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Obstetricians utilize cardiotocography (CTG) to assess the fetal heart and lungs during 

pregnancy. It can help determine if the foetus is healthy, in doubt, or suffering from disease 

by providing data on the fetal heart rate and uterine breathing. The analysis of CTG data 

has typically made use of machine learning (ML) techniques such as support vector 

machines and decision trees to forecast fetal health and enhance the detection procedure. 

Fetal heart rate and uterine contraction timing were recorded by CTG. Monitoring fetal 

health and ensuring normal fetal growth and development throughout pregnancy rely 

heavily on CTG intelligent categorization. Pregnancies with a higher risk of problems are 

the most common cases in which CTG is used to evaluate the health of the fetus. ML 

algorithms are utilized to evaluate state of the foetal health based on CTG-obtained factors. 

Compared to ML techniques, ensemble models have been shown to increase detection 

speed and effectiveness. Ensemble modeling refers to the practice of combining the scores 

or distributions from multiple related but distinct analytical models. In order to predict 

foetal health, ensemble models such as Boosting, AdaBoost, Extreme Gradient Boosting, 

Light gradient boost method (LightGBM), and stack models were used in the paper. When 

the outcomes are compared, the proposed stack model using logistic regression, decision 

tree, random forest and LightGBM proved to obtain the best performance with 96.71% 

success rate. The proposed methodology, which can be used to classify foetal health based 

on Fetal Heart Rate (FHR) data, is more efficient and superior to existing machine learning 

models, which have already been taken into consideration. 

Keywords: 

ensemble model, extreme gradient boosting, 

fetal health, LightGBM, logistic regression 

and stack model 

1. INTRODUCTION

Monitoring the health of the fetus over the whole pregnancy 

is no easy feat. Fetal and maternal death can result from 

delayed diagnosis of foetal health complications. Therefore, 

the FHR is a key indicator of the foetal health status that 

obstetricians use. CTG is the process, mostly used to note the 

FHR and are particularly useful for detecting early fetal 

acidosis and, as a result, making on time and appropriate 

decisions on operative deliveries for avoiding negative 

asphyxia outcomes such as neural development impairment, 

fetal deaths, cerebral palsy, and encephalopathy [1]. The 

obstetricians daily, inspect visually the FHR as per the 

recommendations of the national and international societies 

that are mostly concerned with deceleration and acceleration 

(frequency of signal, form, and depth, uterine synchrony 

contractions), long-term variabilities, and baseline levels. 

However, the FHR also impacted by hormones and infections, 

resulting in complicated temporal dynamics that cannot be 

predicted with visual interpretation. In order to assist the 

obstetricians, prediction algorithm may perform exceptionally 

well and assist in monitoring the fetal health state. In order to 

monitor the foetal health condition, the antenatal care CTG test 

is typically performed after the following 28th week (during 

the 7th month of pregnancy) [2]. Before 28 weeks of 

pregnancy, there is limited brain activity because the central 

nervous system is not fully developed. Thus, CTG monitoring 

before this gestational age usually indicates lower variability 

and benign spontaneous decelerations. The results of this test 

indicate whether foetal growth is abnormal, which 

subsequently aids obstetricians in formulating treatment 

recommendations. Given the significance of patient outcomes, 

even the slightest error could have a detrimental effect on a 

patient’s health. For the CTG test, a decision support system 

(DSS) frequently gives helpful insights of clinical data in the 

form of visual reports [3] and are interpreted obstetricians and 

highly dependent on their expertise. Despite the fact that these 

conventional DSSs have long assisted the field of obstetrics in 

predicting foetal health, they are less likely to predict 

ambiguous occasions. Accidental errors, however, put this 

approach at danger and could result in true-negative 

(misdiagnosis) results. 

Decision support systems (DSSs) are computer programs 

that organizations and businesses use to aid in decision-

making, evaluation, and the planning of future actions. Data 

science systems (DSSs) sort through and analyze massive 

volumes of data to produce comprehensive reports that aid in 

problem-solving and decision-making. Using analytical 

models, DSS takes advantage of trends, patterns, outliers, and 

aggregate data. While decision support systems can be helpful, 

they do not always provide a choice. Executives find problems, 

create answers, and make decisions by combining information 
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from various sources, such as documents, statistics, insider 

knowledge, and business models. 

Reducing the risk of intrapartum fetal hypoxia and its tragic 

outcomes requires careful and thorough interpretation of 

cardiotocography (CTG). Despite CTG's extensive use today, 

its specificity is compromised by inter- and intra-observer 

variability [4]. The fetal death rate was found to be four times 

lower when CTG was analyzed by a computer as opposed to 

being read visually, according to a study including 469 

participants [5]. Despite CTG's widespread adoption, medico-

legal concerns have increased for causes including incorrect 

interpretation of CTG and a lack of prompt follow-up [6]. In 

the decade between 2000 and 2010, lawsuits in the UK for 

birth asphyxia reached a peak of GBP 3.1 billion. As a result 

of prenatal neurological impairment, lawsuits were filed 

against 73.6% of obstetricians in the United States. As a 

precaution, doctors are more likely to perform needless C-

sections because of the threat of litigation. Misinterpretation 

can also occur since there are no universally accepted 

standards for recognizing or interpreting FHR signals in the 

intermediate range [7]. Recently, soft-computing-based 

methods have been investigated to find improved 

interpretation of FHR results, and they have produced results 

that are comparable to the clinical interpretation, suggesting 

that these concerns can be resolved [8]. These methods can tell 

the difference between a healthy and an IUGR fetus [9]. 

Predicting pathological conditions using automated CTG 

interpretation has not been successful thus far. The high-risk 

characteristics needed to be identified with greater precision, 

hence soft computing-based solutions were developed. 

Measuring fetal weight [10], predicting hypoxia [11], and 

estimating gestational age [12] are all examples of areas where 

machine learning has been utilized successfully in prenatal 

healthcare. 

The modern healthcare system increasingly relies on 

machine learning models to provide predictions about a wide 

range of health conditions; these robust models are, in general, 

rather reliable. However, numerous researchers [13] have 

employed various machine learning approaches to imple- ment 

some useful algorithms that can effectively forecast the 

medical state of a foetus by studying CTG data. The predictive 

power and error-tolerance of such systems are significantly 

improved. 

Chauhan et al. [14] has reviewed the frequency domain, 

time domain and non linear models for analysing the FHR 

signal. The analysis showed that the frequency domain models 

are sensitive to the noise. The artifacts present in the data and 

time domain models depends only on the statistics of the data 

and do not refer the physiological variation parameters on the 

heart rate. The non linear methods have difficulties with the 

FHR signal being noisy, finite and non stationary. Machine 

ML based approach for analysing the FHR signal is more 

suitable for predicting the risk in fetal health. Linear regression 

(LR), Naive Bayes (NB), Support vector machine (SVM)- 

radial basis function, SVM Linear, and Classification trees [15] 

were among the classifiers being used to predict risk using 

FHR. The outcomes suggest that the method should made 

available in clinics to predict foetuses with intrauterine growth 

limitation [16]. 

There were great hopes for electronic fetal monitoring 

because it provided continuous monitoring, rather than the 

occasional auscultation used previously. A thorough meta-

analysis of multi-center trials, however, found no evidence of 

an enhancement. Also, computerized fetal monitoring became 

the leading suspect for the increased rate of cesarean sections 

[17]. Even in low-risk pregnancies, there is a small chance of 

complications after these treatments. The cesarean procedures 

also require a longer time to heal than a vaginal birth and 

provide additional hazards, including newborn breathing 

issues, amniotic fluid embolism, and postpartum hemorrhage 

for the mother. Even among seasoned obstetricians, there is 

little agreement in fetal and maternal well-being assessments, 

leading to a high percentage of false-positives. Even when 

adhering to the guidelines offered by the International 

Federation of Obstetrics and Gynaecology (FIGO) the visual 

interpretation of fHR is left up to the clinician, which despite 

being associated with high sensitivity but low specificity, may 

result in a greater risk of harm than good when adhering to 

conventional guidelines. 

Extream gradient Boost (XGBoost) regres-sors, LightGBM 

regressors, Category Boosting (CatBoost) regressor, and 

Natural gradient boosting (NGBoost) are some of the 

intriguing ensemble techniques that have recently been 

published to the literature and are based on gradient boost. 

These algorithms aim to attain high speed and accuracy. Many 

medical applications have shown that these boosting methods 

are beneficial. A scalable method, XGBoost has shown to be a 

formidable opponent when it comes to resolving machine 

learning issues. Lu et al. [18] analyzed FHR signal patterns 

using rule bases and the XGBoost algorithm. In order to 

transform a weak classifier into a stronger one, XGBoost takes 

advantage of merging hundreds of trees. The advantages of 

XGBoost include high precision, strong scalability, and 

difficulty in over fitting. With its help, distributed high-

dimensional features can be handled. 

During pregnancy, LightGBM is utilized for the purpose of 

forecasting the fetal weight [19]. LightGBM achieves rapid 

training performance by taking into account the cases with the 

largest gradients through selective sampling. During 

pregnancy, LightGBM is utilized to categorize the FHR signal 

in order to forecast the fetal weight [20]. Outperforming 

individual models in terms of projected accuracy, these 

ensemble learning technologies offer a systematic way for 

combining the predictive skills of several learners [21]. When 

dealing with datasets that include both linear and non-linear 

data types, ensemble techniques can be very useful. This is 

because multiple models can be coupled to handle such 

datasets [22]. It is possible to reduce bias and variance using 

ensemble methods, and the model is usually neither under- nor 

over-fitted [23]. Due to the fact that it is not always sufficient 

to depend on the output of a single machine learning model, 

an ensemble of models is invariably more dependable and less 

finicky [24]. Considering the advantages of the stack model 

algorithm, the fetal health classification based on FHR is 

proposed in this paper. 

 

 

2. MATERIAL AND METHODS 

 

The University of California’s open-access Machine Learn- 

ing Repository provided the data set. It is a representation of 

2,216 data points from third- trimester pregnant women. 

Below is a list of the 21 properties of these data points that 

have been used in this research to analyze FHR and uterine 

contraction on the CTG. 

The entire data set is represented in different ways, the 

Figure 1 (a). The blue color in the figure represents the normal 

fetal count, green represents the pathological and the orange 
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represents fetus in suspect. Likewise, the bar char is also 

shown in the Figure 1 (b) and Figure 2 represent the histogram 

of data. In the Figure 3 the box plot is shown, form the figure 

it can be infer that Base value, uterine contractions, fetal 

movement, abnormal short term variability, and histogram 

based parameters are the more impacting features considering 

all the parameters. 

 

 
 

Figure 1. (a) Pie chart of the data set, (b) Bar chart of the 

data set 

 

 
 

Figure 2. Histogram of individual features in the data set 

 

 
 

Figure 3. Box plots of the data set 

3. PROPOSED METHODOLOGY 

 

The main focus of this part is the process flow of fetal health 

classification using machine learning ensemble models. 

Figure 4 lays out the stages of the suggested procedure. The 

data is presented in a visually appealing format after being pre-

processed. 

 

 
 

Figure 4. Proposed model framework 

 

Additionally, the data is divided into a test set and a train 

set. Both the base classifier's and the meta classifier's 

prediction effects impact the stack model ensemble learning 

technique's performance. The suggested ensemble model 

employs logistic regression as its meta classifier in addition to 

LR, DT, RFM, and LightGBM as its base classifiers. The 

following is a detailed explanation of the stack model. 

 

3.1 Stack model 

 

The terms stack model and stacked generalization refer to 

ensemble algorithms used in machine learning [25]. A meta-

algorithm is employed to determine the optimal method for 

combining the results of multiple underlying machine learning 

algorithms [26]. Using a stack model's multiple efficient 

models, one can do classification or regression tasks and 

obtain results that surpass the performance of any single model 

used in the ensemble. 

· An ensemble machine learning method called stack 

model learns the most effective way by combining the 

predictions resulted from the various successful ML models. 

·A common Python implementation of the stack model 

ensemble is offered by the scikit-learn library. 

·Regression and classification forecast models with the 

stack model ensemble. 

 

3.2 Basic architecture of stack model 

 

·The building blocks of a stack model are multiple level-

0 base models and a level-1 meta-model that integrates the 

predictions from all of the base models. 

·In order to make predictions, the training data set is fitted 

with level-0 base models. 

·The first level of meta-modeling is to determine the best 

way to combine the results from the base models. 

In order to train the meta-model, the underlying models' 

non-sample data is extrapolated. A further way of looking at it 
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is that the input/output pairings in the training set that the 

meta-model is adapted to are really the results that the base 

models were able to anticipate and produce using the data that 

wasn't utilized to train them. When it comes to regression, the 

basic models’ outputs can be real values, however when it 

comes to classification, they can be probability values, 

probability like values, or class labels. 

 

3.3 Stack model ensemble method 

 

Base learners: In this study, the union strategy creates a 

new set of features and then trains four basic learners, Logistic 

Regression, Decision Tree, Random Forest, and LightGBM—

to use those features accurately. 

Logistic Regression: Logistic regression is actually a 

progression of linear regression. Classical linear regression 

just performs regression and has the following fundamental 

structure: 

 

𝑦 = 𝑉𝑁𝑥 + 𝑎 (1) 

 

The problem of classification is solved by obtaining a pre- 

dicted value either 0 or 1 by linear regression [27]. However, 

linear regression produces the predicted value as a sequence of 

real values. The continuous function Sigmoid is then used to 

further alter it as a result: 

 

𝑦 =
1

1 + 𝑒(−𝑥)
 (2) 

 

The sigmoid function can be used to translate the linear 

regression prediction result as a conditional probability to 

which the sample belongs to a specific class, and the 

classification result can then be produced using the 

predetermined classification threshold [28]. The belonging of 

the sample to positive and negative classes can be calculated 

by adding b to the weight vector A for the two-class problem: 

 

𝑃(𝑌 = 1|𝑥) =
𝐸𝑥𝑝(𝑉. 𝑥)

1 + 𝐸𝑥𝑝(𝑉. 𝑥)
 (3) 

 

𝑃(𝑌 = 0|𝑥) =
1

1 + 𝐸𝑥𝑝(𝑉. 𝑥)
 (4) 

 

In Eqs (3) and (4) represent the logistic regression models. 

From the Eq (3), if the linear function generates a value that 

increases to infinity, then the probability of the anticipated 

value belonging to a positive class and is nearer to 1, and 

otherwise it is nearer to 0. The box plots of the dataset are 

shown in Figure 3. 

Decision Tree: In a decision tree, which is built on trees, 

each node along the way represents a data separation sequence 

that continues until the tree reaches a leaf node, where a 

Boolean result is obtained. It is structured using a node and a 

branch relationship, with nodes representing the goals of 

relational classification. Entropy and information gain are 

used in decision tree to make decision-making at various levels 

of nodes. When a node exclusively belongs to one class, 

entropy is 0. Entropy will be at its highest when the dataset is 

very disordered or when the classes are evenly split: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑝𝑖

𝑐

𝑖=1

∗ log2(𝑝𝑖) (5) 

Information Gain is used to quantify the dataset’s purity or 

homogeneity. Information gain is the distribution of data with 

regard to a response variable [22]. A variable is more 

informative and can be used as the root node if the information 

gain is large and split it if attribute has lower entropy. To create 

more manageable subsets of the dataset, the decision tree uses 

the information gain to acquire the attribute that does just that. 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑋) = ∑
𝑆𝑣

𝑆
𝑣∈𝑉(𝑋)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (6) 

 

where, V(X) is the range of features X and Sv is the subset of 

set S equal to the feature value of feature v. 

 

Random Forest: The random forest employs the Gini index 

to determine if the nodes on the decision tree branch are 

associated or not. It is a multiple-decision set technique that 

may be used for regression and predictions. It classifies the 

data using a lot of decision trees: 

 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2 

𝑐

𝑖=1

 (7) 

 

This formula was used to estimate the most likely branch on 

a node by computing the Gini of every branch according to the 

class and percentage. The overall number of classes in the data 

is represented by c, while the proportional prevalence of each 

class is represented by pi. The proposed model architecture is 

shown in Figure 4. 

LightGBM: The LightGBM algorithm, which was derived 

from the GBDT method [29]. The method locates the leaf node 

from the already divided leaf nodes with the highest gain value; 

the depth of the tree is restricted to avoid over fitting and 

expedites the process of discovering the depth tree with 

optimal values. Additionally, if constant number of splits are 

maintained, then the error can be minimized and a maximum 

level of precision could be reached. Finding the optimum 

splitting node requires the greatest time and computing 

resources during the tree- building process. LightGBM uses a 

variety of strategies to achieve this, including the binding 

method, the histogram algorithm, gradient-based one- side 

sampling, and mutually exclusive features [30]. 

Meta-classifier: In our proposed work, logistic regres-sion 

is presented as a solution to classification issues and is 

employed as a meta-classifier. 

Ensemble of Classifiers: Figure 4 depicts the stack model 

ensemble learning prediction technique. Every single 

prediction model makes up the basic learner. First, multiple 

base learners are trained using the original dataset. Base 

learners are often trained using K-fold cross-validation during 

the training phase to lower the risk of model over fitting. The 

secondary learners are then taught to provide the final 

prediction outcomes after the base model’s prediction findings 

are combined into a new data set [31]. The Figure 5 shows the 

stages of the stack model algorithms and are explained in the 

below steps. 

·First step is to separate the actual data set X into training 

data set Tr and the testing set Ts. 

·On the base learner, do K-fold cross-validation by ran- 

domly by separating the actual training set Tr into K 

equivalents (Tr1, Tr2, ..., Trk), considering any one of them as 

K-fold test set, and rest of them as k-fold training set. 
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·The K-fold training set is used to train each  base  

learner  classifiers c1, c2,... , CK ,  predictions  are formed 

using the K-fold test set, and the outcomes of each base 

learner’s classifiers are merged to form the secondary 

learner’s training set T r̄. 

The stack model algorithm is shown in Figure 5. 

 

 
 

Figure 5. Stack model algorithm 

 

Algorithm 

INPUT: Consider training dataset Tr={xi,yi}
m 

(xiϵXn, 

yiϵY) from X 

OUTPUT: E, the ensemble classifier. 

Step1: Split the actual training set Tr into K equivalents 

(Tr1,Tr2,...,TrK) using k-fold validation. 

For all kin K do for all tints do 

step1.Learn the base classifier c1 based on Trk 

 

ENDFOR 

Define a new data set that contains 

{ x̄i,yi,x̄i=c1(xi),c2(xi),...cT(xi)}. 

step1.2 Next level classifier learning. 

For all xiϵTrK do 

Define a new data sets that contains x̄i,yi, where  

x ̄ i=c1(xi),c2(xi),...cT(xi). 

END FOR 

END FOR 

step2: Learning by second level classifier 

for all t in T do 

Learn the ct classifier 

END FOR 

Return C(x)=c̄(c1(xi),c2(xi),...cT(xi)) 

 

·Each base learner generates predictions on the initial test 

set Ts, and the secondary learners’ validation set T s̄ 
which is created by averaging the prediction results. 

·The training set T r̄ and the validation set T s̄ are obtained 

by the secondary learner, which then performs learning and 

training before producing the final prediction out- come. 

The steps in the algorithm of the stack model are presented 

in algorithm 1. The K-fold cross-validation used in the stack 

model ensemble learning prediction approach lowers the 

likelihood that the model will become over fitted, and 

secondary training is carried out using the predictions of 

several base learners. This technique, which enhances the 

generalisation and accuracy of prediction outputs through 

machine learning, can get around the constraints of a single 

model and integrate variably with different models. The base 

model can select a strong learner, and the next stage model can 

select a simple learner when using stack model and improves 

the fusion effect and prevent over fitting. 

Worldwide healthcare institutions have been grappling with 

the problem of infant mortality for decades. Despite our 

development of technologies that can measure numerous 

aspects of foetal health, reading and interpreting CTG data is 

not always achievable in places without a qualified 

obstetrician. Even in areas with access to medical experts, 

diagnosing a fetus one by one using CTG measurements [32] 

can be incredibly inefficient and time intensive. In contrast, 

fetal health may be classified by machine learning models in a 

fraction of the time it takes obstetricians to do so [33]. Machine 

learning models have the potential to provide practical 

answers to the foetal health problem due to their exceptionally 

precise predictions, but there have been significant obstacles 

to its widespread use, despite the technique's theoretical 

viability [34]. 

To begin, these models do not aid in pinpointing the source 

of the fetal pathology that has led to the diagnosis. If 

obstetricians are unable to determine the cause of the fetal 

distress, they will be unable to provide adequate care for their 

patients [35]. Another problem is that patients could not 

believe a machine's diagnosis if they can't comprehend the 

reasoning behind the model's conclusion. 

Implementing an explainable model, which not only makes 

very accurate predictions but also explains to scientists how it 

made its conclusion, is the most effective strategy to address 

these issues [36]. When obstetricians have this information, 

they can better treat their patients by identifying the abnormal 

measurement and advising their patients on it. For example, if 

the model indicated a potentially dangerous foetal abnormality, 

it may also clarify how a low rate of uterine contractions 

influenced the prediction. Based on this information, the 

doctor can prescribe water and relaxation to help normalize 

levels, or in severe cases, medication like Oxytocin. 

 

3.4 Stack model algorithm 

 

In this proposed method we used, The University of Califor- 

nia’s open-access Machine Learning Repository provided the 

data set. The dataset can be splitted into 80% as training data 

20% as testing data. In the suggested stack model ensemble 

learning algorithm, four ensemble machine learning 

algorithms like BOOSTING, ADABOOST, XGBoost, 

LightGBM are taken into consideration as base learners. Scikit 

Learn’s Grid output vector of the individual learners is stacked 

and given to the Logistic Regression as a meta learner; this 

module is designated as “Level 1” in the system architecture. 

The stack model is now prepared to make predictions using 

test data. Algorithm discusses the stack model Algorithm with 

cross validation used in this study. 

 

 

4. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

 

4.1 Experimental setup 

 

In order to find the accuracy of the stack model algorithm, 
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The data set is obtained from the open-access Machine 

Learning Repository of the University of California. The data 

set contains the 21 features of fetal health classification with 

three classes: Normal, Suspect, and Pathology. The stack 

model algorithm was worked out with Python software on an 

i5 processor. The entire dataset can be divided into 80% used 

for training and 20% used for testing. 

 

4.2 Quantitative analysis 

 

Precision, recall, F1-score, and accuracy are the 

performance metrics used for quantitative analysis of the 

classification outcomes: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 (9) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

TP + FN + TN + FN
 (11) 

 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑐𝑜𝑟𝑒 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

 (12) 

 

where, TP: True positive; TN: True negative; FP: False 

positive; FN: False negative; po is the relative agreement 

among the classes; pe the hypothetical probability of change 

of class. 

The F1-score, precision, recall and accuracy measures are 

given in Table 1. These performance measures are calculated 

for fetal health classification, namely, normal, suspect, and 

pathology, as typical in the open-access Machine Learning 

Repository of the University of California. The results proved 

that the stack model algorithm had extracted the classes of 

fetal accurately than other considered models in Table 1. The 

graphical representation of the performance measures is 

shown in Figure 6 and Figure 7. From the visual analysis it can 

see that the stack model is performing well. 

 

 
 

Figure 6. Comparison of performance measures 

 

Out of a total of 324 normal classes, the Bagging model 

correctly identified 315 as normal, mislabeled 9 as suspect, 

and 0 as pathology. Similarly, out of 60 suspect classes, 46 

were incorrectly classified as suspect, 13 were correctly 

classified as normal, and 1 as pathology. Out of a total of 42 

pathologies, 38 were incorrectly classed as normal, while 1 

was considered suspicious. You may find the corresponding 

confusion matrix in Table 2. Based on these classification 

results, the Bagging model performed extremely well, with a 

precision value of 0.96%, a suspect value of 0.81%, and a 

pathology value of 0.95%. The recall value was 0.97%, the 

suspect value was 0.78%, and the pathology value was 0.93%. 

The F1-score value was 0.96%, the suspect value was 0.80%, 

and the pathology value was 0.94%. The model's overall 

accuracy was 94%. Out of a total of 324 normal classes, the 

AdaBoost model correctly identified 300 as normal, 22 as 

suspect, and 2 as pathology. Of the 60 suspect classes, 43 were 

incorrectly classified as suspect, 17 as normal, and 0 as 

pathology. Out of a total of 42 pathologies, 34 were incorrectly 

labeled as normal, and 0 were deemed suspicious. You may 

find the corresponding confusion matrix in Table 2. Based on 

these classification results, the AdaBoost model performed to 

specification with a normal precision of 0.92%, a suspect 

precision of 0.66%, and a pathology precision of 0.94%; a 

recall of 0.93%, a suspect precision of 0.72%, and a pathology 

F1-score of 0.87%; and an overall accuracy of 89%. 

 

 
 

Figure 7. Comparison of accuracy 

 

Table 1. Performance measure of the models 

 
Model Metric Normal Suspect Pathology 

BAGGING 

Precision 0.96 0.81 0.95 

Recall 0.97 0.78 0.93 

F1-Score 0.96 0.80 0.94 

Support 324 60 42 

Accuracy 94% 

ADA BOOST 

Precision 0.92 0.66 0.94 

Recall 0.93 0.72 0.81 

F1-Score 0.92 0.81 0.87 

Support 324 60 42 

Accuracy 89% 

XGBoost 

Precision 0.96 0.97 0.97 

Recall 0.86 0.82 0.84 

F1-Score 0.98 0.98 0.97 

Support 324 60 42 

Accuracy 95% 

LightGBM 

Precision 0.96 0.97 0.97 

Recall 0.86 0.82 0.84 

F1-Score 0.98 0.98 0.97 

Support 324 60 42 

Accuracy 95% 

DT+LightGBM 

Precision 0.98 0.98 0.98 

Recall 0.90 0.87 0.88 

F1-Score 0.91 0.98 0.94 

Support 324 60 42 

Accuracy 96% 

LR+GBMC 

Precision 0.96 0.98 0.97 

Recall 0.91 0.80 0.85 

F1-Score 0.95 0.95 0.95 
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Support 324 60 42 

Accuracy 96% 

LR+BAGGING 

Precision 0.96 0.97 0.96 

Recall 0.84 0.80 0.82 

F1-Score 0.98 0.95 0.96 

Support 324 60 42 

Accuracy 94% 

LR+XGBoost 

Precision 0.96 0.97 0.97 

Recall 0.86 0.80 0.83 

F1-Score 0.98 0.98 0.98 

Support 324 60 42 

Accuracy 95% 

LR+RF+XGBoo

st 

Precision 0.96 0.97 0.97 

Recall 0.86 0.82 0.84 

F1-Score 0.98 0.98 0.97 

Support 324 60 42 

Accuracy 95% 

DT+RF+LightG

BM 

Precision 0.98 0.98 0.98 

Recall 0.90 0.88 0.89 

F1-Score 0.93 0.98 0.95 

Support 324 60 42 

Accuracy 96% 

LR+DT+RF+XG

Boost 

Precision 0.96 0.97 0.97 

Recall 0.86 0.80 0.83 

F1-Score 0.98 0.98 0.98 

Support 324 60 42 

Accuracy 95% 

LR+DT+RF+Lig

htGBM 

Precision 0.97 0.98 0.98 

Recall 0.89 0.85 0.87 

F1-Score 0.93 0.95 0.94 

Support 324 60 42 

Accuracy 96.71% 

 

Table 2. Confusion matrix of the models 

 
Model Class Normal Suspect Pathology Total 

BAGGING 

Normal 315 9 0 324 

Suspect 13 46 1 60 

Pathology 3 1 38 42 

ADA BOOST 

Normal 300 22 2 324 

Suspect 17 43 0 60 

Pathology 8 0 34 42 

XGBoost 

Normal 315 8 1 324 

Suspect 12 48 0 60 

Pathology 1 0 41 42 

LightGBM 

Normal 315 8 1 324 

Suspect 12 48 0 60 

Pathology 1 0 41 42 

DT+LightGBM 

Normal 317 6 1 324 

Suspect 5 52 3 60 

Pathology 1 0 41 42 

LR+GBMC 

Normal 319 4 1 324 

Suspect 12 48 0 60 

Pathology 2 0 40 42 

LR+BAGGING 

Normal 314 9 1 324 

Suspect 12 48 0 60 

Pathology 2 0 40 42 

LR+XGBoost 

Normal 315 8 1 324 

Suspect 12 48 0 60 

Pathology 1 0 41 42 

LR+RF+XGBoost 

Normal 315 8 1 324 

Suspect 11 49 0 60 

Pathology 1 0 41 42 

DT+RF+LightGBM 

Normal 317 6 1 324 

Suspect 5 52 3 60 

Pathology 1 0 41 42 

DT+LR+XGBoost 

Normal 315 8 1 324 

Suspect 11 49 0 60 

Pathology 1 0 41 42 

LR+DT+RF+XGBoost 
Normal 315 8 1 324 

Suspect 12 48 0 60 

Pathology 1 0 41 42 

LR+DT+RF+LightGBM 

Normal 317 6 1 324 

Suspect 5 54 1 60 

Pathology 1 0 41 42 

 

Out of a total of 324 normal classes, the XGBoost model 

correctly identified 315 as normal, mislabeled 8 as suspect, 

and categorized 1 as pathology. Similarly, out of 60 suspect 

classes, 48 were incorrectly classified as suspect, 12 as normal, 

and 0 as pathology. We incorrectly identified one case as 

normal and zero as questionable out of a total of forty-two 

pathologies. You may find the corresponding confusion matrix 

in Table 2. The XGBoost model performed admirably in this 

classification task, with normal, suspect, and pathology 

precision values of 0.97%, 0.86%, and 0.83%, respectively. 

The model also achieved an F1-score of 0.98%, suspect 0.98%, 

and pathology 0.98%, and an overall accuracy of 95%. 

The LightGBM model correctly identified 315 out of 324 

normal cases, mislabeled 8 as suspect cases, and categorized 1 

as pathology. Of the 60 cases in the suspicious class, 48 were 

erroneously classified as suspect cases, 12 as normal, and 0 as 

pathology. We incorrectly identified one case as normal and 

zero as questionable out of a total of forty-two pathologies. 

You may find the corresponding confusion matrix in Table 2. 

Based on these classification results, the LightGBM model 

performed admirably, with standard accuracy of 0.96%, 

suspect accuracy of 0.97%, and pathology accuracy of 0.97%; 

recall values of 0.96%, suspect accuracy of 0.80%, and 

pathology accuracy of 0.83%; F1-score values of 0.98%, 

suspect accuracy of 0.98%, and pathology accuracy of 0.98%; 

and overall accuracy of 95%. 

We incorrectly identified one case as normal and zero as 

questionable out of a total of forty-two pathologies. You may 

find the corresponding confusion matrix in Table 2. Here are 

the classification results: the DT+LightGBM model achieved 

a performance of 0.98% for normal, 0.90% for suspect, and 

0.91% for pathology; 0.98% for recall, 0.87% for suspect, and 

0.98% for pathology; 0.98% for F1-score, 0.88% for suspect, 

and 0.94% for pathology; and a total accuracy of 96%. 

Out of a total of 324 normal classes, the LR+GBMC model 

correctly identified 319 as normal, mislabeled 4 as suspicious, 

and labelled 1 as pathology. Similarly, out of 60 questionable 

classes, 48 were incorrectly classified as suspect, 11 as normal, 

and 1 as pathology. We incorrectly identified one case as 

normal and zero as questionable out of a total of forty-two 

pathologies. You may find the corresponding confusion matrix 

in Table 2. The LR+GBMC model achieved a 96% overall 

accuracy with these classification results: normal precision = 

0.96%, suspect 0.91%, and pathology 0.95%; recall = 0.98%, 

suspect = 0.80%, and pathology = 0.95%; F1-score = 0.97%, 

suspect = 0.95%, and pathology = 0.95%. 

Out of a total of 324 normal classes, the LR+BAGGING 

model correctly identified 314 as normal, mislabeled 9 as 

suspicious, and categorized 1 as pathology. Similarly, out of 

60 suspect classes, 48 were incorrectly classified as suspect, 

12 as normal, and 0 as pathology. Out of a total of 42 

pathologies, 40 were incorrectly labeled as normal and 1 as 

questionable. You may find the corresponding confusion 

matrix in Table 2. The LR+BAGGING model achieved a 94% 

overall accuracy rate based on these classification results: 

normal 0.96% precision, suspect 0.84%, and pathology 0.98% 

recall; suspect 0.80% and pathology 0.95%, respectively, and 

F1-score values of 0.96%, 0.82%, and 0.96%, respectively, for 

normal and suspect categories. 
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Out of a total of 324 normal classes, the LR+XGBoost 

model correctly identified 315 as normal, mislabeled 8 as 

suspect, and categorized 1 as pathology. Similarly, out of 60 

suspect classes, 48 were incorrectly classified as suspect, 12 as 

normal, and 0 as pathology. We incorrectly identified one case 

as normal and zero as questionable out of a total of forty-two 

pathologies. You may find the corresponding confusion matrix 

in Table 2. The LR+XGBoost model achieved a 95% overall 

accuracy with these classification results: normal precision = 

0.96%, suspect 0.86%, and pathology 0.98%; recall = 0.97%, 

suspect 0.80%, and pathology 0.98%; F1-score = 0.97%, 

suspect 0.83%, and pathology 0.98%. 

Out of 324 normal cases, 8 were incorrectly categorized as 

suspect and 1 as pathology by the LR+RF+XGBoost model. 

Of 60 suspect cases, 49 were incorrectly classified as suspect, 

11 were correctly classified as normal, and 0 were classified 

as pathology. We incorrectly identified one case as normal and 

zero as questionable out of a total of forty-two pathologies. 

You may find the corresponding confusion matrix in Table 2. 

The LR+RF+XGBoost model was able to achieve a 95% 

overall accuracy rate based on these classification results: 

normal performance: 0.96%, suspect performance: 0.86%, and 

pathology performance: 0.98%. Normal recall: 0.97%, suspect 

performance: 0.82%, and pathology performance: 0.98%. F1-

score: 0.97%, suspect performance: 0.84%, and pathology 

performance: 0.98%. 

Out of a total of 324 normal classes, the 

DT+RF+LightGBM model correctly identified 317 as normal, 

incorrectly classified 6 as suspect, and further mislabeled 1 as 

pathology. Of the 60 suspect classes, 52 were classified as 

suspect and incorrectly, 5 as normal, and 3 as pathology. We 

incorrectly identified one case as normal and zero as 

questionable out of a total of forty-two pathologies. You may 

find the corresponding confusion matrix in Table 2. Based on 

these classification results, the DF+RF+LightGBM model 

achieved a 96% overall accuracy, with a recall of 0.98%, a 

suspect of 0.88%, and a pathology of 0.98%; an F1-score of 

0.98%, a suspect of 0.89%, and a pathology of 0.95%; and 

overall precision of 0.98%, 0.90%, and 0.93%, respectively. 

Out of a total of 324 normal classes, the 

LR+DT+RF+XGBoost model correctly identified 315 as 

normal, mislabeled 8 as suspect, and categorized 1 as 

pathology. Similarly, out of 60 suspect classes, 48 were 

incorrectly classified as suspect, 12 as normal, and 0 as 

pathology. We incorrectly identified one case as normal and 

zero as questionable out of a total of forty-two pathologies. 

You may find the corresponding confusion matrix in Table 2. 

Here are the classification results for the 

LR+DT+RF+XGBoost model: normal performance: 0.96%, 

suspect 0.86%, and pathology 0.98%; recall: 0.97%, suspect 

0.80%, and pathology 0.98%; F1-score: 0.97%, suspect 0.83%, 

and pathology 0.98%; and overall accuracy: 95%. 

Out of 324 normal cases, 5 were incorrectly classified as 

suspects and 1 as pathology by the LR+DT+RF+LightGBM 

model. Of 60 suspect cases, 53 were incorrectly classified as 

suspects, 6 were correctly classified as normal, and 1 was 

classified as pathology. We incorrectly identified one case as 

normal and zero as questionable out of a total of forty-two 

pathologies. You may find the corresponding confusion matrix 

in Table 2. Based on these classification results, the 

LR+DT+RF+LightGBM model performed admirably. Its 

precision value was 0.97% for normal, 0.98% for suspect, and 

0.98% for pathology. The recall value was 0.89% for normal, 

0.85% for suspect, and 0.87% for pathology. The F1-score 

value was 0.93% for normal, 0.95% for suspect, and 0.94% for 

pathology. The overall accuracy was 96.71%. With a kappa 

score of 0.9167, the evaluated stack ensemble model 

outperforms the state-of-the-art models. An argument in favor 

of the stack model might be made that the Staking ensemble 

learning method has significantly enhanced the evaluation of 

the base learning model. Comparing the suggested model's 

performance to that of prior research models is shown in Table 

3.

 

Table 3. Comparison between the proposed model and previous researchers’ models 

 

Methodology Dataset and Predict Classes Accuracy (%) F1-Score Kappa Score 

Deep Forest [27], 2021 21,3 95.07 0.9201 - 

Random Forest [28], 2021 10,3 92.01 0.8262 0.8262 

Support Vector Machine [29], 2019 21,3 92.39 0.8424 - 

Random Forest [30], 2019 21,3 94.8 0.948 - 

Na¨ıve Bayes [31], 2019 16,3 85.88 0.895 - 

Random Forest [32], 2019 21,3 95.11 - - 

CART with Gini Index [15], 2018 21,3 90.12 0.9 - 

Random Forest [33], 2018 21,3 93.4 - 0.817 

META-DES, ensemble classifier [34], 2015 21,3 84.62 - - 

Bagging based Random Forest [35], 2015 21,3 94.73 0.9047 - 

stacking Ensemble Learning [4], 2021 10,3 96.05 - 0.8875 

Stacked model [36], 2021 21,3 96.08 0.9336 - 

Stack model 21,3 96.71 0.94 0.9167 

 

 

5. CONCLUSIONS 

 

Prevention and reduction of perinatal mortality can be 

achieved through accurate fetal health prediction or 

identification. Reports from CTG tests can be sorted into one 

of three categories based on the FHR, FHR fluctuation, 

decelerations, and accelerations: suspicious, normal, or 

pathological. This research presents a stack model based 

method for fetal health classification. We introduced the stack 

model, an ensemble approach, and showed how it was used to 

classify foetal health using the FHR dataset. The benefit of a 

stack model is that it can outperform any individual model in 

an ensemble by utilizing multiple effective models to complete 

classification or regression tasks and generate predictions.   

When it comes to non-invasive and cost-effective methods of 

continuously monitoring the health of the fetus, CTG is 

currently your sole option. Despite the rise of automation, 

CTG analysis remains a challenging signal processing 
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operation. The intricate and dynamic patterns of the 

developing foetal heart are challenging to understand. In 

instance, there is a general trend toward exceedingly imprecise 

human and machine evaluations of suspicious cases. In 

addition, the initial and second stages of labor have 

significantly different dynamics of the FHR. The performance 

of the proposed algorithm stack model is compared and 

experimented with various Machine learning Techniques 

namely Boosting, Ada boosting and XGBoost and LightGBM, 

DT+LightGBM, LR+LightGBM, LR+BAGGING, 

LR+XGBoost, LR+RF+XGBoost, DT+RF+LightGBM, 

LR+DT+RF+XGBoost, LR+DT+RF+LightGBM and the 

classification accuracy of the respective algorithms are 94%, 

89%, 95%, 95%, 96%, 96%, 94%, 95%, 95%, 96%, 95%. 

Compared to its predecessors, the stack model is superior, 

having attained a performance level of 96.71%. The suggested 

approach outperforms the previously considered state-of-the-

art machine learning algorithms when it comes to classifying 

fetal health using FHR data. With the given training data and 

in the ensemble models under consideration, the suggested 

model is run. Additional samples necessitate enhancements. 

Becoming hybrid and combining the strengths of many models 

and optimization methodologies might further improve the 

model. To determine the optimal fitness value for precise 

health categorization, hybrid optimization techniques like 

Particle Swarm Optimization and Artificial Bee Colony 

Optimization can be utilized. For improved precision, deep 

learning models such as ResNet50 can be used. 
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