the final stage, the DMO algorithm has been exploited for 

the hyper parameter tuning of the DAE. DMO algorithm 

stimulates the performance of dwarf mongooses while 

defining the food [20]. In general, the DMO starts with setting 

the primary values to a group of solutions utilizing the 

succeeding equation: 

 

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑 × (𝑢𝑗 − 𝑙𝑗)  (14) 

 

In Eq. (14), rand represents arbitrary value within [0, 1]. 𝑢𝑗 

and  𝑙𝑗  indicates the restriction of the search area. The 

swarming of DMO has 3 groups namely scouts, babysitters, 

and alpha groups. Each group has individual performance to 

capture the food, and particular of this group is given below. 

The fitness of each solution is evaluated when the 

population was determined. Eq. (15) calculates the potential 

value for each fitness population, and alpha female (𝛼)  is 

selective and depending on these probabilities 𝑛 represents the 

count of mongooses from the alpha group. The babysitter 

count was characterized as bs. Peep refers to the vocalization 

of dominant females that keeps the family on track. 

 

𝛼 =
𝑓𝑖𝑡𝑖

𝛴𝑖=1
𝑛 𝑓𝑖𝑡𝑖

  (15) 

 

Each mongoose sleep from the initial sleeping mound that 

is set ∅ . The DMO exploits to generate a candidate food 

location. 

 

𝑋𝑖+1 = 𝑋𝑖 + 𝑝ℎ𝑖 × 𝑝𝑒𝑒𝑝  (16) 

 

The sleeping mound was shown below, then each repetition, 

while 𝑝ℎ𝑖 indicates the uniform distribution number within [-

1 and 1]. 
 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1−𝑓𝑖𝑡𝑖

𝑚𝑎𝑥 {|𝑓𝑖𝑡𝑖+1,𝑓𝑖𝑡𝑖|}
  (17) 

 
Eq. (18) includes the average value of sleeping mounds. 

 

𝜑 =
𝛴𝑖=1

𝑛 𝑠𝑚𝑖

𝑛
  (18) 

 

When the babysitting modifies criteria are satisfied, this 

technique progress to the scouting stage, whereas the next food 

source/sleeping mound is regarded. 

Since mongooses are recognized to not back to historical 

sleep mounds, the scout appearance is for the second sleeping 

mounds, ensuring to search. In these methods, forage and 

scout are performed simultaneously. Then, this drive 

demonstrated an unsuccessful or successful look for novel 

sleeping mounds. Particularly, the migration of mongooses is 

dependent on the whole efficacy. 

 

𝑋𝑖+1 =

{
𝑋𝑖 − 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − �⃗⃗� ] 𝑖𝑓𝜑𝑖+1 > 𝜑𝑖

𝑋𝑖 + 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − �⃗⃗� ]
  

(19) 

 

In Eq. (19), rand indicates a random value within [0, 

1], 𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

Max𝑖𝑡𝑒𝑟
)
(2

𝑖𝑡𝑒𝑟

Max𝑖𝑡𝑒𝑟
)
 whereas the variable regulates 

the mongoose group. 

The babysitters were usually lesser group members that 

continued with the young allowing the alpha female (mother) 

to lead remaining groups on everyday forage expeditions. The 

babysitter count was proportionate to the population size; it 

can be stimulus the technique by decreasing the whole 

population size reliant on the percentage set. 

 

 
4. PERFORMANCE VALIDATION 

 

In this study, the soil classification results of the DMODL-

SC model are tested on a dataset of 280 samples. The dataset 

holds images under seven classes as shown in Table 1. Figure 

3 defines some sample images. 

 

 
 

Figure 3. Sample images 

 

Figure 4 shows the soli classification outcomes of the 

DMODL-SC model in the form of confusion matrix. The 

figure reported that the DMODL-SC model has categorized all 

the different types of soils on the input data. 

Table 2 and Figure 5 offer a brief soil classification result 

of the DMODL-SC model on 80:20 of TR/TS database. The 

results implied that the DMODL-SC model has resulted in 

enhanced soil classification results. 

 

178



 

Table 1. Dataset details 

 

Label Class No. of Samples 

C-1 Clayey sand 40 

C-2 Sandy clay 40 

C-3 Silty sand 40 

C-4 Clay 40 

C-5 Humus clay 40 

C-6 Clayey peat 40 

C-7 Peat 40 

Total No. of samples 280 

 

 
 

Figure 4. Confusion matrices of DMODL-SC system (a-b) 

TR and TS database of 80:20 and (c-d) TR and TS database 

of 70:30 

 

Table 2. Soil classification outcome of DMODL-SC system 

under 80:20 of TR/TS database with distinct classes 

 

Training/Testing (80:20) 

Labels Accuracy Precision Recall 
F-

Score 

AUC 

Score 

Training phase 

C-1 91.96 69.70 74.19 71.88 84.51 

C-2 97.32 88.57 93.94 91.18 95.92 

C-3 95.98 93.10 79.41 85.71 89.18 

C-4 94.64 75.00 90.00 81.82 92.68 

C-5 96.43 92.31 80.00 85.71 89.48 

C-6 97.77 91.67 94.29 92.96 96.35 

C-7 97.32 93.10 87.10 90.00 93.03 

Average 95.92 86.21 85.56 85.61 91.59 

Testing phase 

C-1 92.86 77.78 77.78 77.78 86.76 

C-2 98.21 100.00 85.71 92.31 92.86 

C-3 96.43 100.00 66.67 80.00 83.33 

C-4 92.86 75.00 90.00 81.82 91.74 

C-5 94.64 81.82 90.00 85.71 92.83 

C-6 96.43 80.00 80.00 80.00 89.02 

C-7 100.00 100.00 100.00 100.00 100.00 

Average 95.92 87.80 84.31 85.37 90.93 

 
 

Figure 5. Average analysis of DMODL-SC system under 

80:20 of TR/TS database 

 

For instance, on 80% of TR data, the DMODL-SC model 

has provided average accuy of 95.92%, precn of 86.21%, recal 

of 85.56%, Fscore of 85.61%, and AUCscore of 91.59%. In 

addition, on 20% of TS databases, the DMODL-SC method 

has offered average accuy of 95.92%, precn of 87.80%, recal of 

84.31%, Fscore of 85.37%, and AUCscore of 90.93%. 

Table 3 and Figure 6 provide a brief soil classification 

outcome of the DMODL-SC method on 70:30 of TR/TS 

database. The results show that the DMODL-SC method has 

resulted in improved soil classification outcomes. For example, 

on 70% of TR databases, the DMODL-SC approach has given 

average accuy of 92.71%, precn of 81.14%, recal of 74.55%, 

Fscore of 75.62%, and AUCscore of 85.15%. Furthermore, on 30% 

of TS databases, the DMODL-SC technique has given average 

accuy of 95.92%, precn of 89.37%, recal of 86.73%, Fscore of 

86.32%, and AUCscore of 92.17%. 

 

Table 3. Soil classification outcome of DMODL-SC system 

under 70:30 of TR/TS database with distinct classes 

 
Training/Testing (70:30) 

Labels Accuracy Precision Recall F-Score AUC Score 

Training phase 

C-1 93.37 90.00 62.07 73.47 80.44 

C-2 95.92 82.14 88.46 85.19 92.76 

C-3 82.14 43.86 89.29 58.82 85.12 

C-4 92.35 73.91 65.38 69.39 80.93 

C-5 93.88 94.44 60.71 73.91 80.06 

C-6 95.41 87.50 77.78 82.35 88.00 

C-7 95.92 96.15 78.12 86.21 88.76 

Average 92.71 81.14 74.55 75.62 85.15 

Testing phase 

C-1 94.05 71.43 90.91 80.00 92.71 

C-2 97.62 87.50 100.00 93.33 98.57 

C-3 92.86 66.67 100.00 80.00 95.83 

C-4 94.05 100.00 64.29 78.26 82.14 

C-5 96.43 100.00 75.00 85.71 87.50 

C-6 96.43 100.00 76.92 86.96 88.46 

C-7 100.00 100.00 100.00 100.00 100.00 

Average 95.92 89.37 86.73 86.32 92.17 

 

The training accuracy (TRA) and validation accuracy (VLA) 

developed using the DMODL-SC technique under test 

database are demonstrated in Figure 7. The simulated result 

inferred that the DMODL-SC approach has been able maximal 

value of TRA and VLA. Especially the VLA seemed to be high 

than TRA. 

The training loss (TRL) and validation loss (VLL) achieved 
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by the DMODL-SC methodology under test database are 

determined in Figure 8. The simulated result revealed that the 

DMODL-SC approach has acquired least values of TRL and 

VLL. Particularly, the VLL is lower than TRL. 

A clear precision-recall (PR) inspection of the DMODL-SC 

technique under test database is portrayed in Figure 9. The 

figure indicated that the DMODL-SC system has resulted in 

improved values of PR values under all classes. 

 

 
 

Figure 6. Average analysis of DMODL-SC system under 

70:30 of TR/TS database 

 

 
 

Figure 7. TRA and VLA analysis of DMODL-SC system 

 

 
 

Figure 8. TRL and VLL analysis of DMODL-SC system 

 

 
 

Figure 9. Precision-recall analysis of DMODL-SC system 

 

 
 

Figure 10. ROC curve analysis of DMODL-SC system 

 

 
 

Figure 11. precn and recal analysis of DMODL-SC system 

with existing approaches 

 

A brief ROC examination of the DMODL-SC approach 

under test database is illustrated in Figure 10. The results 

denoted the DMODL-SC method has displayed its capability 

in classifying different classes under test database. 

Table 4 provides a comparative soil classification results of 

the DMODL-SC model and existing models [21]. Figure 11 

reports a comparative precn and recal examination of the 

DMODL-SC model and existing models. The figure implied 

that the PSO, DE, and CSMO models have shown reduced 
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values of precn and recal. Next, the FCMCSO-ASC model has 

attained slightly increased precn and recal of 87.81% and 

85.32% respectively. Although the GSA and SMO models 

have obtained reasonable precn and recal values, the presented 

DMODL-SC model outperformed the existing models with 

maximum precn and recal values of 89.37% and 86.73% 

respectively. 

 

 
 

Figure 12. accuy and Fscore analysis of DMODL-SC system 

with existing approaches 

 

Table 4. Comparative analysis of DMODL-SC system with 

existing approaches 

 
Methods Precision Recall Accuracy F-Score 

DMODL-SC 89.37 86.73 95.92 86.32 

FCMCSO-ASC algorithm 87.81 85.32 94.48 85.31 

PSO algorithm 85.60 85.64 86.66 84.33 

GSA algorithm 88.39 84.86 88.20 83.29 

DE algorithm 85.89 83.99 89.47 84.51 

SMO algorithm 88.59 83.62 90.91 84.41 

CSMO algorithm 85.75 82.16 92.42 83.82 

 

Figure 12 shows a comparative accuy and Fscore inspection 

of the DMODL-SC method and present approach. The figure 

shows that the PSO, DE, and CSMO techniques have 

demonstrated reduced values of accuy and Fscore. Then, the 

FCMCSO-ASC technique accomplished slightly improved 

accuy and Fscore of 94.48% and 85.31% correspondingly. 

Even though the GSA and SMO methods have acquired 

reasonable accuy and Fscore values, the presented DMODL-SC 

approach outperformed the existing models with maximum 

accuy and Fscore values of 95.92% and 86.32% correspondingly. 

These results show the enhanced soil classification results of 

the DMODL-SC model. 

 

 

5. CONCLUSION 

 

In this article, a novel DMODL-SC model was established 

for automated soil classification. The presented DMODL-SC 

technique majorly recognizes different kinds of soil using CV 

and DL models. In the presented DMODL-SC technique, the 

BF technique is used for noise removal process. In addition, 

the presented DMODL-SC technique employed the CapsNet 

model for feature extraction process. Moreover, DMO with 

DAE is exploited for the identification and classification of 

soil. To demonstrate the enhanced performance of the 

projected DMODL-SC system, an extensive range of 

experiments were performed. The comparison study reported 

the improvised soil classification performance of the 

DMODL-SC technique over other approaches with maximum 

accuracy of 95.92%. The DMODL-SC model offers enhanced 

performance and adaptability, addressing the challenges in 

noisy soil image data while optimizing hyperparameters. In 

upcoming work, the model's potential can be further 

discovered in real time agricultural and environmental 

situations like land management, accuracy agriculture and soil 

quality valuation. In addition, increasing model's abilities to 

handle large-scale, multi-modal data bases and integrating 

interpretability features for area professionals will be vital 

guidelines for upcoming study, safeguarding sustained 

development and applied value of DMODL-SC in soil 

organization and related fields. 

 

 

REFERENCES 

 

[1] Srivastava, P., Shukla, A., Bansal, A. (2021). A 

comprehensive review on soil classification using deep 

learning and computer vision techniques. Multimedia 

Tools and Applications, 80: 14887-14914. 

https://doi.org/10.1007/s11042-021-10544-5 

[2] Azizi, A., Gilandeh, Y.A., Mesri-Gundoshmian, T., 

Saleh-Bigdeli, A.A., Moghaddam, H.A. (2020). 

Classification of soil aggregates: a novel approach based 

on deep learning. Soil and Tillage Research, 199: 104586. 

https://doi.org/10.1016/j.still.2020.104586 

[3] Inazumi, S., Intui, S., Jotisankasa, A., Chaiprakaikeow, 

S., Kojima, K. (2020). Artificial intelligence system for 

supporting soil classification. Results in Engineering, 8: 

100188. https://doi.org/10.1016/j.rineng.2020.100188 

[4] Zhang, Y.G., Xie, Y.L., Zhang, Y., Qiu, J.B., Wu, S.X. 

(2021). The adoption of deep neural network (DNN) to 

the prediction of soil liquefaction based on shear wave 

velocity. Bulletin of Engineering Geology and the 

Environment, 80: 5053-5060. 

https://doi.org/10.1007/s10064-021-02250-1 

[5] Devine, S.M., Steenwerth, K.L., O'Geen, A.T. (2021). A 

regional soil classification framework to improve soil 

health diagnosis and management. Soil Science Society 

of America Journal, 85(2): 361-378. 

https://doi.org/10.1002/saj2.20200 

[6] Moon, J.S., Kim, C.H., Kim, Y.S. (2022). Soil 

classification from piezocone penetration test using 

fuzzy clustering and neuro-fuzzy theory. Applied 

Sciences, 12(8): 4023. 

https://doi.org/10.3390/app12084023 

[7] Hu, Y., Wang, Y. (2020). Probabilistic soil classification 

and stratification in a vertical cross-section from limited 

cone penetration tests using random field and Monte 

Carlo simulation. Computers and Geotechnics, 124: 

103634. https://doi.org/10.1016/j.compgeo.2020.103634 

[8] Li, X.Y., Fan, P.P., Li, Z.M., Chen, G.Y., Qiu, H.M., Hou, 

G.L. (2021). Soil classification based on deep learning 

algorithm and visible near-infrared spectroscopy. Journal 

of Spectroscopy, 2021: 1-11. 

https://doi.org/10.1155/2021/1508267 

[9] Teng, H.F., Rossel, R.A.V., Shi, Z., Behrens, T. (2018). 

Updating a national soil classification with spectroscopic 

predictions and digital soil mapping. Catena, 164: 125-

134. https://doi.org/10.1016/j.catena.2018.01.015 

181

https://doi.org/10.1016/j.still.2020.104586
https://doi.org/10.1016/j.rineng.2020.100188
https://doi.org/10.1002/saj2.20200
https://doi.org/10.3390/app12084023
https://doi.org/10.1016/j.compgeo.2020.103634
https://doi.org/10.1016/j.catena.2018.01.015


 

[10] Kyebogola, S., Burras, L.C., Miller, B.A., Semalulu, O., 

Yost, R.S., Tenywa, M.M., Lenssen, A.W., Kyomuhendo, 

P., Smith, C., Luswata, C.K. Majaliwa, M.J.G., Goettsch, 

L., Colfer, C.J.P., Mazur, R.E. (2020). Comparing 

uganda's indigenous soil classification system with world 

reference base and USDA soil taxonomy to predict soil 

productivity. Geoderma Regional, 22: e00296. 

https://doi.org/10.1016/j.geodrs.2020.e00296 

[11] Xiao, T., Zou, H.F., Yin, K.S., Du, Y., Zhang, L.M. 

(2021). Machine learning-enhanced soil classification by 

integrating borehole and CPTU data with noise filtering. 

Bulletin of Engineering Geology and the Environment, 

80: 9157-9171. https://doi.org/10.1007/s10064-021-

02478-x 

[12] Shivhare, S., Cecil, K. (2021). Automatic soil 

classification by using gabor wavelet & support vector 

machine in digital image processing. In 2021 Third 

International Conference on Inventive Research in 

Computing Applications (ICIRCA), IEEE, 1738-1743. 

https://doi.org/10.1109/ICIRCA51532.2021.9544897 

[13] Yu, Y., Xu, T.F., Shen, Z.Y., Zhang, Y.H., Wang, X. 

(2019). Compressive spectral imaging system for soil 

classification with three-dimensional convolutional 

neural network. Optics Express, 27(16): 23029-23048. 

https://doi.org/10.1364/OE.27.023029 

[14] Aditya Shastry, K., Sanjay, H.A. (2019). Cloud-based 

agricultural framework for soil classification and crop 

yield prediction as a service. In Emerging Research in 

Computing, Information, Communication and 

Applications (ERCICA), Springer Singapore, 1: 685-696. 

https://doi.org/10.1007/978-981-13-5953-8_56 

[15] Bouayad, D., Baroth, J., Dano, C. (2021). Gaussian 

mixture model based soil classification using multiple 

cone penetration tests. In IOP Conference Series: Earth 

and Environmental Science, IOP Publishing, 696(1): 

012034. https://doi.org/10.1088/1755-

1315/696/1/012034 

[16] Radhika, K., Madhavi Latha, D. (2019). Machine 

learning model for automation of soil texture 

classification. Indian Journal of Agricultural Research, 

53(1): 78-82. https://doi.org/10.18805/IJARe.A-5053 

[17] Naveen, P., Sivakumar, P. (2021). Adaptive 

morphological and bilateral filtering with ensemble 

convolutional neural network for pose-invariant face 

recognition. Journal of Ambient Intelligence and 

Humanized Computing, 12: 10023-10033. 

https://doi.org/10.1007/s12652-020-02753-x 

[18] Deepika, J., Rajan, C., Senthil, T. (2022). Improved 

CAPSNET model with modified loss function for 

medical image. Signal, Image and Video Processing, 

16(8): 2269-2277. https://doi.org/10.1007/s11760-022-

02192-5 

[19] Meng, Z., Zhan, X.Y., Li, J., Pan, Z.Z. (2018). An 

enhancement denoising autoencoder for rolling bearing 

fault diagnosis. Measurement, 130: 448-454. 

https://doi.org/10.1016/j.measurement.2018.08.010 

[20] Agushaka, J.O., Ezugwu, A.E., Abualigah, L. (2022). 

Dwarf mongoose optimization algorithm. Computer 

Methods in Applied Mechanics and Engineering, 391: 

114570. https://doi.org/10.1016/j.cma.2022.114570 

[21] Dutta, A.K., Albagory, Y., Al Faraj, M., Alsanea, M., 

Sait, A.R.W. (2023). Cat swarm with fuzzy cognitive 

maps for automated soil classification. Computer 

Systems Science & Engineering, 44(2): 1419-1432. 

https://doi.org/10.32604/csse.2023.027377

 

182

https://doi.org/10.1016/j.geodrs.2020.e00296
https://doi.org/10.1109/ICIRCA51532.2021.9544897
https://doi.org/10.1364/OE.27.023029
https://doi.org/10.1016/j.measurement.2018.08.010
https://doi.org/10.1016/j.cma.2022.114570
https://doi.org/10.32604/csse.2023.027377



