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The Internet of Things (IoT) is progressing rapidly, transforming the way people interact 

with the world through improved connectivity. Nevertheless, as the number of devices 

surges, security has become a primary concern. Through a comprehensive review of 

literature, it has been identified that byzantine targets the physical layer of IoT systems. 

This attack is carried out when a compromised device spreads malicious information to 

other nodes in the network, leading to potentially compromising the entire system. To 

address this issue, this work introduces a Fuzzy-based Byzantine Fault Tolerance (F-BFT) 

mechanism derived from a Type-1 fuzzy system require less computational power and 

resources compared to complex fuzzy systems, this can be advantageous in IoT systems 

where processing capabilities are limited. Based on measurements of modeling error at 

roughly σ=0.05 and an accuracy rate of 99.5%, recall of 98.89%, and F-Score of 98.83%, 

it has been observed from the results that the type-1 fuzzy model is highly precise. When 

compared to the existing system, the average delay of the F-BFT detection algorithm was 

4.7 % decreased, average throughput was 5.0 % (increased), and average communication 

complexity was reduced from O(m2) to O(m) where m is the number of nodes in the 

network. 

Keywords: 

byzantine attacks, byzantine fault tolerance, 

behavior analysis, fuzzy system, Internet of 

Things, security 

1. INTRODUCTION

As more devices become connected to the internet, the 

potential attack surface for hackers increases, making IoT 

security a critical concern for individuals and organization 

alike [1]. IoT security refers to the measures and practices put 

in place to protect IoT devices and networks from cyber threats. 

One of the main challenges in IoT security is that many IoT 

devices are designed to be low-cost and low-power, and may 

not have robust security features built in. This can make them 

vulnerable to attacks such as malware infections, data breaches, 

and Distributed Denial of Service (DoS) attacks [2]. Moreover, 

the diversity of devices and systems used in IoT requires a 

multi-layered approach to security, as different devices and 

applications require different types of protection. Hence, it is 

essential to take steps to ensure their security and protect 

against potential cyber threats. Some IoT devices, such as 

medical devices and industrial control systems, can directly 

impact physical safety. Implementing IoT device security 

ensured that these devices are secure and not vulnerable to 

cyber attacks that could cause physical harm. When the 

security of devices are compromised, also known as byzantine 

faults, they can be grouped together to form botnets, which can 

be used to launch DDoS (Distributed Denial of Service) 

attacks. These attacks can bring down entire IoT networks and 

causing financial loss. Detecting byzantine fault, also known 

as byzantine intrusion in an IoT network can be challenging, 

but there are some strategies that can be employed such as trust 

based systems, consensus algorithms, and intrusion detection 

systems in which trust based systems monitor the inconsistent 

behaviour of devices or nodes, it may be the sign of a 

byzantine intrusion [3]. Therefore, in this work, a behaviour-

based analysis model to detect and eliminate byzantine 

intrusions is primarily discussed as a Byzantine Fault 

Tolerance (BFT) solution. The short introduction about the 

proposed work is discussed as follows. 

The device security was thoroughly examined, focusing on 

the security measures for nodes or devices, and ensuring 

secure communication between them. The objective of this 

research was to examine the issue of the byzantine fault in the 

IoT system. To address this problem, a fault-tolerant 

mechanism was proposed by implementing F-BFT, which 

employed a strategy for byzantine detection and elimination. 

The study also involved analyzing the dynamic behavior of 

nodes, identifying byzantine nodes through a type-1 fuzzy 

system, and utilizing backup devices with automated failover 

mechanisms to maintain reliable operation despite the 

presence of disruptions or failures. Fuzzy logic systems are 

used in a wide range of applications, including control systems, 

decision-making, pattern recognition, and intrusion detection 

system. In many real-world situations, data is incomplete, 

uncertain, or imprecise. Fuzzy logic can handle this 
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uncertainty by allowing for partial truth values, which make it 

useful in situations where there is ambiguity or imprecision in 

the input data. It can be more flexible than traditional logic 

systems, which use binary true/false outputs. Fuzzy systems 

can adjust the degree of output based on the degree of input, 

which allows for a more precise response [4]. Hence, fuzzy 

logic can provide more robust, efficient, and accurate solutions 

in a wide range of applications. In this F-BFT, a type-1 fuzzy 

system-based algorithm is designed to detect compromised 

devices by analyzing device’s behavior and communication 

pattern. The output of the fuzzy system is a binary value that 

indicates whether the device is compromised or not. These 

compromised devices can harm the network operations. Hence, 

this work applies automated failover mechanism for the fault 

tolerance. It is discussed as follows.  

An automated failover mechanism is a system that 

automatically switches to a backup system or component in 

the event of a failure. (Kostrzewa & Ernst 2020) This 

mechanism is used in critical systems where downtime is not 

an option, such as in data centers, hospitals, and financial 

institutions. The need for an automated failover mechanism 

arises from the potential impact of system downtime. It can 

help minimize the impact of downtime by quickly switching 

to a backup system or component when a failure is detected. 

This mechanism can also reduce the need for manual 

intervention, which can save time and reduce the risk of human 

error. By having a backup system in place, organizations can 

ensure that their systems are always available and that they can 

quickly recover from any failure. In this F-BFT, backup 

devices are redundant components that can take over the 

function of disconnected devices in the event of faults (caused 

by an attacker) through automated failover mechanisms. 

Moreover, this work has obtained the following results from 

the simulations. 

Based on the measurements of modeling error at 

approximately σ=0.05 and the accuracy rate of 99.5%, it can 

be inferred that the type-1 fuzzy model used to forecast 

byzantines in an IoT system is highly accurate. Moreover, this 

study illustrated the effectiveness of a fault-tolerant solution 

by comparing the average delay, average throughput, and 

communication complexity of Practical Byzantine Fault 

Tolerance (PBFT) and Scalable Tree based Byzantine Fault 

Tolerance (STBFT) systems. The simulations were 

implemented using OMNET ++ to demonstrate BFT by 

comparisons of various performance metrics with current 

works. In this work, the topology was designed by setting the 

participating nodes, routers, and links to connect as a 

decentralized graph between nodes and gateways, configured 

with a bandwidth, a delay, and a queue. The simulation results 

are described in the results and discussions section. 

1.1 Motivation 

1. The IoT network allows its components such as

devices/sensors, data processing on the cloud, and user 

interface to communicate on an open public network. It allows 

a cyber-attacker to deploy malicious or byzantine nodes inside 

the network.  

2. The scalability of IoT networks poses a challenge in

distinguishing between legitimate and malicious nodes mostly 

in real-time networks, and is also an important task.  

3. IoT devices are resource constrained in terms of storage

and battery that can be physically compromised by an 

adversary to act as byzantine that has the right with false 

identity to access the existing resources of the IoT network. 

Therefore, it is of utmost importance for an IoT network to 

eliminate byzantine intrusion to provide effective services to 

smart applications. 

1.2 Contributions 

The major research contributions of this work include 

detecting and eliminating byzantine nodes through a type-1 

fuzzy system-based algorithm (a dynamic behavior-based 

analysis model). 

Evaluating various experiment metrics, such as average 

delay, average throughput, and communication complexity are 

compared against existing solutions. 

Discussing the security advantages of F-BFT through 

theoretical analysis. 

The average delay and average throughput of this work 

(Average probability of faulty nodes and Average proportions 

of faulty nodes) were compared with existing works and 

proved that the proposed F-BFT obtained a smaller delay and 

higher throughput than the existing systems because of its 

type-1 fuzzy system based detection operation. This helps to 

make this system faster identification of byzantine nodes in the 

network than those of existing systems. 

1.3 Paper organization 

The remainder of the study is structured as follows: Section 

2 details the related works and existing solutions, Section 3, 

discusses the proposed byzantine node detection and 

disconnecting operations, Section 4 details the experimental 

results of various scenarios, and proves by comparing the 

result metrics with existing systems, and finally, conclusions 

and future work are discussed in Section 5. 

2. RELATED WORKS

This comprehensive review delves into the security of IoT 

devices and nodes. When it comes to the security of devices, 

byzantine faults can cause significant issues such as network 

outages and financial losses. This section explores a series of 

solutions for byzantine fault tolerance.  

Driscoll et al. [5] suggested analyzing the byzantine fault 

that led to the simultaneous failures of a group of peers over 

duration of 0.5×10-12 and demonstrated that these failures were 

not random but were instead due to byzantine intrusion. They 

proposed that Time-Triggered Node Architecture (TTNA) 

could be utilized to filter out these byzantine failures in a 

distributed environment. However, the turn around time to 

identify the byzantine by TTNA was high. Rahli et al. [6] 

introduced Byzantine Fault Tolerance (BFT) state machine 

replication to achieve adequate fault tolerance in a distributed 

system. To detect the presence of byzantine nodes, they 

developed the "happened before" theoretical relation and 

utilized it to update the intrusion detection signature system 

for future use. They also designed a new Practical Byzantine 

Fault Tolerance (PBFT) protocol for this purpose, and 

analyzed its correctness mathematically using various lemmas 

related to message exchange authentication between peers. 

However, this method has taken only PBFT for comparisons 

to prove the efficiency. The byzantine detection and tolerance 

algorithm presented by Sousa et al. [7] is designed to run on a 

specific group of nodes, thereby minimizing the overhead 
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associated with executing Byzantine Fault Tolerance (BFT) on 

all nodes within the network. This approach effectively 

addresses the performance bottleneck in byzantine detection 

operations in the Blockchain (BC) network. However, it is 

important to note that this algorithm may not be well-suited 

for complex IoT networks.  

In their study, Zhang et al. [8] presented a behavior-based 

analysis approach to detect byzantine nodes by monitoring 

message exchanges among peers. This research employed an 

event detector to monitor message transmissions within its 

distributed network system, with the objective of ensuring that 

each message was sent and received only once by a single peer 

in the network. However, it is important to note that analyzing 

all communication messages may impact the system's 

performance.  

In their research, Thai et al. [9] introduced the Hierarchical 

Byzantine Fault Tolerance (HBFT) protocol for wide area 

networks with scalability in mind. In this work, an experiment 

was carried out on a network of 475 nodes, which were 

partitioned into 19 groups, with each group consisting of four 

byzantine nodes. The study measured and compared the 

message throughput performance of the PBFT protocol. 

However, the study did not discuss the byzantine node 

detection rate.  

Bynun et al. [10] introduced a byzantine self-stabilization 

algorithm. This algorithm uses a technique that involves 

setting the maximum values of timestamps, message counter, 

and clock synchronization to recover from such faults. 

However, it should be noted that while the algorithm is capable 

of stabilizing the system, it is not effective against malicious 

intrusions and their related malfunctions 

Vijaykumar et al. [11] presented a Deep Neural Network 

(DNN) approach to identify the most effective machine 

learning algorithm for detecting and controlling byzantine 

intrusion. The study found that the byzantine intrusion 

detection rate for the learning rate success ratio was 10%, and 

the accuracy rates were as high as 45% after 1000 epochs of 

learning units. However, the process of analyzing information 

to implement the DNN approach increased the execution time, 

which could potentially impact the network's overall 

performance.  

Yu et al. [12] introduced the Byzantine Fault Tolerance 

based on dual administrator short Group signatures (GPBFT), 

a practical byzantine fault tolerant consensus algorithm that 

utilizes a dual administrator short group signatures method to 

detect malicious nodes in the network. The experimental 

results demonstrate that the GPBFT algorithm can effectively 

reduce the communication overhead, minimize consensus 

delay, and significantly enhance both efficiency and security 

when compared to the PBFT algorithm. However, the study 

did not address the complexity of the GPBFT implementation.  

Almseidin and Alkasassbeh [13] presented a precise 

approach for intrusion detection in IoT networks, which 

employed a fuzzy-based interpolation reasoning method. The 

proposed method was specifically designed to detect IoT 

Botnet attacks using a dataset of such attacks. The results of 

the experiments showed that the proposed approach achieved 

a detection rate of 96.4%, which is highly accurate, while also 

effectively reducing the false positive rate. Palanikumar et al. 

[14] presented a PBFT-based Smart Contract (SC) algorithm 

aimed at securing real-time Internet of Medical Things (IoMT) 

data. The proposed system utilizes PBFT SC consensus 

protocols in combination with proof-of-work to enhance the 

privacy and availability of healthcare data, enable 

decentralized access, and increase the flexibility of data in the 

blockchain network.  

 

Table 1. Literature survey analysis 

 
Authors Goals Achieved Limitations 

Driscoll et al. [5] G2 and G3 
TTNA has not addressed reliability (G1) and security (G4) goals due to the distributed network 

topology as any peer can act as a coordinator. 

Rahli et al. [6] G1, G2, and G3 
State machine replication is prone to cyber-attack when the server is compromised. Hence, it has 

not been achieved the security (G4). 

Sousa et al. [7] G1 and G4 
As this method executes BFT only on a certain group of nodes, the remaining nodes in the group 

may not be available (G3) and prone to byzantine attacks (G4). 

Zhang et al. [8] G1 and G2 
The message communication between peers is prone to man-in-the-middle attacks (G4). As the 

message may not reach the destination, the system cannot withstand on faults. (G3) 

Thai et al. [9] G2 and G4 
The system is not reliable (G1) when it scales high and the new joined node may not get the BFT 

in place. Hence, it cannot withstand (G3) on byzantine faults. 

Bynum et al. [10] G1 and G2 
When the self-stabilization algorithm is compromised (G4) or redirected by an attacker, the 

system cannot withstand (G3) from the byzantine faults. 

Vijaykumar et al. 

[11] 
G1, G2, and G3 

The DNN approach can identify the efficient byzantine algorithms but the security (G4) of the 

chosen byzantine algorithms was not proved in the application. 

Yu et al. [12] G2, G3, and G4 
As GPBFT follows the group signature based approach, the system is not reliable (G1) due to the 

public keys involved in the group signature. 

Almseiden and 

Alkasassbeh [13] 
G1, G2, and G4 

The system can accurately detect bots. However, it could not identify the malware intrusion to 

compromise nodes. Hence, the system cannot tolerate (G3) faults. 

Palanikumar et al. 

[14] 
G2, G3, and G4 

As the system uses smart contract (SC) based PBFT model of the blockchain system. It may not 

be reliable (G1) due to decentralized nature of the blockchain as any node can control the 

operations. 

Jiang et al. [15] G1, G3, and G4 
The STBFT falls short of fault tolerance when the number of participating node is high. Hence, 

the system may not be available to the legitimate users. 

 

Jiang et al. [15] presented a solution to the issues faced by 

the PBFT algorithm in blockchain networks, such as high 

communication overhead and scalability bottlenecks. The 

proposed Scalable Tree-based Byzantine Fault Tolerance 

(STBFT) algorithm utilizes a tree topology network structure 

that organizes network nodes into groups and layers, resulting 

in a hierarchical multi-centralized consensus approach that 

reduces communication complexity and improves node 

scalability. The authors of this paper conducted simulation 

experiments using k=4, 10, and 16, where k represents the 

suspected byzantine node, to compare the communication 

complexity ratio of the STBFT algorithm to the PBFT 
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algorithm for different network sizes with fewer than 1000 

nodes. The results of the experiments show that the STBFT 

algorithm has significantly lower communication complexity 

than the PBFT algorithm, regardless of the value of k. 

However, it is essential to note that the STBFT algorithm falls 

short of fault tolerance when the number of faulty nodes in the 

system is fixed. While the algorithm is highly scalable, many 

application scenarios require not only scalability but also high 

fault tolerance. Therefore, additional measures may be 

necessary to meet the high fault tolerance requirements of 

these scenarios. 

 

2.1 Survey analysis 

 

The goals of fault tolerance in IoT systems are to ensure the 

reliability, availability, resilience, and security of the 

interconnected devices and networks. 

Reliability - Fault tolerance aims to improve the reliability 

of IoT systems by minimizing the probability of failures. 

Availability - IoT systems often need to be available to 

provide continuous services and functionality. 

Resilience - Resilience focuses on the ability of IoT systems 

to withstand and recover from faults or failures. 

Security - Fault tolerance is closely linked to security in IoT 

systems. Ensuring fault tolerance helps mitigate potential 

security breaches or attacks that may exploit vulnerabilities in 

the system. 

The survey analysis aids in comprehending the authors' 

objectives in their articles concerning the pursuit of goals (G) 

such as, G1– Reliability; G2- Availability; G3- Resilience; 

G4- Security, as shown in Table 1. Moreover, based on the 

literature survey mentioned below, a notable observation is 

that many researches have not satisfied all those important 

goals (G1 to G4) in their study. Hence, this research offered a 

distinct contribution to byzantine detection and deactivation 

by introducing novel fuzzy based fault detection method. This 

research uncovered new prospects for the cryptographically 

secured IoT networks. The findings of this study signifies a 

breakthrough in the understanding of securely managing 

byzantine behaviors in the network. 

 

 

3. FUZZY BASED BYZANTINE FAULT TOLERANCE 

(F-BFT) 

 

Yuan et al. [16] BFT refers to a system’s ability to function 

correctly in the presence of faulty or malicious components. In 

the context of IoT, BFT is essential for ensuring the reliability 

and security of IoT systems. In IoT, BFT can be achieved by 

implementing redundancy or automated failover mechanism 

in the system. Moreover, BFT is critical in IoT because many 

IoT systems are deployed in mission-critical applications, such 

as healthcare, transportation, and industry automation. In these 

applications, any failure or security breach can have serious 

consequences, and BFT can help ensure that the system 

continues to function correctly even in the face of such events. 

Therefore, fault tolerance in F-BFT is proposed through a 

type-1 fuzzy system-based algorithm to detect compromised 

devices or byzantines. 

Type-1 fuzzy system is used in this research for several 

reasons, despite the development of more advanced fuzzy 

logic techniques like type-2 fuzzy systems and other machine 

learning approaches. This fuzzy system is computationally 

less demanding compared to more complex techniques like 

type-2 fuzzy systems. This can be advantageous in a resource-

constrained environments are a concern (IoT). It can handle 

uncertainty and imprecision in data or behavior without 

introducing excessive complexity [17]. In this research, the 

inherent uncertainty and vagueness present in the behavior 

analysis are effectively modeled using type-1 fuzzy systems. 

In this case, using a more complex approach might not 

necessarily lead to better results. While more advanced 

techniques (Machine learning and deep learning) might offer 

increased expressive power, the trade-off between complexity 

and performance needs to be carefully considered. Type-1 

fuzzy systems might strike the right balance between them for 

many applications. 

Hence, in this work, byzantine nodes are identified from the 

network by executing type-1 fuzzy system-based algorithm 

through monitoring the behavior of the devices or nodes in the 

network. The anomalous behaviours of devices are monitored 

by concerning its message communication factors, such as 

requesting, responding, and delaying factors. After detecting 

byzantines, they are eliminated or disconnected from the 

network. Finally, backup devices are used to take over the 

function of disconnected devices. This can be done through 

automated failover mechanisms. These operations of 

byzantine fault tolerance (Figure 1) is developed and detailed 

in the following section. 

 

 
 

Figure 1. Byzantine fault tolerance system 

 
3.1 Time-based anomalous behavior analysis 

 

In IoT systems, devices or nodes communicate data and 

events at regular intervals, any deviation from the expected 

timing or frequency can indicate a potential attack or malicious 

activity [18]. In this F-BFT, time-based anomalous analysis 

involves monitoring the Communication Response Time 

(CRT), Data Processing Delay (DPD), Forwarding Time (FT) 

and computing Total Quality Time (TQT) of devices to 

identify any anomalies or deviations from the expected 

patterns. For example, in a smart home system, if a motion 

sensor triggers an alarm every 10 seconds, and suddenly the 

sensor starts triggering alarms every 2 seconds, it could 

indicate that the sensor has been hacked or compromised. This 

F-BFT can detect such anomalies of byzantine and alert the 

system to disconnect such devices or take other corrective 

actions to prevent any further damage. The individual 

behavior-based computation is calculated as follows.  

The Communication Response Time (CRT) is reflected in 

the entire IoT network process. CRT is computed using the 

1610



 

data processing time, distance between nodes, and bandwidth 

(Eq. (1)). Hence, it directly corresponds to justifying the 

byzantine node. Data Processing Delay (DPD) helps identify 

byzantine nodes and is used to count the total network 

processing time. In the case of an IoT network, the delay of a 

particular node significantly deviates from that of other 

legitimate nodes. DPD is computed by the actual time taken to 

reach a node and process the data in this node (Eq. (2)). The time 

taken to forward data Forwarding Time (FT) from the source 

node to the destination node can be used to justify the integrity of 

the actual data. This helps identify the byzantine behavior of the 

node. FT is computed as the time from the source node to the 

destination node (Eq. (3)). The calculations of these time factors 

are listed in Eqs. (1), (2), and (3). 

 

CRT=
DPt

BW
+

Dbn

S
+

Dd

T
 (1) 

 

where, DPt – Data Processing time, Dbn – number of Data bits, 

Dd – distance of the Destination node, BW – Bandwidth, S – 

Speed, T-Time interval. 

 

DPD=
RS

Tr
+

PT

Tp
 (2) 

 

where, RS – Actual time taken to reach a node or device from 

a sensor, Tr – Normal time to reach a node, PT – Actual time 

taken to process data in a node, Tp – Normal time taken to 

process data in a node. 

 

FT=
(ST,size)

(ET,size)
 (3) 

 

where, ST – Starting time of source node, ET – Ending time 

of destination node, size – Amount of data, size determines 

any change in the data from the source to destination.  

TQT can be calculated by using CRT, DPD, and FT as 

shown in Eq. (4). 

 

TQT=k1*CRT+k2*DPD*k3*FT (4) 

 

where, k1, k2, and k3 are the variables for a certain time 

scenario. By default k1=k2=k3=1. TQT is particularly useful 

to confirm byzantines. 

 

3.1.1 Type-1 fuzzy system 

A type-1 fuzzy system-based algorithm is designed to detect 

compromised devices (byzantines) by analyzing device’s 

behavior and communication pattern such as CRT, DPD, FT, 

and TQT. The following steps are followed to design this 

algorithm. 

The input variables to the fuzzy system are different 

parameters such as CRT, DPD, FT, and TQT that are 

indicative of a compromised device. 

The output variable of the fuzzy system is a binary value 

that indicates whether the device is compromised or not. 

The membership functions are used to map the input 

variables to fuzzy values. These functions are designed in a 

way that they capture the vagueness of the input variables 

(large deviations of CRT, DPD, FT, and TQT). The design of 

member functions is defined as follows. 

Membership function for a fuzzy set of anomalous behavior 

(large deviations CRT, DPD, and FT). 

Let M be the universe of discourse for anomalous behaviour, 

and let m be an element of M. Then the membership function 

for a fuzzy set A that represents anomalous behaviour can be 

defined using the Eq. (5). 

 

µ_A(m)= min(max((m-a)/(b-a),0),1) (5) 

 

where, a and b are the lower and upper bounds, respectively, 

of the range of anomalous behaviour that A represents. This 

function maps m to a value between 0 and 1, indicating the 

degree to which m belongs to the fuzzy set A. 

Membership functions for a fuzzy set of anomalous TQT 

value. 

Let N be the universe of discourse for anomalous TQT, and 

n be an element of N. Then the membership function for a 

fuzzy set B that represents anomalous TQT can be defined 

using the Eq. (6). 

 

µ_B(n)=min(max((n-c)/(d-c),0),1) (6) 

 

where, c and d are the lower and upper bounds, respectively, 

of the range of anomalous behaviour that B represents. This 

function maps n to a value between 0 and 1, indicating the 

degree to which n belongs to the fuzzy set B. 

Fuzzy rules are used to map the fuzzy input variables to the 

fuzzy output variable. The fuzzy rules are designed based on 

the expert knowledge of the characteristics of a compromised 

device. 

The ANFIS (Adaptive Neuro-Fuzzy Inference System) 

classification model is used for the classification of byzantines 

in the system. It is a hybrid computational model that 

combines the principles of fuzzy logic and neural networks to 

create a powerful system for solving complex problems. 

ANFIS aims to adaptively tune the parameters of both the 

fuzzy inference system and the neural network to provide 

accurate and flexible modeling of relationships between inputs 

and outputs.  

The rules are listed below. 

 

Rule 1: if x is A1 and Y is B1 then f1=a1x+b1y+r1 

Rule 2: if x is A2 and Y is B2 then f2=a2x+b2y+r2 

 

where, x and y inputs, the fuzzy sets are Bi and Ai, ai, bi, ri 

indicates the parameter that is represented in training and fi is 

the output defined by the fuzzy rule.  

Each device or node i are assigned with following node 

function. 

 

Di=µA(x) 

 

where, x denotes the input to device i, µA denotes the 

membership function of A. 

The membership function can be defined as follows. 

 

µA(x)=exp(-(
𝑥−𝑚

𝑎
)2) 

 

where, ai and mi denote the principle parameter set and x 

indicates the input. 

Similarly, 

 

µB(x)=exp(-(
𝑦−𝑛

𝑏
)2) 

 

These rules can be normalized with the devices and marked 

as N. 
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Ni=
𝜔𝑖

𝜔1+𝜔2

 

 

where, ωi denotes the output parameter. It can be defined as 

follows. 

 

Output=∑ 𝜔𝑖 . 𝑓=
∑ 𝜔𝑖.𝑓

∑ 𝜔𝑖
 

 

Defuzzification is used to convert the fuzzy output variable 

into a crisp binary value that indicates whether the device is 

compromised or not. Here the rule for combining fuzzy sets of 

A and B. 

Let R be a fuzzy relation that combines A and B. Then R 

can be defined using the Eq. (7). 

 

R(m,n)=min(µ_A(m), µ_B(n)) (7) 

 

This function maps pair of elements from M and N to values 

between 0 and 1, indicating that degree to which they belong 

to the fuzzy relation R. It represents the degree of 

compatibility between A and B, and can be used to identify 

potential byzantines. 

Therefore, in this F-BFT, a fuzzy system-based algorithm is 

used as an effective approach to detect compromised devices 

or byzantines. 

 

3.1.2 Byzantine detection and elimination 

In this F-BFT, byzantine node detection through type-1 

fuzzy system based algorithm was performed as a behavior-

based distributed computation algorithm (Algorithm1) 

without relying on a central server. However, there are head 

nodes (H) in this distributed environment (Network Topology) 

which are collaborate and work independently to complete this 

task. 

 

Algorithm 1: Byzantine nodes detection using type-1fuzzy 

system. 

Input: Dynamic responses of devices  

Output: List of byzantine nodes 

for each N (n1,n2.....nm) at interval 't'  

   H compute CRT, DPD, FT, TQT 

 Call fuzzy( ) 

end for  

function fuzzy ( ) 

start 

   for (i=1; i<N; i++) do 

    ωi=µA (x). µB (y) 

        ωi.f =ωi (mix+niy+ri) 

          ω(x,y)=m(i)+n(i) 

done 

𝑟𝑒𝑡𝑢𝑟𝑛 ∑ 𝜔𝑖 . 𝑓 = 
∑ 𝜔𝑖.𝑓

∑ 𝜔𝑖
 

end 

        send→ msg ("byzant", bz[ ], H) 

 

N, participating devices in the network; CRT, 

communication response time; DPD, data processing delay; 

FT, forwarding time; TQT, total quality time; H, Head node; 

mem, member function; R, relation; msg, message; bz[ ], list 

of byzantines. 

After computing byzantines, H initiates operation to 

disconnect the byzantines from the network (Algorithm 2). In 

this, H executes Algorithm 2, receives the list of byzantines bz[ ] 

and disconnects those devices from the network. 

Algorithm 2: Disconnecting byzantines from the network. 

Input: Byzantines 

Output: Byzantine-free network 

for each time interval 't' 

H call disconnect (bz[ ]) 

end for 

function  disconnect (bz[ ]) 

start 

        call Remove (bz[1],bz[2]....bz[nm]) 

        send→ msg ("disconnected", bz[ ], H) 

end 

 

msg, message; n, participating node in the network; bz[ ], 

list of byzantine nodes. 

 

Disconnecting byzantine nodes from the network ensures 

the security and integrity of the network. For each time interval 

‘t’, the byzantine nodes are automatically disconnected from 

the network through the head node H. Once byzantine nodes 

are identified, isolate these nodes from the rest of the network 

can prevent further harm. This can prevent the malicious 

activity from spreading to other parts of the network. We 

implemented continous monitoring of byzantine nodes and 

disconnecting mechanism to quickly identify and respond to 

any future malicious activities. The logic associated with 

byzantine disconnecting mechanism is implemented as 

continuous monitoring (bz[ ] - arrays of byzantine nodes) to 

remove them from the rest of the network. 

 

3.1.3 Automated failover mechanism 

In general, fault tolerance in the context of the IoT refers to 

the ability of an IoT system to continue operating correctly and 

reliably even in the presence of failures or disruptions. In this 

work, BFT is designed as a self-healing mechanism to 

automatically detect and eliminate byzantines without human 

intervention. Hence, systems can continue operating even 

when some systems disconnected due to byzantines through 

the use of backup devices. Backup devices are redundant 

components that can take over the function of disconnected 

devices in the event of faults. This can be done through 

automated failover mechanisms, where the system 

automatically switches to the backup devices in the presence 

of byzantine faults.The most commonly used BFT method for 

distributed IoT system is PBFT (Practical Byzantine Fault 

Tolerance). To ensure fault tolerance in PBFT, it requires that 

at least two-thirds of the nodes in the system are not 

compromised and follow the protocol correctly. This ensures 

that any byzantine nodes cannot cause the system to fail or 

produce inconsistent results. In the results and discussion 

section, the proposed BFT has been compared with PBFT and 

similar current works to prove the efficiency of the proposed 

BFT. Furthermore, the performance of the fuzzy system was 

evaluated using a random sample inputs (CRT, DPD, FT, TQT) 

of 1000 nodes to assess the classification of fuzzy models 

(Discrete Time (DT), Continuous Time (CT) or Non-

Continuous Time (NCT)), error rate and accuracy. These 

metrics provided a comprehensive view of the performance of 

the fuzzy system and used to fine tune the system for better 

performance. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The simulations were implemented using OMNET++ to 
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design the Internet of Things (IoT) environments established 

with 200 to 1000 nodes as input. The communication setup, 

including bandwidth, packets, links to the network, baud rate, 

and other specifications was established. In this experiment, 

the topology was designed by setting the 1000 nodes, three 

routers, and nearly 2000 links to connect as a decentralized 

graph between nodes and gateways, configured with a 20-

Mbps bandwidth, a 100 ms delay, and a 2GB capacity queue. 

The fuzzy logic system was implemented as an object (C++ 

version) in OMNET++ to process input, computation, and 

conclusion. The simulation results described in this section 

were performed in an AMD A10-PRO 7800B R7, 12 computer 

cores 4C+8G 3.50 GHz, 8-GB of random access memory 

(RAM) computer, and the operating system was Ubuntu 

22.04.3 release. The experiments were evaluated by 

comparing the PBFT and STBFT methods for various 

parameters such as the average delay, average throughput, and 

communication complexity. Here, the time based type-1 fuzzy 

system for detecting and disconnecting byzantine nodes 

caused some delay in the process. Throughput is the rate at 

which transactions (detecting and disconnecting) are 

confirmed. Communication complexity is an algorithmic 

complexity used to evaluate the process of detecting and 

disconnecting operations. The mathematical model of type-1 

fuzzy system is followed to represent membership functions, 

inference systems, input and output functions, accuracy, error 

rates, and conclusions in a more generic form. 

 

4.1 Mathematical results of predicting byzantines using 

type-1 fuzzy system 

 

It is possible to model the fuzzy system without datasets to 

confirm byzantines when actual results or datasets are not 

available in advance. The foresight model can be determined 

to find the accuracy for fuzzy logic system. Modeling of 

prediction process for dynamic anomalous behavior of certain 

devices is characterized by uncertainty. The accuracy of such 

a model will never be absolute, although the prediction is 

based on iterative computation of lower and upper bound to 

confirm byzantines. The common way of determining 

accuracy is to compare modeling results with actual data. In 

the case of dynamic behavior analysis, these data only be 

obtained after a fixed time period of upper bound computation 

for which prediction is carried out.  

Mathematical model of Membership Function (MF) used in 

type-1 fuzzy system can be categorized as singleton, gaussion, 

and Z(S)-shaped forms as shown in Table 2. 

 

Table 2. Mathematical model of membership function 

 

Name 
Mathematical 

Form 
Remarks 

Singleton {1, x=a│0, x=a} 
a is the number that defines fuzzy 

set. 

Gaussian exp (
(𝑥−𝑏)2

2𝑐2
) 

b is a coordinate of a function 

maximum, c is the concentration 

coefficient. 

Z(S)-

Shaped 
µ=

1

1+𝑒−𝑎(𝑥−𝑏) 

For a>0, the function is S-shaped 

one, 

for a<0, the function is Z-shaped 

one, 

b is a coordinate for µ=0.5. 

 

Since the inputs (CRT, DPD, FT, and TQT) for MF of the 

F-BFT are in discrete form, singleton function is suitable to 

generate output classification (byzantine (1) or not (0)). The 

other two functions (Gaussian and Z(S)-Shaped) are used for 

continuous input formats of applications. 

This MF works on the basis of Mamdani fuzzy inference 

system (Max-Min inference method) to reach a particular 

conclusion (byzantine or not) based on some evidence (upper 

bound or threshold) associated with a logic.  

In the case of Max-Min inference method, the following 

rules can be applied to confirm byzantines. 

Rule 1: IF x1 is A1
1 and x2 is A2

1 THEN y1 is B1 

In this rule, x denotes the CRT, DPD, FT inputs, A denotes 

the upper bound or threshold and y denotes the output 1 or 0. 

Rule 2: IF x1 is A1
2 and x2 is A2

2 THEN y2 is B2 

In this rule, x denotes the TQT input, A denotes the upper 

bound or threshold and y denotes the output 1 or 0. 

The conclusion with the fuzzy model results can be 

classified, namely, disruptive (DT), critical (CT), and non-

critical (NCT). This conclusion limits are determined by the 

method of equidistant points (Eq. (8)). 

 

P=√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (8) 

 

This model finds equidistant points to determine a threshold 

value. However, this approach will vary for multiple 

evaluations (iterative). Therefore, it is reasonable to use 

certain limits that do not change over multiple evaluations. In 

this case, the Harrington desirability function can be applied 

as shown in the following Eq. (9). 

 

f(x)=exp(-exp(-x)) (9) 

 

The lower threshold is critically 0.37, and the upper 

threshold is 0.8. This model defines that when criticality level 

exceeds 0.8 as disruptive. 

 

4.1.1 Determining the accuracy 

The developed BFT model performs classification, i.e., an 

assessment of the input data to determine byzantine or not (1 

or 0). The type-1 fuzzy model will estimate in the form of 

different classes such as disruptive, critical, and non-critical.  

Accuracy of this model is determined by the root-mean-square 

error of the type-1 fuzzy model to confirm byzantines. The 

acceptable error rate is only 5% for this modeling. Mean 

square error of model is determined using the Eq. (10). 

 

𝜎 = √
1

𝑁
∑ ∆𝑖

2

𝑁

𝑖=1

 (10) 

 

where, N is the total number of measurements and i is the 

current measurement.  

In the testing phase, the testing inputs such as CRT, DPD, 

FT, and TQT are given to the fuzzy system, which classify the 

input as a byzantine or not. The obtained result is then used to 

compute accuracy of the fuzzy system. The accuracy of the 

system is computed based on the definitions, namely, 

precision, recall, and F-measure. They are defined using the 

Eq. (11). 

 

precision=
𝑡𝑝

𝑡𝑝+𝑓𝑝
, recall=

𝑡𝑝

𝑡𝑝+𝑓𝑛
, F-

measure=
(𝛽2+1)(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑟𝑒𝑐𝑎𝑙𝑙)

𝛽2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 where β=1, 

Accuracy=
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑛+𝑓𝑝
 where, tp- true positive, tn-

(11) 
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true negative, fn-false negative, fp-false positive 

 

The following Table 3 (Input class) and Table 4 has listed 

out a random sample of 1000 nodes to assess the classification 

of fuzzy models (DT, NCT or CT), error rate and accuracy. 

For input variables: CRT, DPD, FT, and TQT. 

 

Table 3. Class table 

 
Categories Class Lables Class Names No.of Instances 

Normal 

Byzantine 

C1 CRT 3297 

C2 DPD 2564 

C3 FT 9372 

C4 TQT 5060 

 

Table 4. Experimental results of type-1 fuzzy system 

 

Training (1000 Nodes) 
Testing (1000 

Nodes) 

CRT-ms DPD-ms FT-ms TQT-ms Category Error Accuracy 
1.2 3.6 0.4 1.72 NCT 0.004 0.996 

1.0 2.8 0.9 2.52 NCT 0.002 0.998 

1.3 1.9 0.5 1.23 NCT 0.003 0.997 
2.0 1.8 0.6 2.16 NCT 0.009 0.991 

1.5 2.6 0.9 3.51 CT 0.006 0.994 

1.6 2.0 0.7 2.24 NCT 0.005 0.995 
2.2 3.4 0.5 3.74 CT 0.006 0.994 

2.1 2.8 0.7 4.11 DT 0.004 0.996 

2.0 1.4 0.5 1.4 NCT 0.001 0.999 
1.6 1.8 0.9 2.59 NCT 0.006 0.994 

2.5 2.0 0.8 4.0 DT 0.002 0.998 

3.0 1.8 1.0 5.4 DT 0.005 0.995 
2.8 1.8 0.4 2.02 NCT 0.003 0.997 

1.6 2.0 0.7 2.24 NCT 0.004 0.996 

2.0 1.7 0.9 3.06 CT 0.003 0.997 

 

The following Figure 2 defines the confusion matrix for the 

total input instances of 20293. 

 

 
 

Figure 2. Confusion matrix 

 

Table 4 presents a random set of 15 experimental cases fed 

to the input of the fuzzy model, as well as the computed 

criticality scores (DT, CT, NCT) with the corresponding errors 

and accuracies. From the results of measuring the modeling 

error approximately (σ=0.05) and the accuracy (0.995), it can 

be concluded that the type-1 fuzzy model to predict the 

byzantines in an IoT system foresight is accurate.  

The Table 5 has listed out the actual outcome of accuracy, 

recall, and F-Score for the various classes. 

 

Table 5. Outcome of type-1 fuzzy of various classes 

 
Classes Accu. Reca. F-Score 

C1 99.79 98.98 98.17 

C2 99.85 99.04 99.12 

C3 99.81 98.75 98.97 

C4 99.86 99.09 99.06 

Average 99.50 98.89 98.83 

4.2 Performance assessment of BFT 

 

The average delay and average throughput were measured 

and compared with PBFT and Scalable Tree-based Byzantine 

Fault Tolerance (STBFT) for 1000 nodes, as shown in (Figure 

3 and Figure 4 respectively). 

 

 
 

Figure 3. Analysis of average delay 

 

The average delay and average throughput of STBFT 

(Average probability of faulty nodes and Average proportions 

of faulty nodes) were 8.48% (decreased) and 8.69% 

(increased), respectively, compared with those of PBFT. 

However, the proposed F-BFT obtained a smaller delay and 

higher throughput than the STBFT because of its type-1 fuzzy 

system based detection operation. 

 

 
 

Figure 4. Analysis of average throughput 

 

Here, the average delay of the F-BFT detection algorithm 

was 4.7% (decreased) and average throughput was 5.0% 

(increased) when compared to the STBFT. Thus, the proposed 

F-BFT algorithm was found to be more efficient than STBFT 

and PBFT. 

The performance metrics such as delay and throughput of 

this work are listed in Table 6 and Table 7 respectively. 

 

Table 6. Comparison of BFT for delay 

 

Total Nodes 
PBFT STBFT F-BFT 

Delay/ms Delay/ms Delay/ms 

200 500 70 55 

400 1500 300 150 

600 2000 500 220 

800 4000 700 310 

1000 6000 800 400 
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Table 7. Comparison of BFT for throughput 

Total 

Nodes 

PBFT STBFT F-BFT

Throughput/tps Throughput/tps Throughput/tps 

200 18 24 39 

400 10 22 35 

600 7 20 34 

800 3 18 32 

1000 1 17 31 

An increasing number of devices or nodes in the network 

increases the delay and decreases throughput. Throughput is 

the rate at which the network sends or receives data between 

devices and gateway. When the number of devices that this 

network reserves for network performance increases, the 

network throughput increases. 

The results were also compared with those of the existing 

system, which proved that the F-BFT has a smaller delay and 

higher throughput than the existing system.  

The reliability of participating devices in an IoT 

environment can be extensively increased by establishing a 

strong security layer (F-BFT) based communication system. 

Fairness in device selection (H) for computing anomalous 

behaviors was executed dynamically for the detection process 

of byzantines. In this F-BFT, the communication complexity 

was evaluated based on the number of participating devices (m) 

in the network by which network operations and byzantine 

node detection were executed. These participating devices (m) 

were subsets of the network (n). When compared with various 

BFT methods, the complexity of the F-BFT process was 

reduced from multiple evaluations to a single evaluation using 

type-1 fuzzy system, thereby reducing the complexity from 

O(m2) to O(m). The detailed comparisons are presented in 

Table 8. 

Table 8. Analysis of reliability, fairness, and communication 

complexity 

BFT 

Methods 

Node 

Reliability 

Node 

Fairness 

Communication 

Complexity 

PBFT   O(n2) 

STBFT   O(m2) where m<n 

F-BFT   O(m) where m<n 

5. CONCLUSIONS

This work presented a detailed discussion on the security of 

devices, and investigated the byzantine fault problem in an IoT 

system, for which the proposed F-BFT implemented a fault 

tolerance mechanism through a byzantine detection and 

elimination strategy. This work included a dynamic behavior 

analysis of nodes by CRT, DPD, FT, and TQT, computing 

confirmed byzantine nodes through type-1 fuzzy system, and 

applying automated failover mechanisms. From the results of 

measuring the modeling error approximately (𝜎 = 0.05) and 

the accuracy (99.5%), Recall (98.89%), and F-Score (98.83%). 

The average delay and average throughput were measured 

and compared with PBFT and Scalable Tree-based Byzantine 

Fault Tolerance (STBFT) for 1000 nodes. The average delay 

and average throughput of STBFT (Average probability of 

faulty nodes and Average proportions of faulty nodes) were 

8.48% (decreased) and 8.69% (increased), respectively, 

compared with those of PBFT. However, the proposed F-BFT 

obtained a smaller delay and higher throughput than the 

STBFT. Here, the average delay of the F-BFT detection 

algorithm was 4.7% (decreased) and average throughput was 

5.0% (increased) when compared to the STBFT. An increasing 

number of devices or nodes in the network increases the delay 

and decreases throughput. In this F-BFT, the communication 

complexity was evaluated based on the number of 

participating devices (m) in the network When compared with 

various BFT methods, the complexity of the F-BFT process 

was reduced from multiple evaluations to a single evaluation 

using type-1 fuzzy system, thereby reducing the complexity 

from O(m2) to O(m).  

While our work focuses on the impact of BFT solution 

through detection operations, by using a simulation test bed 

and mathematical design, a significant set of challenges is 

derived from the deployment of proposed BFT. Indeed, the 

computational requirements of the BFT approaches might not 

be satisfied by constrained IoT devices in terms of computing 

power, energy consumption, and memory. To address such 

limitations, the use of edge computing by establishing 

intermediate nodes shall resolve the issues of low resource 

constraints of IoT devices. 

In the future, this work can be further extended by 

incorporating artificial intelligence techniques to reduce the 

complexity and dynamic decisions associated with byzantine 

behaviors of participating nodes in the network. 
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