
Measuring Cyclomatic Complexity of Source Code Using Machine Learning

Ayman Hussein Odeh1* , Munther Odeh2 , Hussein Odeh1 , Nada Odeh1

1 Department of Software Engineering, College of Engineering, Al Ain University, Al Ain 64141, UAE
2 Department of Mathematics and Science, Oldenburg University, Oldenburg D-26111, Germany

Corresponding Author Email: ayman.odeh@aau.ac.ae

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380118 ABSTRACT

Received: 3 October 2023

Revised: 23 November 2023

Accepted: 28 December 2023

Available online: 29 February 2024

High-performance, high-quality software is a fundamental goal for all developers. To

achieve this, software needs to be built with exceptional quality, featuring a simplified

structure, strong coherence, and minimized complexity. Cyclomatic Complexity (CC),

critical software metric, quantifies the intricacy of a program's structure and control flow.

Traditionally, CC measurement has relied on laborious manual techniques or conventional

programming methods, both prone to errors and inefficiency. To overcome these

limitations, we present a revolutionary approach that leverages a Multinomial Naive Bayes

(MNB) machine learning (ML) algorithm for automated CC measurement. This innovative

method offers a more accurate, efficient, and reliable means of software complexity

evaluation. Our study utilizes a vast dataset of 3,598 carefully curated programming

samples from diverse programming projects across three popular languages: Java, Python,

and C++. Training our MNB model on this comprehensive and diverse dataset yielded an

outstanding overall accuracy of 97.3%, demonstrating the efficacy and reliability of our

approach for CC measurement across different programming languages (PLs). This success

can be attributed to the utilization of the NBM learning algorithm, known for its proficiency

in classification tasks. Additionally, our study benefits from a larger and more diverse

dataset compared to prior research, potentially contributing to the superior results. Our

novel approach to CC measurement using machine learning holds significant promise for

the development of more accurate and reliable code complexity assessment tools. These

encouraging findings suggest that this approach has the potential to shape more effective

software development practices in the future.

Keywords:

artificial intelligent, Cyclomatic Complexity

(CC), Multinomial Naive Bayes (MNB),

programming language, machine learning

(ML), source code analysis

1. INTRODUCTION

1.1 Background on CC

Cyclomatic Complexity (CC), a metric introduced by

Thomas J. McCabe, plays a critical role in software

engineering by offering deep insights into a program's control

flow structure. This quantitative measure, determined by the

number of linearly independent paths through a program's

source code, serves as an indicator of software complexity [1].

High CC signifies intricate code, posing potential challenges

in readability, maintenance, and testing. In the context of

software development, complexity is a critical factor. It

significantly impacts software quality, influencing the ease of

understanding and utilization. Software organizations,

recognizing its paramount importance, rely on various metrics,

including CC, to evaluate code value, streamline processes,

and enhance maintenance protocols. Moreover, the challenge

lies not only in comprehending complexity but also in

effectively testing the code. CC directly determines the

minimum number of test cases necessary to achieve complete

branch coverage, a fundamental aspect of software testing. In

recent years, the integration of ML methods, encompassing

techniques like Supervised Learning, k-means, hierarchical

clustering, and neural networks, has marked a paradigm shift

in how we measure and predict CC. However, the accuracy of

these predictions fundamentally hinges on the quality of the

data used and the selection of pertinent features, underscoring

the nuanced nature of this intricate process.

1.2 Existing techniques for measuring CC

Historically, CC was measured using manual processes or

static code analyzers, which provided valuable insights but

were often limited by time constraints and scalability.

Automated approaches have been investigated, including

algorithms that analyze code structure and logic. Integrating

machine learning (ML) methods, on the other hand, presents a

compelling opportunity, leveraging advanced algorithms to

streamline and improve the accuracy of complexity

measurement. There are many methods for measuring

complexity, the most important of which are: Manual method:

where the CC can be calculated using Control Flow Graph

(CFG), and applying formula to count number of nodes in

CFG, minus the number of edges and plus two. CFG

Generation: Tools can generate a Control Flow Graph from the

source code, which represents the flow of control within the

program. By analyzing this graph, CC can be calculated.

Revue d'Intelligence Artificielle
Vol. 38, No. 1, February, 2024, pp. 183-191

Journal homepage: http://iieta.org/journals/ria

183

https://orcid.org/0000-0002-3892-6488
https://orcid.org/0009-0006-4964-2495
https://orcid.org/0009-0002-2016-5067
https://orcid.org/0009-0005-8658-6472
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380118&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380118&domain=pdf

Software Complexity Assessment Tools (SCAT): There are

various tools available that can automatically calculate CC

such as SonarQube [2]. Integrated Development

Environments (IDEs) [3]: Many modern IDEs, such as IntelliJ

IDEA [4] and Visual Studio, have plugins or built-in features

that can calculate CC for code snippets or entire projects.

Static Code Analysis Tools: Static code analyzers like ESLint

for JavaScript [5], and Pylint for Python [6] often include CC

calculation as one of their features. Command Line Tools:

There are command line tools like McCabe IQ [7] that allow

you to calculate CC by providing the source code files as input.

Continuous Integration Tools: Tools integrated into

continuous integration pipelines, such as Jenkins and GitLab

CI [8], can be configured to calculate CC during the build

process and provide reports. Code Quality and Metrics

Platforms like Codebeat [9] provide detailed metrics about

code quality, including CC, for repositories hosted on

platforms like GitHub.

1.3 MNB approach

This study presents a groundbreaking methodology that

leverages the MNB algorithm to automate CC measurement.

By training the model on a vast dataset of labeled source code

samples, this approach enables prediction of complexity levels

based on specific code features, such as loops and conditional

statements. MNB, a powerful machine learning technique,

delivers efficient classification and is specifically designed for

text classification tasks. The algorithm calculates the

probability of a given piece of code belonging to a certain

complexity level based on the presence or absence of specific

keywords or phrases in the code, such as iterations and

conditional statements. To use the algorithm for calculating

CC, the model must first be trained on a dataset of labeled

source code samples, each annotated with its corresponding

complexity level. Once trained, the model can estimate and

measure the complexity of new, unseen code samples. This

capability proves invaluable in identifying complex or

difficult-to-maintain code sections, enabling prioritized

refactoring or optimization efforts. Bayesian analysis

empowers us to address questions that traditional frequentist

statistical methods cannot handle. Despite its seemingly

simplistic approach, the Naive Bayes (NB) Algorithm should

not be underestimated. Its straightforward nature does not

diminish its effectiveness; it can generate remarkably accurate

predictions, even with relatively small sample sets. The NB

classifier strictly adheres to Bayes' theory and is available in

three variations: Gaussian, Multinomial, and Bernoulli [10].

Its efficiency and robustness shine, especially with extensive

datasets. The choice of method depends on the distribution of

input features: the Gaussian method suits normally distributed

features, MNB is ideal for multinomial distribution features,

and the Bernoulli classifier, while also applying multinomial

distribution, differs in its application. CC holds particular

significance in software testing. Calculating the CC of a

function enables the determination of the minimum test cases

required to achieve complete branch coverage within that

function. Hence, CC serves as a crucial indicator of testing

complexity for specific code sections.

1.4 Significance of the study

The significance of this study lies in its potential to

revolutionize how software complexity is evaluated and

understood. By integrating ML algorithms, specifically the

MNB approach, this research not only offers an automated

solution to a traditionally labor-intensive process but also

provides a more nuanced understanding of code complexity.

The implications of this study stretch beyond efficient

software development, influencing fields related to code

optimization, software maintenance, and ultimately, the

creation of more reliable and maintainable software systems.

This research contributes significantly to the field of software

engineering by offering an advanced and accurate method for

CC measurement. The utilization of ML, specifically MNB,

not only enhances accuracy but also opens avenues for further

exploration of artificial intelligence techniques in software

metrics analysis. Our findings underscore the importance of

embracing innovative approaches to software complexity

assessment, paving the way for more efficient and reliable

software development practices.

1.5 Research objectives

While the research is ongoing, preliminary results indicate

promising outcomes in automating CC measurement using the

MNB approach. Initial experiments showcase notable

accuracy and efficiency, marking a significant advancement in

the realm of software complexity assessment. This proposal

aims: Integrate ML in Code Review: As ML technology

continues to evolve; we can anticipate even more innovative

applications of ML in code review tools. These tools will

become increasingly sophisticated and capable of providing

developers with even more valuable insights. To provide tool

to measure CC, this tool will play an increasingly crucial role

in enhancing code comprehension, improving code

maintainability, and empowering developers to create more

efficient, maintainable, and secure software systems.

1.6 Organization of the paper

This is organized as following: Section 2 introduces a

literature review of related works. In section 3, we provide the

proposed model, including the used dataset. Section 4 provides

a discussion and achieved results. Finally, section 5 concludes

the work. This work is an extended of our published paper at

ICCNS 2023 conference [11].

2. LITERATURE REVIEW

There are several approaches to measure and calculating CC,

including: Manual approach, where the developer can use

control flow graph and some formulas to calculate [12, 13],

The McCabe CC metric [14] typically corresponds to the size

of a method since every method contains several branches

distributed throughout its code [15]. Kalagara [15] provides an

overview of CC and its computation using flow graphs in

software development. Utilizing CC Tools: Diverse software

and static code analysis tools are available to automatically

compute CC for source code written in various PLs. These

tools analyze the code, generating a control flow graph to

determine the CC. For example: McCabe IQ [7], SonarQube

[2], Checkmarx, Pylint [6], ESLint, CodeClimate, Codebeat

[9], and Visual Studio. Multiple tools based on Python are

accessible for CC calculation, such as McCabe [16], radon

[17], and lizard [18]. McCabe operates as a command-line tool

specifically designed for determining CC in Python code. In

contrast, radon functions as a Python library, offering a range

184

of metrics, including CC. Additionally, lizard serves as an

adaptable CC analyzer supporting multiple languages,

including Python. Integrated Development Environments

(IDEs) [3]: Certain IDEs come equipped with built-in CC

calculators or offer plugins that supply this metric for the code

under development. This feature assists developers in

monitoring code complexity during the coding process. The

paper provided in the study [19], discusses the use of

interactive visual tools for understanding code control

structure (ICSD), it presents ICSD as interactive web-based

and Eclipse plug-in tools that visualize the control structure

and nesting of Java methods.

CC significantly influences the assessment of an executable

file's benign or malignant nature [20], it focuses on using CC

to detect malware executable files, employing ML

classification algorithms for classification purposes. Using

graph theory [21], CC will be used to calculate and fix all

independent paths in the source code. The research [22]

highlights the importance of CC in software testing and its

relationship to the number of bugs in software. In the paper [1],

Python software was developed to calculate the CC of Python

programs. This automates software metrics design, helping to

determine software complexity and quality. The study

conducted by Port et al. [23] affirms that the impact of CC on

maintenance risk aligns closely with NASA policy

expectations, establishing a robust foundation for risk

management decisions. This alignment allows us to evaluate

the benefits against the costs, aiding informed choices

regarding policy adherence. Additionally, the research sheds

light on the intricate relationship between CC and maintenance

risk, emphasizing its role as a valuable indicator in effective

maintenance risk management strategies.

The objective of the paper [24] is to conduct a

comprehensive review of methods for visualizing software

metrics (including CC), aiming to establish clear

recommendations for their practical application. Sousa 2022

introduces SysRepoAnalysis [25], a web tool that uses mining

software repository techniques to extract historical

information from GIT repositories. It analyzes and identifies

critical areas of source code repositories metrics such as CC.

Numerous scientific studies have delved into CC. In the

context of structural testing [26], the software product's

complexity, including CC, serves as a measure of software

quality. High levels of complexity, regardless of the type,

result in prolonged testing periods. In the context of nesting

problems [27], CC specifically addresses solutions for nested

loops and outlines methods for calculating CC in such

scenarios. Despite several limitations associated with this

issue, the research offers an effective solution to distinguish

between nested and simple loops. The significance of CC is

discussed in the study [1]. This study presents a unique control

flow metric by creating a specialized software measurement

tool tailored exclusively for Python source code. Developed in

the Python language, this automated tool assesses software

design metrics, including CC, to evaluate overall software

quality. CC is affecting the maintainability of any software in

direct relation, and it is as a component of calculation

maintainability index, the research [28] introduces a novel

technique called DeepM, which assesses code maintainability

by leveraging the lexical semantics of text within source code.

Utilizing deep learning (DL) methods such as LSTM and

attention mechanisms, DeepM constructs a sophisticated

mapping from input to output. Its effectiveness was verified

with a robust accuracy rate of 87.5% using a dataset containing

Java source codes.

Meanwhile, research [29] delves into the industrial

preference for CC despite its avoidance in academic circles. In

the study [30], the authors present a method for detecting

unnecessary complexity within source code and demonstrate

how to eliminate it using static analysis techniques applied to

the control flow graph representing the source code. Once

identified, the unnecessary complexity is refactored,

enhancing the code's comprehensibility. This approach,

integrated into a software tool, performed exceptionally well

in evaluations, demonstrating a high level of accuracy. The

study [31] revealed that elevated CC results in prolonged

durations during black box testing. The research advocates for

mitigating this complexity by introducing a model aimed at

reducing CC. Additionally, this paper [32] introduces a time-

sensitive approach to regression testing reduction. The

proposed methodology involves employing time-aware

genetic algorithms, outlining the operations involving parents,

crossovers, and mutations in genetic algorithms. The research

presented in the publication [20] delves into the process of

calculating the CC value of an executable file. It investigates

how this value can discern whether the file is harmless or

malicious. The study involves training ML algorithms with a

dataset derived from source code complexity, aiming to

identify the most effective classification algorithms. The study

[33] provided a comprehensive survey of software cognitive

complexity metrics, including Class Complexity and Average

Complexity of a program due to Inheritance.

2.1 Identifying the gap in existing research

This sub section addresses existing research gap and

shortcomings in the literature, highlighting areas where prior

studies fall short or lack comprehensive exploration. We found

that the application of ML achieve more accurate CC

measurements compared to traditional methods. Conventional

CC measurement techniques are either manual or semi-

automated, making them time-consuming and prone to errors.

ML has the potential to revolutionize CC measurement by

introducing a more precise and efficient approach.

There is a pressing need for enhanced methods to identify

code segments with high CC. Code characterized by high CC

is more likely to pose challenges in terms of comprehension,

maintenance, and testing. ML could be joined to develop a

method for identifying code with high CC, enabling

developers to focus their efforts on the most critical areas. The

lack of automated tools capable of reducing CC remains a

significant gap in the software development landscape.

Measuring and restructuring codes involve altering the internal

structure of code without modifying its external behavior.

While this issue can effectively reduce CC, it is often a manual

process that can be time-consuming and error-prone. ML holds

the potential to develop an automated tool that can effectively

reduce CC, addressing this critical gap. This study aims to

address these shortcomings in the literature by:

• Developing a novel ML-based method for measuring CC,

• Employing ML to identify source code with high CC, and

• Creating an automated tool capable of measuring CC to

reduce it.

3. THE PROPOSED MODEL

The training procedure of the proposed model includes

185

various stages. Initially, a dataset containing labeled source

code samples is assembled. Following this, the source code

should be preprocessed to adapt it into a suitable format, such

as converting the code into a bag-of-words representation. The

model is subsequently trained on this labeled dataset. In the

concluding phase, the trained model is deployed to forecast

and assess the CC of new, unseen code samples, as depicted in

Figure 1. It is imperative to underscore that the precision of the

model's predictions heavily relies on the quality of the labeled

dataset employed for training and the efficiency of the

preprocessing steps applied to the source code.

3.1 Collecting a dataset

We leverage a rich dataset of source code samples for our

study. This dataset, originally curated for PL classification in

the study [34], comprises 47,510 lines of code across 12

different languages. For our specific research, we utilize a

subset of 3,598 samples focusing on Java, Python, and C++ as

shown in Figure 2. These samples are sourced from a diverse

pool including student assignments and projects from our

university's Introduction to Programming, Object-Oriented

Programming, and Software Testing & Quality Assurance

courses, alongside additional samples generated by ChatGPT.

Each sample was meticulously processed and its CC manually

calculated in advance. Significant effort was invested in

collecting and processing the data.

Figure 1. The general structure of the proposed model

Figure 2. The sample quantity of three PLs (Java, Python, and C++)

Figure 3. Grouping of source code samples to reflect CC distribution in dataset samples

Notably, CC values exceeding 10 indicate highly complex

code. As recommended in the study [30], such samples were

either broken down into smaller, less complex units or

unnecessary complexity was removed. Figure 3 further

illustrates the distribution of CC values (ranging from 1 to 10)

across the three utilized PLs. The manual calculation of CC for

186

each sample was a lengthy and tedious process. It involved

meticulously reading the code and counting the number of

conditional and iterative statements, or alternatively, using

control flow graph theory for samples with data flow diagrams.

Table 1. Example of training input file

No Samples of Source Code CC

Label

1 firstNumber=125

 print(“The entered no is”, firstNumber)

CC01

2 xyx=15

abc=45

if xyz>abc:

 print(xyx, “ is greater than ” abc)

CC02

3 x=2

while X<20:

 if X % 2!=0:

 print (X,” this number is an ODD”)

 x=x+1

CC03

4 bool test_method() {

if (a < b) { if (c != d) {

 if (first == one) {

 return false;

 }} } }

CC04

5 public void JavaMethod() {

 if (10 != 12) { if (30 != 31) {

 if (13 == 13) { if (14 != 15) {

 System.out.println("Hello from

CC05!"); } } } } }

CC05

6 ……………

7 …………..

8 public void JavaMethod_1 {

 if (x1 == false) { // “do something1” }

 if (y == false) { // “do something2” }

 if (z == false) { // “do something3” }

 if (p == true) { // “do something4” }

 if (q == true) { // “do something5” }

 if (r ==false) { // “do something6” }

 if (s == true) { // “do something7” }

}

CC08

3.2 Pre-processing phase

Preprocessing is crucial for calculating and approximating

CC for diverse code files written in various PLs. It ensures

consistent and accurate estimation by consolidating the

information into a unified format. The process begins by

collecting all relevant files and storing them in a single

directory. Each file is then parsed to extract vital information,

specifically control flow structures like if-else statements,

loops, and switches. For each code segment, its CC value is

manually calculated. Following information extraction, the

data undergoes a standardization process, which may involve

conversion into an intermediate format or utilization of

language-specific tools to ensure consistent representation.

The compiled data is saved in an Excel file for analysis,

visualization, and as input for the current proposed model as

shown in Table 1. This meticulous preprocessing ensures

accurate and consistent CC estimation across diverse

languages and files. Complexity labels are assigned using the

format CCXX, where "CC" stands for "Cyclomatic

Complexity" and "XX" represents the numerical complexity

value (e.g., CC01 for a complexity value of 1, CC10 for a

complexity value of 10).

3.3 Extracting features

The goal of this section is to establish a set of features that

can effectively represent individual code elements. These

features will capture crucial aspects of the code, including the

number of loops, nested conditional structures, and decision

points. This information will provide valuable insights into the

code's structure and complexity. The proposed model utilizes

a dedicated segment for feature extraction from each example

(source code file), as showcased in Figure 4. This process

involves generating two-character bigrams, as exemplified by

the sample array depicted in Figure 5. These bigrams capture

local patterns and dependencies within the code, providing

crucial information about its structure and complexity. The

extracted features will then be employed by the model to

perform various analysis tasks, including CC estimation.

The utilization of two-character bigrams, as implemented in

the "Extracting features" module (Figure 1), enables the

automated computation of individual code element values.

Figure 4 illustrates the process of converting programming

source code samples into a bigram representation,

accomplished through two distinct steps. Prior to generating

the Bigram chart, various API options need to be defined as

shown in Table 1. These options include the Bigram unit

(Words or Letters), sentence handling preferences, and other

cleaning options. It's noteworthy that stop words are not used

during this process. The proposed model utilizes Python's

"CountVectorizer" library function [34] to efficiently

transform text, specifically source code, into an array or matrix

of token counts. This format simplifies more processing and

analysis.

Figure 4. A source code sample

Figure 5. Example: “Array of two char bigrams”

Within code analysis, two-character bigrams offer potent

potential. These units enable ML models to efficiently extract

critical information about code structure and complexity. By

focusing on adjacent characters, bigrams effectively capture

local patterns and dependencies, revealing crucial insights into

the underlying code structure and its intricacies. Consider the

187

code snippet "for (int i = 0; i < n; i++)". Analysis of two-

character bigrams within the code snippet, including "fo,"

"or," "(i," "in," "nt," and "t," enables the model to discern

relationships between adjacent elements, such as variable

assignments, loops, and conditional statements. This

facilitates deeper understanding of the code's structure and

logic. This ability to identify and interpret patterns within code

structures is what makes two-character bigrams invaluable

features for machine learning models. The choice of two-

character bigrams strikes a balance between simplicity and

effectiveness. Bigrams are computationally efficient to

compute and store, yet they capture essential information

about the local structure of the code. This capability enables

the model to learn meaningful patterns and make informed

predictions. The combination of computational efficiency

makes two-character bigrams a compelling choice for a wide

range of code analysis tasks. The selection of two-character

bigrams as features in code analysis for CC represents a trade-

off between capturing local patterns and managing

computational complexity. Influenced by both empirical

evidence and a theoretical understanding of the nature of code

elements relevant to CC, the choice of two-character bigrams

offers a powerful and versatile approach to feature extraction

in code analysis. Their simplicity and effectiveness allow

machine learning models to capture local patterns and

relationships between adjacent characters, providing valuable

insights into the structure and complexity of the code.

3.4 Training phase

In this subsection, the training phase will be discussed. To

train a NB model for classification, and measurement of CC

from source code, it's essential to preprocess the data by

mining pertinent features and properties from the source code

files. The extracted features may contain conditional

statements (if-else), switches, loops, in addition to variable

declaration and function definitions. Once these features are

extracted, CC can be calculated for each sample, serving as the

target variable. Subsequently, the data is partitioned into two

sets (testing and training), and the features will be

preprocessed to be converted into a format compatible with the

NB algorithm, often involving their conversion into numerical

values. The NB model is then trained using collection of

training dataset, and its performance is assessed on the testing

set of data. Various metrics, including accuracy, precision, and

recall, are utilized to gauge the model's effectiveness. At the

conclusion of this phase, the proposed model exhibits strong

performance, evidenced by the successful training indicated in

the provided confusion matrix (Figure 6).

3.5 Testing phase

The testing process begins by pre-processing the new data

in the same manner as the training data. The trained Naive

Bayes model then predicts the CC of each sample. These

predictions are compared against the actual values to assess

the model's accuracy. 300 source code samples were utilized

for testing, evenly split between data used for training (50%)

and new data (50%). As expected, the overall accuracy

achieved was 96%. Additionally, metrics like precision (96%),

recall (95%), and F1 score (95%) were employed to gauge the

model's performance on identifying complex and non-

complex code segments. Accuracy measures overall

correctness, while precision and recall provide insight into the

model's ability to identify both types of code correctly. The F1

score, a balanced metric of precision and recall, offers a

comprehensive assessment.

Testing the model on new data is crucial to ensure its

effectiveness and generalizability to previously unseen

scenarios.

Figure 6. Confusion matrix

4. DISCUSSION AND RESULTS

During the training phase, a total of 3270 samples,

comprising (49764) lines of source code, were utilized. After

combining them into a singular array, the resulting distribution

of CC is presented in Figure 5. Employing a Naive Bayes

algorithm for CC estimation from source code offers crucial

insights into software code's maintainability and quality. In

this research, we extracted pertinent features from 3270 source

code samples and computed the CC for each sample. Then we

trained a Naive Bayes model using the extracted features and

evaluated its performance on testing data, the classification

report is shown in Figure 7.

The achieved results (overall accuracy was as expected

97.3%, as shown in Figure 7) indicate that the Naive Bayes

algorithm is effective in detecting and estimating CC from

source code. The proposed model was capable to reach high

degree of accuracy, recall, precision, and F1 score on both the

training and testing data (97%, 97%, and 97%). The model was

also able to work and generalize very well to new, and unseen

data, indicating that it can be used to evaluate the CC of new

source code files with a high level of accuracy (97.3%), using

1200 samples, the accuracy for the pertained samples was

more than 99.5%. This study also highlights the importance of

feature selection and preprocessing in the performance of the

Naive Bayes model. Choosing relevant features and

transforming them into a format suitable for the NB algorithm

is critical in achieving accurate predictions and the expected

results.

188

Figure 7. Classification report chart

4.1 Comparing proposal study to the similar systems

The current study outperforms all previous studies in terms

of evaluation metrics such as accuracy, precision, recall, and

F1 score, as evidenced by the Table 2.

Table 2. Comparing the proposal to similar studies

Study Accuracy Precision Recall F1 Score

Current

Study

97.3% 97% 97% 97%

[11] 95% 95% 95% 95%

[31] 86% 85% 86% 86%

[30] 84% 83% 84% 83%

[13] 82% 81% 82% 81%

[29] 80% 79% 80% 79%

This study's high accuracy is most likely due to the use of

the Naive Bayes machine learning (NBM) method, which is

well-known for its success in classification tasks. Furthermore,

the current study used a larger and more diverse dataset than

previous research, which may have contributed to the superior

results. This novel approach to measuring code complexity

using machine learning opens the door to the development of

more accurate and reliable tools for assessing code complexity.

The study's encouraging findings suggest that this approach

may pave the way for the advancement of software

development practices by allowing developers to more

effectively identify and address potential issues in their code.

4.2 Implications of the findings for software development

practices

This study's findings have far-reaching implications for

software development practices. This study enables

developers to identify and address potential issues within their

code by introducing a more precise and dependable method for

measuring CC. As a result, software that is both maintainable

and reliable can be developed. This study has a significant

implication in that it provides a tool for developers to

continuously monitor the complexity of their code. This allows

them to identify code areas that are becoming overly complex

and take proactive steps to refactor them. This method

effectively prevents the emergence of "spaghetti code," which

is notorious for being difficult to understand and maintain.

Furthermore, this research enables developers to make more

informed decisions about code design. Developers can make

better decisions about how to structure their code if they have

a better understanding of the intricate relationship between

code complexity and maintainability. This can result in code

that is not only easier to understand but also more adaptable to

changes and testing.

5. CONCLUSION

Similar to how it is used for natural languages, machine

learning may be used to successfully identify and measure

metrics of source code in PLs for a variety of applications. This

method has proven to be language-independent,

demonstrating its flexibility to other PLs. The study's major

findings demonstrate that the NB algorithm is extremely

effective at both detecting and measuring CC from source code.

The model achieved an outstanding 97.3% accuracy on both

the training and testing data, demonstrating its ability to

generalize well to new and previously unseen data. The study

also emphasizes the importance of feature selection and

preprocessing in maximizing the performance of the NB

model. Accurate predictions can be obtained by carefully

picking important features and translating them into a format

compatible with the NB algorithm. The performance of the NB

model for assessing CC across different PLS is one of the

future research directions. Furthermore, investigating the

application of other ML algorithms, such as support vector

machines and neural networks, for CC assessment is a

worthwhile endeavor. Furthermore, research into the potential

of CC as a predictor of software quality and maintainability

holds tremendous promise for significant breakthroughs in

software development techniques.

Overall, this research presents a novel and effective method

for measuring CC in source code using ML. The encouraging

results indicate that this approach has the potential to

revolutionize the development of more accurate and reliable

tools for measuring code complexity. This work effectively

189

demonstrates the effectiveness of predicting CC of source

code using the NB machine learning algorithm. The model's

high accuracy suggests that it could be a useful tool for

software developers in measuring the complexity of their code

and identifying areas that may need improvement to enhance

maintainability and quality.

REFERENCES

[1] Malhotra, M.P., Shah, M.K., Rathod, J., Mehta, M.

(2015). Python based software for calculating cyclomatic

complexity. International Journal of Innovative Science,

Engineering and Technology, 2(3): 546-549.

[2] SonarQube 10.2.

https://docs.sonarsource.com/sonarqube/latest/, accessed

on Sep. 30, 2023.

[3] Liu, H., Gong, X., Liao, L., Li, B. (2018). Evaluate how

cyclomatic complexity changes in the context of

software evolution. In 2018 IEEE 42nd Annual

Computer Software and Applications Conference

(COMPSAC), Tokyo, Japan, pp. 756-761.

https://doi.org/10.1109/COMPSAC.2018.10332

[4] Monteiro, S., Sokolovas, E., Wittingen, E., Dijk, T.V.,

Huisman, M. (2021). IntelliJML: A JML plugin for

IntelliJ IDEA. In Proceedings of the 23rd ACM

International Workshop on Formal Techniques for Java-

like Programs, pp. 39-42.

https://doi.org/10.1145/3464971.3468423

[5] Tómasdóttir, K.F., Aniche, M., Van Deursen, A. (2018).

The adoption of javascript linters in practice: A case

study on eslint. IEEE Transactions on Software

Engineering, 46(8): 863-891.

https://doi.org/10.1109/TSE.2018.2871058

[6] Song, W., Corey, R.A., Ansell, T.B., Cassidy, C.K.,

Horrell, M.R., Duncan, A.L., Stansfeld, P.J., Sansom,

M.S. (2021). PyLipID: A Python package for analysis of

protein-lipid interactions from MD simulations. Biorxiv,

2021-07. https://doi.org/10.1101/2021.07.14.452312

[7] Selent, D. (2011). The design and complexity analysis of

the light-up puzzle program. The Journal of Computing

Sciences in Colleges, 26(6): 187-196.

[8] Arefeen, M.S., Schiller, M. (2019). Continuous

integration using gitlab. Undergraduate Research in

Natural and Clinical Science and Technology Journal,

3(1-11): 1-6. https://doi.org/10.26685/urncst.152

[9] CODEBEAT - Automated code review for mobile and

web. https://codebeat.co/, accessed on Sep. 30, 2023.

[10] Guarascio, M., Manco, G., Ritacco, E. (2019).

Encyclopedia of Bioinformatics and Computational

Biology: ABC of Bioinformatics - Google Books.

[11] Odeh, A., Odeh, M., Odeh, N., Odeh, H. (2023). Machine

Learning Model for Measuring Cyclomatic Complexity

of Source code. In 2023 International Conference on

Intelligent Computing, Communication, Networking and

Services (ICCNS), Valencia, Spain, pp. 149-153.

https://doi.org/10.1109/ICCNS58795.2023.10193630

[12] Vinju, J.J., Godfrey, M.W. (2012). What does control

flow really look like? Eyeballing the cyclomatic

complexity metric. In 2012 IEEE 12th International

Working Conference on Source Code Analysis and

Manipulation, Riva del Garda, Italy, pp. 154-163.

https://doi.org/10.1109/SCAM.2012.17

[13] Gujar, C.R. (2019). Use and analysis on cyclomatic

complexity in software development. International

Journal of Computer Applications Technology and

Research, 8(5): 153-156.

https://doi.org/10.7753/ijcatr0805.1002

[14] Capocchi, L., Santucci, J.F., Pawletta, T., Folkerts, H.,

Zeigler, B.P. (2020). Discrete-event simulation model

generation based on activity metrics. Simulation

Modelling Practice and Theory, 103: 102122.

https://doi.org/10.1016/j.simpat.2020.102122

[15] Kalagara, S. (2020). Cyclomatic complexity in software

development. International Journal of Engineering

Research & Technology (IJERT), 8(16): 46-47.

https://doi.org/10.17577/IJERTCONV8IS16011

[16] Software Quality, Testing, and Security Analysis |

McCabe - The Software Path Analysis Company.

http://mccabe.com/, accessed on Feb. 16, 2023.

[17] radon PyPI. https://pypi.org/project/radon/, accessed on

Feb. 16, 2023.

[18] lizard PyPI. https://pypi.org/project/lizard/, accessed on

Feb. 16, 2023.

[19] Jbara, A., Agbaria, M., Adoni, A., Jabareen, M., Yasin,

A. (2019). ICSD: Interactive visual support for

understanding code control structure. In 2019 IEEE 26th

International Conference on Software Analysis,

Evolution and Reengineering (SANER), Hangzhou,

China, pp. 644-648.

https://doi.org/10.1109/SANER.2019.8667981

[20] Kumar, S.K.S., Kulyadi, S.P., Mohandas, P., Raman,

M.S., Vasan, V.S. (2021). Computation of cyclomatic

complexity and detection of malware executable files. In

2021 13th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), Pitesti,

Romania, pp. 1-5.

https://doi.org/10.1109/ECAI52376.2021.9515044

[21] Mohammad, C.W., Shahid, M., Husain, S.Z. (2017). A

graph theory based algorithm for the computation of

cyclomatic complexity of software requirements. In 2017

International Conference on Computing,

Communication and Automation (ICCCA), Greater

Noida, India, pp. 881-886.

https://doi.org/10.1109/CCAA.2017.8229931

[22] Li-zhi, C. (2012). Software testing method researching

of Cyclomatic complexity.

https://api.semanticscholar.org/CorpusID:62942357.

[23] Port, D., Taber, B., Huang, L. (2023). Investigating a

NASA cyclomatic complexity policy on maintenance

risk of a critical system. In 2023 IEEE/ACM 45th

International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP),

Melbourne, Australia, pp. 211-221.

https://doi.org/10.1109/ICSE-SEIP58684.2023.00025

[24] Liubchenko, V. (2023). Software metrics visualization.

Proceedings of International Conference on Applied

Innovation in IT, pp. 81-87.

[25] Sousa, A., Ribeiro, G., Avelino, G., Rocha, L., Britto, R.

(2022). SysRepoAnalysis: A tool to analyze and identify

critical areas of source code repositories. In Proceedings

of the XXXVI Brazilian Symposium on Software

Engineering, pp. 376-381.

https://doi.org/10.1145/3555228.3555281

[26] Debbarma, M.K., Debbarma, S., Debbarma, N., Chakma,

K., Jamatia, A. (2013). A review and analysis of software

complexity metrics in structural testing. International

Journal of Computer and Communication Engineering,

190

2(2): 129-133.

[27] Sarwar, M.M.S., Shahzad, S., Ahmad, I. (2013).

Cyclomatic complexity: The nesting problem. In Eighth

International Conference on Digital Information

Management (ICDIM 2013), Islamabad, Pakistan, pp.

274-279. https://doi.org/10.1109/ICDIM.2013.6693981

[28] Hu, Y., Jiang, H., Hu, Z. (2023). Measuring code

maintainability with deep neural networks. Frontiers of

Computer Science, 17(6): 176214.

https://doi.org/10.1007/s11704-022-2313-0

[29] Ebert, C., Cain, J., Antoniol, G., Counsell, S., Laplante,

P. (2016). Cyclomatic complexity. IEEE Software, 33(6):

27-29. https://doi.org/10.1109/MS.2016.147

[30] Campos, H.S., Martins Filho, L.R.V., Araújo, M.A.P.

(2016). An approach for detecting unnecessary

cyclomatic complexity on source code. IEEE Latin

America Transactions, 14(8): 3777-3783.

https://doi.org/10.1109/TLA.2016.7786363

[31] Farooq, U., Aqeel, A.B. (2021). A meta-model for test

case reduction by reducing cyclomatic complexity in

regression testing. In 2021 International Conference on

Robotics and Automation in Industry (ICRAI),
Rawalpindi, Pakistan, pp. 1-6.

https://doi.org/10.1109/ICRAI54018.2021.9651395

[32] You, L., Lu, Y. (2012). A genetic algorithm for the time-

aware regression testing reduction problem. In 2012 8th

International Conference on Natural Computation pp.

596-599. https://doi.org/10.1109/ICNC.2012.6234754

[33] Wijendra, D.R., Hewagamage, K. (2021). Analysis of

cognitive complexity with cyclomatic complexity metric

of software. International Journal of Computer

Applications, 174(19): 14-19.

https://doi.org/10.5120/IJCA2021921066

[34] Odeh, A. H., Odeh, M., Odeh, N. (2022). Using

multinomial Naive Bayes machine learning method to

classify, detect, and recognize programming language

source code. In 2022 International Arab Conference on

Information Technology (ACIT), Dhabi, United Arab

Emirates, pp. 1-5.

https://doi.org/10.1109/ACIT57182.2022.9994117

191

