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High-performance, high-quality software is a fundamental goal for all developers. To 

achieve this, software needs to be built with exceptional quality, featuring a simplified 

structure, strong coherence, and minimized complexity. Cyclomatic Complexity (CC), 

critical software metric, quantifies the intricacy of a program's structure and control flow. 

Traditionally, CC measurement has relied on laborious manual techniques or conventional 

programming methods, both prone to errors and inefficiency. To overcome these 

limitations, we present a revolutionary approach that leverages a Multinomial Naive Bayes 

(MNB) machine learning (ML) algorithm for automated CC measurement. This innovative 

method offers a more accurate, efficient, and reliable means of software complexity 

evaluation. Our study utilizes a vast dataset of 3,598 carefully curated programming 

samples from diverse programming projects across three popular languages: Java, Python, 

and C++. Training our MNB model on this comprehensive and diverse dataset yielded an 

outstanding overall accuracy of 97.3%, demonstrating the efficacy and reliability of our 

approach for CC measurement across different programming languages (PLs). This success 

can be attributed to the utilization of the NBM learning algorithm, known for its proficiency 

in classification tasks. Additionally, our study benefits from a larger and more diverse 

dataset compared to prior research, potentially contributing to the superior results. Our 

novel approach to CC measurement using machine learning holds significant promise for 

the development of more accurate and reliable code complexity assessment tools. These 

encouraging findings suggest that this approach has the potential to shape more effective 

software development practices in the future.  
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1. INTRODUCTION

1.1 Background on CC 

Cyclomatic Complexity (CC), a metric introduced by 

Thomas J. McCabe, plays a critical role in software 

engineering by offering deep insights into a program's control 

flow structure. This quantitative measure, determined by the 

number of linearly independent paths through a program's 

source code, serves as an indicator of software complexity [1]. 

High CC signifies intricate code, posing potential challenges 

in readability, maintenance, and testing. In the context of 

software development, complexity is a critical factor. It 

significantly impacts software quality, influencing the ease of 

understanding and utilization. Software organizations, 

recognizing its paramount importance, rely on various metrics, 

including CC, to evaluate code value, streamline processes, 

and enhance maintenance protocols. Moreover, the challenge 

lies not only in comprehending complexity but also in 

effectively testing the code. CC directly determines the 

minimum number of test cases necessary to achieve complete 

branch coverage, a fundamental aspect of software testing. In 

recent years, the integration of ML methods, encompassing 

techniques like Supervised Learning, k-means, hierarchical 

clustering, and neural networks, has marked a paradigm shift 

in how we measure and predict CC. However, the accuracy of 

these predictions fundamentally hinges on the quality of the 

data used and the selection of pertinent features, underscoring 

the nuanced nature of this intricate process. 

1.2 Existing techniques for measuring CC 

Historically, CC was measured using manual processes or 

static code analyzers, which provided valuable insights but 

were often limited by time constraints and scalability. 

Automated approaches have been investigated, including 

algorithms that analyze code structure and logic. Integrating 

machine learning (ML) methods, on the other hand, presents a 

compelling opportunity, leveraging advanced algorithms to 

streamline and improve the accuracy of complexity 

measurement. There are many methods for measuring 

complexity, the most important of which are: Manual method: 

where the CC can be calculated using Control Flow Graph 

(CFG), and applying formula to count number of nodes in 

CFG, minus the number of edges and plus two.  CFG 

Generation: Tools can generate a Control Flow Graph from the 

source code, which represents the flow of control within the 

program. By analyzing this graph, CC can be calculated. 
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Software Complexity Assessment Tools (SCAT):  There are 

various tools available that can automatically calculate CC 

such as SonarQube [2]. Integrated Development 

Environments (IDEs) [3]: Many modern IDEs, such as IntelliJ 

IDEA [4] and Visual Studio, have plugins or built-in features 

that can calculate CC for code snippets or entire projects. 

Static Code Analysis Tools: Static code analyzers like ESLint 

for JavaScript [5], and Pylint for Python [6] often include CC 

calculation as one of their features. Command Line Tools: 

There are command line tools like McCabe IQ [7] that allow 

you to calculate CC by providing the source code files as input. 

Continuous Integration Tools: Tools integrated into 

continuous integration pipelines, such as Jenkins and GitLab 

CI [8], can be configured to calculate CC during the build 

process and provide reports. Code Quality and Metrics 

Platforms like Codebeat [9] provide detailed metrics about 

code quality, including CC, for repositories hosted on 

platforms like GitHub. 

 

1.3 MNB approach 

 

This study presents a groundbreaking methodology that 

leverages the MNB algorithm to automate CC measurement. 

By training the model on a vast dataset of labeled source code 

samples, this approach enables prediction of complexity levels 

based on specific code features, such as loops and conditional 

statements. MNB, a powerful machine learning technique, 

delivers efficient classification and is specifically designed for 

text classification tasks. The algorithm calculates the 

probability of a given piece of code belonging to a certain 

complexity level based on the presence or absence of specific 

keywords or phrases in the code, such as iterations and 

conditional statements. To use the algorithm for calculating 

CC, the model must first be trained on a dataset of labeled 

source code samples, each annotated with its corresponding 

complexity level. Once trained, the model can estimate and 

measure the complexity of new, unseen code samples. This 

capability proves invaluable in identifying complex or 

difficult-to-maintain code sections, enabling prioritized 

refactoring or optimization efforts. Bayesian analysis 

empowers us to address questions that traditional frequentist 

statistical methods cannot handle. Despite its seemingly 

simplistic approach, the Naive Bayes (NB) Algorithm should 

not be underestimated. Its straightforward nature does not 

diminish its effectiveness; it can generate remarkably accurate 

predictions, even with relatively small sample sets. The NB 

classifier strictly adheres to Bayes' theory and is available in 

three variations: Gaussian, Multinomial, and Bernoulli [10]. 

Its efficiency and robustness shine, especially with extensive 

datasets. The choice of method depends on the distribution of 

input features: the Gaussian method suits normally distributed 

features, MNB is ideal for multinomial distribution features, 

and the Bernoulli classifier, while also applying multinomial 

distribution, differs in its application. CC holds particular 

significance in software testing. Calculating the CC of a 

function enables the determination of the minimum test cases 

required to achieve complete branch coverage within that 

function. Hence, CC serves as a crucial indicator of testing 

complexity for specific code sections. 
 

1.4 Significance of the study 
 

The significance of this study lies in its potential to 

revolutionize how software complexity is evaluated and 

understood. By integrating ML algorithms, specifically the 

MNB approach, this research not only offers an automated 

solution to a traditionally labor-intensive process but also 

provides a more nuanced understanding of code complexity. 

The implications of this study stretch beyond efficient 

software development, influencing fields related to code 

optimization, software maintenance, and ultimately, the 

creation of more reliable and maintainable software systems. 

This research contributes significantly to the field of software 

engineering by offering an advanced and accurate method for 

CC measurement. The utilization of ML, specifically MNB, 

not only enhances accuracy but also opens avenues for further 

exploration of artificial intelligence techniques in software 

metrics analysis. Our findings underscore the importance of 

embracing innovative approaches to software complexity 

assessment, paving the way for more efficient and reliable 

software development practices. 

 

1.5 Research objectives 

 

While the research is ongoing, preliminary results indicate 

promising outcomes in automating CC measurement using the 

MNB approach. Initial experiments showcase notable 

accuracy and efficiency, marking a significant advancement in 

the realm of software complexity assessment. This proposal 

aims: Integrate ML in Code Review: As ML technology 

continues to evolve; we can anticipate even more innovative 

applications of ML in code review tools. These tools will 

become increasingly sophisticated and capable of providing 

developers with even more valuable insights. To provide tool 

to measure CC, this tool will play an increasingly crucial role 

in enhancing code comprehension, improving code 

maintainability, and empowering developers to create more 

efficient, maintainable, and secure software systems. 

 

1.6 Organization of the paper 

 

This is organized as following: Section 2 introduces a 

literature review of related works. In section 3, we provide the 

proposed model, including the used dataset. Section 4 provides 

a discussion and achieved results. Finally, section 5 concludes 

the work. This work is an extended of our published paper at 

ICCNS 2023 conference [11]. 

 

 

2. LITERATURE REVIEW 

 

There are several approaches to measure and calculating CC, 

including: Manual approach, where the developer can use 

control flow graph and some formulas to calculate [12, 13], 

The McCabe CC metric [14] typically corresponds to the size 

of a method since every method contains several branches 

distributed throughout its code [15]. Kalagara [15] provides an 

overview of CC and its computation using flow graphs in 

software development. Utilizing CC Tools: Diverse software 

and static code analysis tools are available to automatically 

compute CC for source code written in various PLs. These 

tools analyze the code, generating a control flow graph to 

determine the CC. For example: McCabe IQ [7], SonarQube 

[2], Checkmarx, Pylint [6], ESLint, CodeClimate, Codebeat 

[9], and Visual Studio. Multiple tools based on Python are 

accessible for CC calculation, such as McCabe [16], radon 

[17], and lizard [18]. McCabe operates as a command-line tool 

specifically designed for determining CC in Python code. In 

contrast, radon functions as a Python library, offering a range 
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of metrics, including CC. Additionally, lizard serves as an 

adaptable CC analyzer supporting multiple languages, 

including Python. Integrated Development Environments 

(IDEs) [3]: Certain IDEs come equipped with built-in CC 

calculators or offer plugins that supply this metric for the code 

under development. This feature assists developers in 

monitoring code complexity during the coding process. The 

paper provided in the study [19], discusses the use of 

interactive visual tools for understanding code control 

structure (ICSD), it presents ICSD as interactive web-based 

and Eclipse plug-in tools that visualize the control structure 

and nesting of Java methods.  

CC significantly influences the assessment of an executable 

file's benign or malignant nature [20], it focuses on using CC 

to detect malware executable files, employing ML 

classification algorithms for classification purposes. Using 

graph theory [21], CC will be used to calculate and fix all 

independent paths in the source code. The research [22] 

highlights the importance of CC in software testing and its 

relationship to the number of bugs in software. In the paper [1], 

Python software was developed to calculate the CC of Python 

programs. This automates software metrics design, helping to 

determine software complexity and quality. The study 

conducted by Port et al. [23] affirms that the impact of CC on 

maintenance risk aligns closely with NASA policy 

expectations, establishing a robust foundation for risk 

management decisions. This alignment allows us to evaluate 

the benefits against the costs, aiding informed choices 

regarding policy adherence. Additionally, the research sheds 

light on the intricate relationship between CC and maintenance 

risk, emphasizing its role as a valuable indicator in effective 

maintenance risk management strategies. 

The objective of the paper [24] is to conduct a 

comprehensive review of methods for visualizing software 

metrics (including CC), aiming to establish clear 

recommendations for their practical application. Sousa 2022 

introduces SysRepoAnalysis [25], a web tool that uses mining 

software repository techniques to extract historical 

information from GIT repositories. It analyzes and identifies 

critical areas of source code repositories metrics such as CC. 

Numerous scientific studies have delved into CC. In the 

context of structural testing [26], the software product's 

complexity, including CC, serves as a measure of software 

quality. High levels of complexity, regardless of the type, 

result in prolonged testing periods. In the context of nesting 

problems [27], CC specifically addresses solutions for nested 

loops and outlines methods for calculating CC in such 

scenarios. Despite several limitations associated with this 

issue, the research offers an effective solution to distinguish 

between nested and simple loops. The significance of CC is 

discussed in the study [1]. This study presents a unique control 

flow metric by creating a specialized software measurement 

tool tailored exclusively for Python source code. Developed in 

the Python language, this automated tool assesses software 

design metrics, including CC, to evaluate overall software 

quality. CC is affecting the maintainability of any software in 

direct relation, and it is as a component of calculation 

maintainability index, the research [28] introduces a novel 

technique called DeepM, which assesses code maintainability 

by leveraging the lexical semantics of text within source code. 

Utilizing deep learning (DL) methods such as LSTM and 

attention mechanisms, DeepM constructs a sophisticated 

mapping from input to output. Its effectiveness was verified 

with a robust accuracy rate of 87.5% using a dataset containing 

Java source codes.  

Meanwhile, research [29] delves into the industrial 

preference for CC despite its avoidance in academic circles. In 

the study [30], the authors present a method for detecting 

unnecessary complexity within source code and demonstrate 

how to eliminate it using static analysis techniques applied to 

the control flow graph representing the source code. Once 

identified, the unnecessary complexity is refactored, 

enhancing the code's comprehensibility. This approach, 

integrated into a software tool, performed exceptionally well 

in evaluations, demonstrating a high level of accuracy. The 

study [31] revealed that elevated CC results in prolonged 

durations during black box testing. The research advocates for 

mitigating this complexity by introducing a model aimed at 

reducing CC. Additionally, this paper [32] introduces a time-

sensitive approach to regression testing reduction. The 

proposed methodology involves employing time-aware 

genetic algorithms, outlining the operations involving parents, 

crossovers, and mutations in genetic algorithms. The research 

presented in the publication [20] delves into the process of 

calculating the CC value of an executable file. It investigates 

how this value can discern whether the file is harmless or 

malicious. The study involves training ML algorithms with a 

dataset derived from source code complexity, aiming to 

identify the most effective classification algorithms. The study 

[33] provided a comprehensive survey of software cognitive 

complexity metrics, including Class Complexity and Average 

Complexity of a program due to Inheritance. 

 

2.1 Identifying the gap in existing research 

 

This sub section addresses existing research gap and 

shortcomings in the literature, highlighting areas where prior 

studies fall short or lack comprehensive exploration. We found 

that the application of ML achieve more accurate CC 

measurements compared to traditional methods. Conventional 

CC measurement techniques are either manual or semi-

automated, making them time-consuming and prone to errors. 

ML has the potential to revolutionize CC measurement by 

introducing a more precise and efficient approach. 

There is a pressing need for enhanced methods to identify 

code segments with high CC. Code characterized by high CC 

is more likely to pose challenges in terms of comprehension, 

maintenance, and testing. ML could be joined to develop a 

method for identifying code with high CC, enabling 

developers to focus their efforts on the most critical areas. The 

lack of automated tools capable of reducing CC remains a 

significant gap in the software development landscape. 

Measuring and restructuring codes involve altering the internal 

structure of code without modifying its external behavior. 

While this issue can effectively reduce CC, it is often a manual 

process that can be time-consuming and error-prone. ML holds 

the potential to develop an automated tool that can effectively 

reduce CC, addressing this critical gap. This study aims to 

address these shortcomings in the literature by: 

 

• Developing a novel ML-based method for measuring CC, 

• Employing ML to identify source code with high CC, and 

• Creating an automated tool capable of measuring CC to 

reduce it. 
 

 

3. THE PROPOSED MODEL 
 

The training procedure of the proposed model includes 

185



 

various stages. Initially, a dataset containing labeled source 

code samples is assembled. Following this, the source code 

should be preprocessed to adapt it into a suitable format, such 

as converting the code into a bag-of-words representation. The 

model is subsequently trained on this labeled dataset. In the 

concluding phase, the trained model is deployed to forecast 

and assess the CC of new, unseen code samples, as depicted in 

Figure 1. It is imperative to underscore that the precision of the 

model's predictions heavily relies on the quality of the labeled 

dataset employed for training and the efficiency of the 

preprocessing steps applied to the source code. 

 

3.1 Collecting a dataset 

 

We leverage a rich dataset of source code samples for our 

study. This dataset, originally curated for PL classification in 

the study [34], comprises 47,510 lines of code across 12 

different languages. For our specific research, we utilize a 

subset of 3,598 samples focusing on Java, Python, and C++ as 

shown in Figure 2. These samples are sourced from a diverse 

pool including student assignments and projects from our 

university's Introduction to Programming, Object-Oriented 

Programming, and Software Testing & Quality Assurance 

courses, alongside additional samples generated by ChatGPT. 

Each sample was meticulously processed and its CC manually 

calculated in advance. Significant effort was invested in 

collecting and processing the data. 

 

 
 

Figure 1. The general structure of the proposed model 

 

 
 

Figure 2. The sample quantity of three PLs (Java, Python, and C++) 

 

 
 

Figure 3. Grouping of source code samples to reflect CC distribution in dataset samples 

 

Notably, CC values exceeding 10 indicate highly complex 

code. As recommended in the study [30], such samples were 

either broken down into smaller, less complex units or 

unnecessary complexity was removed. Figure 3 further 

illustrates the distribution of CC values (ranging from 1 to 10) 

across the three utilized PLs. The manual calculation of CC for 
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each sample was a lengthy and tedious process. It involved 

meticulously reading the code and counting the number of 

conditional and iterative statements, or alternatively, using 

control flow graph theory for samples with data flow diagrams. 

 

Table 1. Example of training input file 

 

No Samples of Source Code CC 

Label 

1 firstNumber=125 

  print(“The entered no is”, firstNumber) 

CC01 

2 xyx=15 

abc=45 

if xyz>abc: 

   print(xyx, “ is greater than ” abc) 

CC02 

3 x=2 

while X<20: 

      if X % 2!=0: 

          print (X,” this number is an ODD”) 

  x=x+1 

CC03 

4 bool test_method() { 

if (a < b) { if ( c != d) { 

 if (first == one) { 

 return false; 

 }} } } 

CC04 

5 public void JavaMethod() { 

   if (10 != 12) {  if (30 != 31) { 

         if (13 == 13) {  if (14 != 15) { 

            System.out.println("Hello from 

CC05!");  } } } } } 

CC05 

6 ……………  

7 …………..  

8 public void JavaMethod_1 { 

    if (x1 == false) {   // “do something1”   } 

    if (y == false) {   // “do something2”    } 

    if (z == false) {  // “do something3”    } 

    if (p == true) {  // “do something4”    } 

    if (q == true) {   // “do something5”    } 

    if (r ==false) {   // “do something6”    } 

    if (s == true) {  // “do something7”    } 

} 

CC08 

 

3.2 Pre-processing phase 

 

Preprocessing is crucial for calculating and approximating 

CC for diverse code files written in various PLs. It ensures 

consistent and accurate estimation by consolidating the 

information into a unified format. The process begins by 

collecting all relevant files and storing them in a single 

directory. Each file is then parsed to extract vital information, 

specifically control flow structures like if-else statements, 

loops, and switches. For each code segment, its CC value is 

manually calculated. Following information extraction, the 

data undergoes a standardization process, which may involve 

conversion into an intermediate format or utilization of 

language-specific tools to ensure consistent representation. 

The compiled data is saved in an Excel file for analysis, 

visualization, and as input for the current proposed model as 

shown in Table 1. This meticulous preprocessing ensures 

accurate and consistent CC estimation across diverse 

languages and files. Complexity labels are assigned using the 

format CCXX, where "CC" stands for "Cyclomatic 

Complexity" and "XX" represents the numerical complexity 

value (e.g., CC01 for a complexity value of 1, CC10 for a 

complexity value of 10). 

 

 

3.3 Extracting features 

 

The goal of this section is to establish a set of features that 

can effectively represent individual code elements. These 

features will capture crucial aspects of the code, including the 

number of loops, nested conditional structures, and decision 

points. This information will provide valuable insights into the 

code's structure and complexity. The proposed model utilizes 

a dedicated segment for feature extraction from each example 

(source code file), as showcased in Figure 4. This process 

involves generating two-character bigrams, as exemplified by 

the sample array depicted in Figure 5. These bigrams capture 

local patterns and dependencies within the code, providing 

crucial information about its structure and complexity. The 

extracted features will then be employed by the model to 

perform various analysis tasks, including CC estimation. 

The utilization of two-character bigrams, as implemented in 

the "Extracting features" module (Figure 1), enables the 

automated computation of individual code element values. 

Figure 4 illustrates the process of converting programming 

source code samples into a bigram representation, 

accomplished through two distinct steps. Prior to generating 

the Bigram chart, various API options need to be defined as 

shown in Table 1. These options include the Bigram unit 

(Words or Letters), sentence handling preferences, and other 

cleaning options. It's noteworthy that stop words are not used 

during this process. The proposed model utilizes Python's 

"CountVectorizer" library function [34] to efficiently 

transform text, specifically source code, into an array or matrix 

of token counts. This format simplifies more processing and 

analysis. 

 

 
 

Figure 4. A source code sample 

 

 
 

Figure 5. Example: “Array of two char bigrams” 

 

Within code analysis, two-character bigrams offer potent 

potential. These units enable ML models to efficiently extract 

critical information about code structure and complexity. By 

focusing on adjacent characters, bigrams effectively capture 

local patterns and dependencies, revealing crucial insights into 

the underlying code structure and its intricacies. Consider the 
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code snippet "for (int i = 0; i < n; i++)". Analysis of two-

character bigrams within the code snippet, including "fo," 

"or," "(i," "in," "nt," and "t," enables the model to discern 

relationships between adjacent elements, such as variable 

assignments, loops, and conditional statements. This 

facilitates deeper understanding of the code's structure and 

logic. This ability to identify and interpret patterns within code 

structures is what makes two-character bigrams invaluable 

features for machine learning models. The choice of two-

character bigrams strikes a balance between simplicity and 

effectiveness. Bigrams are computationally efficient to 

compute and store, yet they capture essential information 

about the local structure of the code. This capability enables 

the model to learn meaningful patterns and make informed 

predictions. The combination of computational efficiency 

makes two-character bigrams a compelling choice for a wide 

range of code analysis tasks. The selection of two-character 

bigrams as features in code analysis for CC represents a trade-

off between capturing local patterns and managing 

computational complexity. Influenced by both empirical 

evidence and a theoretical understanding of the nature of code 

elements relevant to CC, the choice of two-character bigrams 

offers a powerful and versatile approach to feature extraction 

in code analysis. Their simplicity and effectiveness allow 

machine learning models to capture local patterns and 

relationships between adjacent characters, providing valuable 

insights into the structure and complexity of the code. 

 

3.4 Training phase 

 

In this subsection, the training phase will be discussed. To 

train a NB model for classification, and measurement of CC 

from source code, it's essential to preprocess the data by 

mining pertinent features and properties from the source code 

files. The extracted features may contain conditional 

statements (if-else), switches, loops, in addition to variable 

declaration and function definitions. Once these features are 

extracted, CC can be calculated for each sample, serving as the 

target variable. Subsequently, the data is partitioned into two 

sets (testing and training), and the features will be 

preprocessed to be converted into a format compatible with the 

NB algorithm, often involving their conversion into numerical 

values. The NB model is then trained using collection of 

training dataset, and its performance is assessed on the testing 

set of data. Various metrics, including accuracy, precision, and 

recall, are utilized to gauge the model's effectiveness. At the 

conclusion of this phase, the proposed model exhibits strong 

performance, evidenced by the successful training indicated in 

the provided confusion matrix (Figure 6). 

 

3.5 Testing phase 

 

The testing process begins by pre-processing the new data 

in the same manner as the training data. The trained Naive 

Bayes model then predicts the CC of each sample. These 

predictions are compared against the actual values to assess 

the model's accuracy. 300 source code samples were utilized 

for testing, evenly split between data used for training (50%) 

and new data (50%). As expected, the overall accuracy 

achieved was 96%. Additionally, metrics like precision (96%), 

recall (95%), and F1 score (95%) were employed to gauge the 

model's performance on identifying complex and non-

complex code segments. Accuracy measures overall 

correctness, while precision and recall provide insight into the 

model's ability to identify both types of code correctly. The F1 

score, a balanced metric of precision and recall, offers a 

comprehensive assessment. 

Testing the model on new data is crucial to ensure its 

effectiveness and generalizability to previously unseen 

scenarios. 

 

 
 

Figure 6. Confusion matrix 

 

 

4. DISCUSSION AND RESULTS 

 

During the training phase, a total of 3270 samples, 

comprising (49764) lines of source code, were utilized. After 

combining them into a singular array, the resulting distribution 

of CC is presented in Figure 5. Employing a Naive Bayes 

algorithm for CC estimation from source code offers crucial 

insights into software code's maintainability and quality. In 

this research, we extracted pertinent features from 3270 source 

code samples and computed the CC for each sample. Then we 

trained a Naive Bayes model using the extracted features and 

evaluated its performance on testing data, the classification 

report is shown in Figure 7. 

The achieved results (overall accuracy was as expected 

97.3%, as shown in Figure 7) indicate that the Naive Bayes 

algorithm is effective in detecting and estimating CC from 

source code. The proposed model was capable to reach high 

degree of accuracy, recall, precision, and F1 score on both the 

training and testing data (97%, 97%, and 97%). The model was 

also able to work and generalize very well to new, and unseen 

data, indicating that it can be used to evaluate the CC of new 

source code files with a high level of accuracy (97.3%), using 

1200 samples, the accuracy for the pertained samples was 

more than 99.5%. This study also highlights the importance of 

feature selection and preprocessing in the performance of the 

Naive Bayes model. Choosing relevant features and 

transforming them into a format suitable for the NB algorithm 

is critical in achieving accurate predictions and the expected 

results. 
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Figure 7. Classification report chart 

 

4.1 Comparing proposal study to the similar systems 

 

The current study outperforms all previous studies in terms 

of evaluation metrics such as accuracy, precision, recall, and 

F1 score, as evidenced by the Table 2. 

 

Table 2. Comparing the proposal to similar studies 

 

Study Accuracy Precision Recall F1 Score 

Current 

Study 

97.3% 97% 97% 97% 

[11] 95% 95% 95% 95% 

[31] 86% 85% 86% 86% 

[30] 84% 83% 84% 83% 

[13] 82% 81% 82% 81% 

[29] 80% 79% 80% 79% 

 

This study's high accuracy is most likely due to the use of 

the Naive Bayes machine learning (NBM) method, which is 

well-known for its success in classification tasks. Furthermore, 

the current study used a larger and more diverse dataset than 

previous research, which may have contributed to the superior 

results. This novel approach to measuring code complexity 

using machine learning opens the door to the development of 

more accurate and reliable tools for assessing code complexity. 

The study's encouraging findings suggest that this approach 

may pave the way for the advancement of software 

development practices by allowing developers to more 

effectively identify and address potential issues in their code. 

 

4.2 Implications of the findings for software development 

practices  

 

This study's findings have far-reaching implications for 

software development practices. This study enables 

developers to identify and address potential issues within their 

code by introducing a more precise and dependable method for 

measuring CC. As a result, software that is both maintainable 

and reliable can be developed. This study has a significant 

implication in that it provides a tool for developers to 

continuously monitor the complexity of their code. This allows 

them to identify code areas that are becoming overly complex 

and take proactive steps to refactor them. This method 

effectively prevents the emergence of "spaghetti code," which 

is notorious for being difficult to understand and maintain. 

Furthermore, this research enables developers to make more 

informed decisions about code design. Developers can make 

better decisions about how to structure their code if they have 

a better understanding of the intricate relationship between 

code complexity and maintainability. This can result in code 

that is not only easier to understand but also more adaptable to 

changes and testing. 

 

 

5. CONCLUSION 

 

Similar to how it is used for natural languages, machine 

learning may be used to successfully identify and measure 

metrics of source code in PLs for a variety of applications. This 

method has proven to be language-independent, 

demonstrating its flexibility to other PLs. The study's major 

findings demonstrate that the NB algorithm is extremely 

effective at both detecting and measuring CC from source code. 

The model achieved an outstanding 97.3% accuracy on both 

the training and testing data, demonstrating its ability to 

generalize well to new and previously unseen data. The study 

also emphasizes the importance of feature selection and 

preprocessing in maximizing the performance of the NB 

model. Accurate predictions can be obtained by carefully 

picking important features and translating them into a format 

compatible with the NB algorithm. The performance of the NB 

model for assessing CC across different PLS is one of the 

future research directions. Furthermore, investigating the 

application of other ML algorithms, such as support vector 

machines and neural networks, for CC assessment is a 

worthwhile endeavor. Furthermore, research into the potential 

of CC as a predictor of software quality and maintainability 

holds tremendous promise for significant breakthroughs in 

software development techniques. 

Overall, this research presents a novel and effective method 

for measuring CC in source code using ML. The encouraging 

results indicate that this approach has the potential to 

revolutionize the development of more accurate and reliable 

tools for measuring code complexity. This work effectively 
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demonstrates the effectiveness of predicting CC of source 

code using the NB machine learning algorithm. The model's 

high accuracy suggests that it could be a useful tool for 

software developers in measuring the complexity of their code 

and identifying areas that may need improvement to enhance 

maintainability and quality. 
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