
Fuzzy Inference System for Byzantine Fault Tolerance in IoT Security

Sundareswaran Natarajan1* , Sasirekha Selvakumar2

1 Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil,

Srivilliputtur 626126, Tamilnadu, India
2 Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110

Tamilnadu, India

Corresponding Author Email: vethasundares@gmail.com

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.18280/ria.370625 ABSTRACT

Received: 12 June 2023

Revised: 1 September 2023

Accepted: 9 October 2023

Available online: 27 December 2023

The Internet of Things (IoT) is progressing rapidly, transforming the way people interact

with the world through improved connectivity. Nevertheless, as the number of devices

surges, security has become a primary concern. Through a comprehensive review of

literature, it has been identified that byzantine targets the physical layer of IoT systems.

This attack is carried out when a compromised device spreads malicious information to

other nodes in the network, leading to potentially compromising the entire system. To

address this issue, this work introduces a Fuzzy-based Byzantine Fault Tolerance (F-BFT)

mechanism derived from a Type-1 fuzzy system require less computational power and

resources compared to complex fuzzy systems, this can be advantageous in IoT systems

where processing capabilities are limited. Based on measurements of modeling error at

roughly σ=0.05 and an accuracy rate of 99.5%, recall of 98.89%, and F-Score of 98.83%,

it has been observed from the results that the type-1 fuzzy model is highly precise. When

compared to the existing system, the average delay of the F-BFT detection algorithm was

4.7 % decreased, average throughput was 5.0 % (increased), and average communication

complexity was reduced from O(m2) to O(m) where m is the number of nodes in the

network.

Keywords:

byzantine attacks, byzantine fault tolerance,

behavior analysis, fuzzy system, Internet of

Things, security

1. INTRODUCTION

As more devices become connected to the internet, the

potential attack surface for hackers increases, making IoT

security a critical concern for individuals and organization

alike [1]. IoT security refers to the measures and practices put

in place to protect IoT devices and networks from cyber threats.

One of the main challenges in IoT security is that many IoT

devices are designed to be low-cost and low-power, and may

not have robust security features built in. This can make them

vulnerable to attacks such as malware infections, data breaches,

and Distributed Denial of Service (DoS) attacks [2]. Moreover,

the diversity of devices and systems used in IoT requires a

multi-layered approach to security, as different devices and

applications require different types of protection. Hence, it is

essential to take steps to ensure their security and protect

against potential cyber threats. Some IoT devices, such as

medical devices and industrial control systems, can directly

impact physical safety. Implementing IoT device security

ensured that these devices are secure and not vulnerable to

cyber attacks that could cause physical harm. When the

security of devices are compromised, also known as byzantine

faults, they can be grouped together to form botnets, which can

be used to launch DDoS (Distributed Denial of Service)

attacks. These attacks can bring down entire IoT networks and

causing financial loss. Detecting byzantine fault, also known

as byzantine intrusion in an IoT network can be challenging,

but there are some strategies that can be employed such as trust

based systems, consensus algorithms, and intrusion detection

systems in which trust based systems monitor the inconsistent

behaviour of devices or nodes, it may be the sign of a

byzantine intrusion [3]. Therefore, in this work, a behaviour-

based analysis model to detect and eliminate byzantine

intrusions is primarily discussed as a Byzantine Fault

Tolerance (BFT) solution. The short introduction about the

proposed work is discussed as follows.

The device security was thoroughly examined, focusing on

the security measures for nodes or devices, and ensuring

secure communication between them. The objective of this

research was to examine the issue of the byzantine fault in the

IoT system. To address this problem, a fault-tolerant

mechanism was proposed by implementing F-BFT, which

employed a strategy for byzantine detection and elimination.

The study also involved analyzing the dynamic behavior of

nodes, identifying byzantine nodes through a type-1 fuzzy

system, and utilizing backup devices with automated failover

mechanisms to maintain reliable operation despite the

presence of disruptions or failures. Fuzzy logic systems are

used in a wide range of applications, including control systems,

decision-making, pattern recognition, and intrusion detection

system. In many real-world situations, data is incomplete,

uncertain, or imprecise. Fuzzy logic can handle this

Revue d'Intelligence Artificielle
Vol. 37, No. 6, December, 2023, pp. 1607-1616

Journal homepage: http://iieta.org/journals/ria

1607

https://orcid.org/0000-0002-1050-0549
https://orcid.org/0000-0002-9967-7702
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370625&domain=pdf

uncertainty by allowing for partial truth values, which make it

useful in situations where there is ambiguity or imprecision in

the input data. It can be more flexible than traditional logic

systems, which use binary true/false outputs. Fuzzy systems

can adjust the degree of output based on the degree of input,

which allows for a more precise response [4]. Hence, fuzzy

logic can provide more robust, efficient, and accurate solutions

in a wide range of applications. In this F-BFT, a type-1 fuzzy

system-based algorithm is designed to detect compromised

devices by analyzing device’s behavior and communication

pattern. The output of the fuzzy system is a binary value that

indicates whether the device is compromised or not. These

compromised devices can harm the network operations. Hence,

this work applies automated failover mechanism for the fault

tolerance. It is discussed as follows.

An automated failover mechanism is a system that

automatically switches to a backup system or component in

the event of a failure. (Kostrzewa & Ernst 2020) This

mechanism is used in critical systems where downtime is not

an option, such as in data centers, hospitals, and financial

institutions. The need for an automated failover mechanism

arises from the potential impact of system downtime. It can

help minimize the impact of downtime by quickly switching

to a backup system or component when a failure is detected.

This mechanism can also reduce the need for manual

intervention, which can save time and reduce the risk of human

error. By having a backup system in place, organizations can

ensure that their systems are always available and that they can

quickly recover from any failure. In this F-BFT, backup

devices are redundant components that can take over the

function of disconnected devices in the event of faults (caused

by an attacker) through automated failover mechanisms.

Moreover, this work has obtained the following results from

the simulations.

Based on the measurements of modeling error at

approximately σ=0.05 and the accuracy rate of 99.5%, it can

be inferred that the type-1 fuzzy model used to forecast

byzantines in an IoT system is highly accurate. Moreover, this

study illustrated the effectiveness of a fault-tolerant solution

by comparing the average delay, average throughput, and

communication complexity of Practical Byzantine Fault

Tolerance (PBFT) and Scalable Tree based Byzantine Fault

Tolerance (STBFT) systems. The simulations were

implemented using OMNET ++ to demonstrate BFT by

comparisons of various performance metrics with current

works. In this work, the topology was designed by setting the

participating nodes, routers, and links to connect as a

decentralized graph between nodes and gateways, configured

with a bandwidth, a delay, and a queue. The simulation results

are described in the results and discussions section.

1.1 Motivation

1. The IoT network allows its components such as

devices/sensors, data processing on the cloud, and user

interface to communicate on an open public network. It allows

a cyber-attacker to deploy malicious or byzantine nodes inside

the network.

2. The scalability of IoT networks poses a challenge in

distinguishing between legitimate and malicious nodes mostly

in real-time networks, and is also an important task.

3. IoT devices are resource constrained in terms of storage

and battery that can be physically compromised by an

adversary to act as byzantine that has the right with false

identity to access the existing resources of the IoT network.

Therefore, it is of utmost importance for an IoT network to

eliminate byzantine intrusion to provide effective services to

smart applications.

1.2 Contributions

The major research contributions of this work include

detecting and eliminating byzantine nodes through a type-1

fuzzy system-based algorithm (a dynamic behavior-based

analysis model).

Evaluating various experiment metrics, such as average

delay, average throughput, and communication complexity are

compared against existing solutions.

Discussing the security advantages of F-BFT through

theoretical analysis.

The average delay and average throughput of this work

(Average probability of faulty nodes and Average proportions

of faulty nodes) were compared with existing works and

proved that the proposed F-BFT obtained a smaller delay and

higher throughput than the existing systems because of its

type-1 fuzzy system based detection operation. This helps to

make this system faster identification of byzantine nodes in the

network than those of existing systems.

1.3 Paper organization

The remainder of the study is structured as follows: Section

2 details the related works and existing solutions, Section 3,

discusses the proposed byzantine node detection and

disconnecting operations, Section 4 details the experimental

results of various scenarios, and proves by comparing the

result metrics with existing systems, and finally, conclusions

and future work are discussed in Section 5.

2. RELATED WORKS

This comprehensive review delves into the security of IoT

devices and nodes. When it comes to the security of devices,

byzantine faults can cause significant issues such as network

outages and financial losses. This section explores a series of

solutions for byzantine fault tolerance.

Driscoll et al. [5] suggested analyzing the byzantine fault

that led to the simultaneous failures of a group of peers over

duration of 0.5×10-12 and demonstrated that these failures were

not random but were instead due to byzantine intrusion. They

proposed that Time-Triggered Node Architecture (TTNA)

could be utilized to filter out these byzantine failures in a

distributed environment. However, the turn around time to

identify the byzantine by TTNA was high. Rahli et al. [6]

introduced Byzantine Fault Tolerance (BFT) state machine

replication to achieve adequate fault tolerance in a distributed

system. To detect the presence of byzantine nodes, they

developed the "happened before" theoretical relation and

utilized it to update the intrusion detection signature system

for future use. They also designed a new Practical Byzantine

Fault Tolerance (PBFT) protocol for this purpose, and

analyzed its correctness mathematically using various lemmas

related to message exchange authentication between peers.

However, this method has taken only PBFT for comparisons

to prove the efficiency. The byzantine detection and tolerance

algorithm presented by Sousa et al. [7] is designed to run on a

specific group of nodes, thereby minimizing the overhead

1608

associated with executing Byzantine Fault Tolerance (BFT) on

all nodes within the network. This approach effectively

addresses the performance bottleneck in byzantine detection

operations in the Blockchain (BC) network. However, it is

important to note that this algorithm may not be well-suited

for complex IoT networks.

In their study, Zhang et al. [8] presented a behavior-based

analysis approach to detect byzantine nodes by monitoring

message exchanges among peers. This research employed an

event detector to monitor message transmissions within its

distributed network system, with the objective of ensuring that

each message was sent and received only once by a single peer

in the network. However, it is important to note that analyzing

all communication messages may impact the system's

performance.

In their research, Thai et al. [9] introduced the Hierarchical

Byzantine Fault Tolerance (HBFT) protocol for wide area

networks with scalability in mind. In this work, an experiment

was carried out on a network of 475 nodes, which were

partitioned into 19 groups, with each group consisting of four

byzantine nodes. The study measured and compared the

message throughput performance of the PBFT protocol.

However, the study did not discuss the byzantine node

detection rate.

Bynun et al. [10] introduced a byzantine self-stabilization

algorithm. This algorithm uses a technique that involves

setting the maximum values of timestamps, message counter,

and clock synchronization to recover from such faults.

However, it should be noted that while the algorithm is capable

of stabilizing the system, it is not effective against malicious

intrusions and their related malfunctions

Vijaykumar et al. [11] presented a Deep Neural Network

(DNN) approach to identify the most effective machine

learning algorithm for detecting and controlling byzantine

intrusion. The study found that the byzantine intrusion

detection rate for the learning rate success ratio was 10%, and

the accuracy rates were as high as 45% after 1000 epochs of

learning units. However, the process of analyzing information

to implement the DNN approach increased the execution time,

which could potentially impact the network's overall

performance.

Yu et al. [12] introduced the Byzantine Fault Tolerance

based on dual administrator short Group signatures (GPBFT),

a practical byzantine fault tolerant consensus algorithm that

utilizes a dual administrator short group signatures method to

detect malicious nodes in the network. The experimental

results demonstrate that the GPBFT algorithm can effectively

reduce the communication overhead, minimize consensus

delay, and significantly enhance both efficiency and security

when compared to the PBFT algorithm. However, the study

did not address the complexity of the GPBFT implementation.

Almseidin and Alkasassbeh [13] presented a precise

approach for intrusion detection in IoT networks, which

employed a fuzzy-based interpolation reasoning method. The

proposed method was specifically designed to detect IoT

Botnet attacks using a dataset of such attacks. The results of

the experiments showed that the proposed approach achieved

a detection rate of 96.4%, which is highly accurate, while also

effectively reducing the false positive rate. Palanikumar et al.

[14] presented a PBFT-based Smart Contract (SC) algorithm

aimed at securing real-time Internet of Medical Things (IoMT)

data. The proposed system utilizes PBFT SC consensus

protocols in combination with proof-of-work to enhance the

privacy and availability of healthcare data, enable

decentralized access, and increase the flexibility of data in the

blockchain network.

Table 1. Literature survey analysis

Authors Goals Achieved Limitations

Driscoll et al. [5] G2 and G3
TTNA has not addressed reliability (G1) and security (G4) goals due to the distributed network

topology as any peer can act as a coordinator.

Rahli et al. [6] G1, G2, and G3
State machine replication is prone to cyber-attack when the server is compromised. Hence, it has

not been achieved the security (G4).

Sousa et al. [7] G1 and G4
As this method executes BFT only on a certain group of nodes, the remaining nodes in the group

may not be available (G3) and prone to byzantine attacks (G4).

Zhang et al. [8] G1 and G2
The message communication between peers is prone to man-in-the-middle attacks (G4). As the

message may not reach the destination, the system cannot withstand on faults. (G3)

Thai et al. [9] G2 and G4
The system is not reliable (G1) when it scales high and the new joined node may not get the BFT

in place. Hence, it cannot withstand (G3) on byzantine faults.

Bynum et al. [10] G1 and G2
When the self-stabilization algorithm is compromised (G4) or redirected by an attacker, the

system cannot withstand (G3) from the byzantine faults.

Vijaykumar et al.

[11]
G1, G2, and G3

The DNN approach can identify the efficient byzantine algorithms but the security (G4) of the

chosen byzantine algorithms was not proved in the application.

Yu et al. [12] G2, G3, and G4
As GPBFT follows the group signature based approach, the system is not reliable (G1) due to the

public keys involved in the group signature.

Almseiden and

Alkasassbeh [13]
G1, G2, and G4

The system can accurately detect bots. However, it could not identify the malware intrusion to

compromise nodes. Hence, the system cannot tolerate (G3) faults.

Palanikumar et al.

[14]
G2, G3, and G4

As the system uses smart contract (SC) based PBFT model of the blockchain system. It may not

be reliable (G1) due to decentralized nature of the blockchain as any node can control the

operations.

Jiang et al. [15] G1, G3, and G4
The STBFT falls short of fault tolerance when the number of participating node is high. Hence,

the system may not be available to the legitimate users.

Jiang et al. [15] presented a solution to the issues faced by

the PBFT algorithm in blockchain networks, such as high

communication overhead and scalability bottlenecks. The

proposed Scalable Tree-based Byzantine Fault Tolerance

(STBFT) algorithm utilizes a tree topology network structure

that organizes network nodes into groups and layers, resulting

in a hierarchical multi-centralized consensus approach that

reduces communication complexity and improves node

scalability. The authors of this paper conducted simulation

experiments using k=4, 10, and 16, where k represents the

suspected byzantine node, to compare the communication

complexity ratio of the STBFT algorithm to the PBFT

1609

algorithm for different network sizes with fewer than 1000

nodes. The results of the experiments show that the STBFT

algorithm has significantly lower communication complexity

than the PBFT algorithm, regardless of the value of k.

However, it is essential to note that the STBFT algorithm falls

short of fault tolerance when the number of faulty nodes in the

system is fixed. While the algorithm is highly scalable, many

application scenarios require not only scalability but also high

fault tolerance. Therefore, additional measures may be

necessary to meet the high fault tolerance requirements of

these scenarios.

2.1 Survey analysis

The goals of fault tolerance in IoT systems are to ensure the

reliability, availability, resilience, and security of the

interconnected devices and networks.

Reliability - Fault tolerance aims to improve the reliability

of IoT systems by minimizing the probability of failures.

Availability - IoT systems often need to be available to

provide continuous services and functionality.

Resilience - Resilience focuses on the ability of IoT systems

to withstand and recover from faults or failures.

Security - Fault tolerance is closely linked to security in IoT

systems. Ensuring fault tolerance helps mitigate potential

security breaches or attacks that may exploit vulnerabilities in

the system.

The survey analysis aids in comprehending the authors'

objectives in their articles concerning the pursuit of goals (G)

such as, G1– Reliability; G2- Availability; G3- Resilience;

G4- Security, as shown in Table 1. Moreover, based on the

literature survey mentioned below, a notable observation is

that many researches have not satisfied all those important

goals (G1 to G4) in their study. Hence, this research offered a

distinct contribution to byzantine detection and deactivation

by introducing novel fuzzy based fault detection method. This

research uncovered new prospects for the cryptographically

secured IoT networks. The findings of this study signifies a

breakthrough in the understanding of securely managing

byzantine behaviors in the network.

3. FUZZY BASED BYZANTINE FAULT TOLERANCE

(F-BFT)

Yuan et al. [16] BFT refers to a system’s ability to function

correctly in the presence of faulty or malicious components. In

the context of IoT, BFT is essential for ensuring the reliability

and security of IoT systems. In IoT, BFT can be achieved by

implementing redundancy or automated failover mechanism

in the system. Moreover, BFT is critical in IoT because many

IoT systems are deployed in mission-critical applications, such

as healthcare, transportation, and industry automation. In these

applications, any failure or security breach can have serious

consequences, and BFT can help ensure that the system

continues to function correctly even in the face of such events.

Therefore, fault tolerance in F-BFT is proposed through a

type-1 fuzzy system-based algorithm to detect compromised

devices or byzantines.

Type-1 fuzzy system is used in this research for several

reasons, despite the development of more advanced fuzzy

logic techniques like type-2 fuzzy systems and other machine

learning approaches. This fuzzy system is computationally

less demanding compared to more complex techniques like

type-2 fuzzy systems. This can be advantageous in a resource-

constrained environments are a concern (IoT). It can handle

uncertainty and imprecision in data or behavior without

introducing excessive complexity [17]. In this research, the

inherent uncertainty and vagueness present in the behavior

analysis are effectively modeled using type-1 fuzzy systems.

In this case, using a more complex approach might not

necessarily lead to better results. While more advanced

techniques (Machine learning and deep learning) might offer

increased expressive power, the trade-off between complexity

and performance needs to be carefully considered. Type-1

fuzzy systems might strike the right balance between them for

many applications.

Hence, in this work, byzantine nodes are identified from the

network by executing type-1 fuzzy system-based algorithm

through monitoring the behavior of the devices or nodes in the

network. The anomalous behaviours of devices are monitored

by concerning its message communication factors, such as

requesting, responding, and delaying factors. After detecting

byzantines, they are eliminated or disconnected from the

network. Finally, backup devices are used to take over the

function of disconnected devices. This can be done through

automated failover mechanisms. These operations of

byzantine fault tolerance (Figure 1) is developed and detailed

in the following section.

Figure 1. Byzantine fault tolerance system

3.1 Time-based anomalous behavior analysis

In IoT systems, devices or nodes communicate data and

events at regular intervals, any deviation from the expected

timing or frequency can indicate a potential attack or malicious

activity [18]. In this F-BFT, time-based anomalous analysis

involves monitoring the Communication Response Time

(CRT), Data Processing Delay (DPD), Forwarding Time (FT)

and computing Total Quality Time (TQT) of devices to

identify any anomalies or deviations from the expected

patterns. For example, in a smart home system, if a motion

sensor triggers an alarm every 10 seconds, and suddenly the

sensor starts triggering alarms every 2 seconds, it could

indicate that the sensor has been hacked or compromised. This

F-BFT can detect such anomalies of byzantine and alert the

system to disconnect such devices or take other corrective

actions to prevent any further damage. The individual

behavior-based computation is calculated as follows.

The Communication Response Time (CRT) is reflected in

the entire IoT network process. CRT is computed using the

1610

data processing time, distance between nodes, and bandwidth

(Eq. (1)). Hence, it directly corresponds to justifying the

byzantine node. Data Processing Delay (DPD) helps identify

byzantine nodes and is used to count the total network

processing time. In the case of an IoT network, the delay of a

particular node significantly deviates from that of other

legitimate nodes. DPD is computed by the actual time taken to

reach a node and process the data in this node (Eq. (2)). The time

taken to forward data Forwarding Time (FT) from the source

node to the destination node can be used to justify the integrity of

the actual data. This helps identify the byzantine behavior of the

node. FT is computed as the time from the source node to the

destination node (Eq. (3)). The calculations of these time factors

are listed in Eqs. (1), (2), and (3).

CRT=
DPt

BW
+

Dbn

S
+

Dd

T
 (1)

where, DPt – Data Processing time, Dbn – number of Data bits,

Dd – distance of the Destination node, BW – Bandwidth, S –

Speed, T-Time interval.

DPD=
RS

Tr
+

PT

Tp
 (2)

where, RS – Actual time taken to reach a node or device from

a sensor, Tr – Normal time to reach a node, PT – Actual time

taken to process data in a node, Tp – Normal time taken to

process data in a node.

FT=
(ST,size)

(ET,size)
 (3)

where, ST – Starting time of source node, ET – Ending time

of destination node, size – Amount of data, size determines

any change in the data from the source to destination.

TQT can be calculated by using CRT, DPD, and FT as

shown in Eq. (4).

TQT=k1*CRT+k2*DPD*k3*FT (4)

where, k1, k2, and k3 are the variables for a certain time

scenario. By default k1=k2=k3=1. TQT is particularly useful

to confirm byzantines.

3.1.1 Type-1 fuzzy system

A type-1 fuzzy system-based algorithm is designed to detect

compromised devices (byzantines) by analyzing device’s

behavior and communication pattern such as CRT, DPD, FT,

and TQT. The following steps are followed to design this

algorithm.

The input variables to the fuzzy system are different

parameters such as CRT, DPD, FT, and TQT that are

indicative of a compromised device.

The output variable of the fuzzy system is a binary value

that indicates whether the device is compromised or not.

The membership functions are used to map the input

variables to fuzzy values. These functions are designed in a

way that they capture the vagueness of the input variables

(large deviations of CRT, DPD, FT, and TQT). The design of

member functions is defined as follows.

Membership function for a fuzzy set of anomalous behavior

(large deviations CRT, DPD, and FT).

Let M be the universe of discourse for anomalous behaviour,

and let m be an element of M. Then the membership function

for a fuzzy set A that represents anomalous behaviour can be

defined using the Eq. (5).

µ_A(m)= min(max((m-a)/(b-a),0),1) (5)

where, a and b are the lower and upper bounds, respectively,

of the range of anomalous behaviour that A represents. This

function maps m to a value between 0 and 1, indicating the

degree to which m belongs to the fuzzy set A.

Membership functions for a fuzzy set of anomalous TQT

value.

Let N be the universe of discourse for anomalous TQT, and

n be an element of N. Then the membership function for a

fuzzy set B that represents anomalous TQT can be defined

using the Eq. (6).

µ_B(n)=min(max((n-c)/(d-c),0),1) (6)

where, c and d are the lower and upper bounds, respectively,

of the range of anomalous behaviour that B represents. This

function maps n to a value between 0 and 1, indicating the

degree to which n belongs to the fuzzy set B.

Fuzzy rules are used to map the fuzzy input variables to the

fuzzy output variable. The fuzzy rules are designed based on

the expert knowledge of the characteristics of a compromised

device.

The ANFIS (Adaptive Neuro-Fuzzy Inference System)

classification model is used for the classification of byzantines

in the system. It is a hybrid computational model that

combines the principles of fuzzy logic and neural networks to

create a powerful system for solving complex problems.

ANFIS aims to adaptively tune the parameters of both the

fuzzy inference system and the neural network to provide

accurate and flexible modeling of relationships between inputs

and outputs.

The rules are listed below.

Rule 1: if x is A1 and Y is B1 then f1=a1x+b1y+r1

Rule 2: if x is A2 and Y is B2 then f2=a2x+b2y+r2

where, x and y inputs, the fuzzy sets are Bi and Ai, ai, bi, ri

indicates the parameter that is represented in training and fi is

the output defined by the fuzzy rule.

Each device or node i are assigned with following node

function.

Di=µA(x)

where, x denotes the input to device i, µA denotes the

membership function of A.

The membership function can be defined as follows.

µA(x)=exp(-(
𝑥−𝑚

𝑎
)2)

where, ai and mi denote the principle parameter set and x

indicates the input.

Similarly,

µB(x)=exp(-(
𝑦−𝑛

𝑏
)2)

These rules can be normalized with the devices and marked

as N.

1611

Ni=
𝜔𝑖

𝜔1+𝜔2

where, ωi denotes the output parameter. It can be defined as

follows.

Output=∑ 𝜔𝑖 . 𝑓=
∑ 𝜔𝑖.𝑓

∑ 𝜔𝑖

Defuzzification is used to convert the fuzzy output variable

into a crisp binary value that indicates whether the device is

compromised or not. Here the rule for combining fuzzy sets of

A and B.

Let R be a fuzzy relation that combines A and B. Then R

can be defined using the Eq. (7).

R(m,n)=min(µ_A(m), µ_B(n)) (7)

This function maps pair of elements from M and N to values

between 0 and 1, indicating that degree to which they belong

to the fuzzy relation R. It represents the degree of

compatibility between A and B, and can be used to identify

potential byzantines.

Therefore, in this F-BFT, a fuzzy system-based algorithm is

used as an effective approach to detect compromised devices

or byzantines.

3.1.2 Byzantine detection and elimination

In this F-BFT, byzantine node detection through type-1

fuzzy system based algorithm was performed as a behavior-

based distributed computation algorithm (Algorithm1)

without relying on a central server. However, there are head

nodes (H) in this distributed environment (Network Topology)

which are collaborate and work independently to complete this

task.

Algorithm 1: Byzantine nodes detection using type-1fuzzy

system.

Input: Dynamic responses of devices

Output: List of byzantine nodes

for each N (n1,n2.....nm) at interval 't'

 H compute CRT, DPD, FT, TQT

 Call fuzzy()

end for

function fuzzy ()

start

 for (i=1; i<N; i++) do

 ωi=µA (x). µB (y)

 ωi.f =ωi (mix+niy+ri)

 ω(x,y)=m(i)+n(i)

done

𝑟𝑒𝑡𝑢𝑟𝑛 ∑ 𝜔𝑖 . 𝑓 =
∑ 𝜔𝑖.𝑓

∑ 𝜔𝑖

end

 send→ msg ("byzant", bz[], H)

N, participating devices in the network; CRT,

communication response time; DPD, data processing delay;

FT, forwarding time; TQT, total quality time; H, Head node;

mem, member function; R, relation; msg, message; bz[], list

of byzantines.

After computing byzantines, H initiates operation to

disconnect the byzantines from the network (Algorithm 2). In

this, H executes Algorithm 2, receives the list of byzantines bz[]

and disconnects those devices from the network.

Algorithm 2: Disconnecting byzantines from the network.

Input: Byzantines

Output: Byzantine-free network

for each time interval 't'

H call disconnect (bz[])

end for

function disconnect (bz[])

start

 call Remove (bz[1],bz[2]....bz[nm])

 send→ msg ("disconnected", bz[], H)

end

msg, message; n, participating node in the network; bz[],

list of byzantine nodes.

Disconnecting byzantine nodes from the network ensures

the security and integrity of the network. For each time interval

‘t’, the byzantine nodes are automatically disconnected from

the network through the head node H. Once byzantine nodes

are identified, isolate these nodes from the rest of the network

can prevent further harm. This can prevent the malicious

activity from spreading to other parts of the network. We

implemented continous monitoring of byzantine nodes and

disconnecting mechanism to quickly identify and respond to

any future malicious activities. The logic associated with

byzantine disconnecting mechanism is implemented as

continuous monitoring (bz[] - arrays of byzantine nodes) to

remove them from the rest of the network.

3.1.3 Automated failover mechanism

In general, fault tolerance in the context of the IoT refers to

the ability of an IoT system to continue operating correctly and

reliably even in the presence of failures or disruptions. In this

work, BFT is designed as a self-healing mechanism to

automatically detect and eliminate byzantines without human

intervention. Hence, systems can continue operating even

when some systems disconnected due to byzantines through

the use of backup devices. Backup devices are redundant

components that can take over the function of disconnected

devices in the event of faults. This can be done through

automated failover mechanisms, where the system

automatically switches to the backup devices in the presence

of byzantine faults.The most commonly used BFT method for

distributed IoT system is PBFT (Practical Byzantine Fault

Tolerance). To ensure fault tolerance in PBFT, it requires that

at least two-thirds of the nodes in the system are not

compromised and follow the protocol correctly. This ensures

that any byzantine nodes cannot cause the system to fail or

produce inconsistent results. In the results and discussion

section, the proposed BFT has been compared with PBFT and

similar current works to prove the efficiency of the proposed

BFT. Furthermore, the performance of the fuzzy system was

evaluated using a random sample inputs (CRT, DPD, FT, TQT)

of 1000 nodes to assess the classification of fuzzy models

(Discrete Time (DT), Continuous Time (CT) or Non-

Continuous Time (NCT)), error rate and accuracy. These

metrics provided a comprehensive view of the performance of

the fuzzy system and used to fine tune the system for better

performance.

4. RESULTS AND DISCUSSIONS

The simulations were implemented using OMNET++ to

1612

design the Internet of Things (IoT) environments established

with 200 to 1000 nodes as input. The communication setup,

including bandwidth, packets, links to the network, baud rate,

and other specifications was established. In this experiment,

the topology was designed by setting the 1000 nodes, three

routers, and nearly 2000 links to connect as a decentralized

graph between nodes and gateways, configured with a 20-

Mbps bandwidth, a 100 ms delay, and a 2GB capacity queue.

The fuzzy logic system was implemented as an object (C++

version) in OMNET++ to process input, computation, and

conclusion. The simulation results described in this section

were performed in an AMD A10-PRO 7800B R7, 12 computer

cores 4C+8G 3.50 GHz, 8-GB of random access memory

(RAM) computer, and the operating system was Ubuntu

22.04.3 release. The experiments were evaluated by

comparing the PBFT and STBFT methods for various

parameters such as the average delay, average throughput, and

communication complexity. Here, the time based type-1 fuzzy

system for detecting and disconnecting byzantine nodes

caused some delay in the process. Throughput is the rate at

which transactions (detecting and disconnecting) are

confirmed. Communication complexity is an algorithmic

complexity used to evaluate the process of detecting and

disconnecting operations. The mathematical model of type-1

fuzzy system is followed to represent membership functions,

inference systems, input and output functions, accuracy, error

rates, and conclusions in a more generic form.

4.1 Mathematical results of predicting byzantines using

type-1 fuzzy system

It is possible to model the fuzzy system without datasets to

confirm byzantines when actual results or datasets are not

available in advance. The foresight model can be determined

to find the accuracy for fuzzy logic system. Modeling of

prediction process for dynamic anomalous behavior of certain

devices is characterized by uncertainty. The accuracy of such

a model will never be absolute, although the prediction is

based on iterative computation of lower and upper bound to

confirm byzantines. The common way of determining

accuracy is to compare modeling results with actual data. In

the case of dynamic behavior analysis, these data only be

obtained after a fixed time period of upper bound computation

for which prediction is carried out.

Mathematical model of Membership Function (MF) used in

type-1 fuzzy system can be categorized as singleton, gaussion,

and Z(S)-shaped forms as shown in Table 2.

Table 2. Mathematical model of membership function

Name
Mathematical

Form
Remarks

Singleton {1, x=a│0, x=a}
a is the number that defines fuzzy

set.

Gaussian exp (
(𝑥−𝑏)2

2𝑐2
)

b is a coordinate of a function

maximum, c is the concentration

coefficient.

Z(S)-

Shaped
µ=

1

1+𝑒−𝑎(𝑥−𝑏)

For a>0, the function is S-shaped

one,

for a<0, the function is Z-shaped

one,

b is a coordinate for µ=0.5.

Since the inputs (CRT, DPD, FT, and TQT) for MF of the

F-BFT are in discrete form, singleton function is suitable to

generate output classification (byzantine (1) or not (0)). The

other two functions (Gaussian and Z(S)-Shaped) are used for

continuous input formats of applications.

This MF works on the basis of Mamdani fuzzy inference

system (Max-Min inference method) to reach a particular

conclusion (byzantine or not) based on some evidence (upper

bound or threshold) associated with a logic.

In the case of Max-Min inference method, the following

rules can be applied to confirm byzantines.

Rule 1: IF x1 is A1
1 and x2 is A2

1 THEN y1 is B1

In this rule, x denotes the CRT, DPD, FT inputs, A denotes

the upper bound or threshold and y denotes the output 1 or 0.

Rule 2: IF x1 is A1
2 and x2 is A2

2 THEN y2 is B2

In this rule, x denotes the TQT input, A denotes the upper

bound or threshold and y denotes the output 1 or 0.

The conclusion with the fuzzy model results can be

classified, namely, disruptive (DT), critical (CT), and non-

critical (NCT). This conclusion limits are determined by the

method of equidistant points (Eq. (8)).

P=√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (8)

This model finds equidistant points to determine a threshold

value. However, this approach will vary for multiple

evaluations (iterative). Therefore, it is reasonable to use

certain limits that do not change over multiple evaluations. In

this case, the Harrington desirability function can be applied

as shown in the following Eq. (9).

f(x)=exp(-exp(-x)) (9)

The lower threshold is critically 0.37, and the upper

threshold is 0.8. This model defines that when criticality level

exceeds 0.8 as disruptive.

4.1.1 Determining the accuracy

The developed BFT model performs classification, i.e., an

assessment of the input data to determine byzantine or not (1

or 0). The type-1 fuzzy model will estimate in the form of

different classes such as disruptive, critical, and non-critical.

Accuracy of this model is determined by the root-mean-square

error of the type-1 fuzzy model to confirm byzantines. The

acceptable error rate is only 5% for this modeling. Mean

square error of model is determined using the Eq. (10).

𝜎 = √
1

𝑁
∑ ∆𝑖

2

𝑁

𝑖=1

 (10)

where, N is the total number of measurements and i is the

current measurement.

In the testing phase, the testing inputs such as CRT, DPD,

FT, and TQT are given to the fuzzy system, which classify the

input as a byzantine or not. The obtained result is then used to

compute accuracy of the fuzzy system. The accuracy of the

system is computed based on the definitions, namely,

precision, recall, and F-measure. They are defined using the

Eq. (11).

precision=
𝑡𝑝

𝑡𝑝+𝑓𝑝
, recall=

𝑡𝑝

𝑡𝑝+𝑓𝑛
, F-

measure=
(𝛽2+1)(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑟𝑒𝑐𝑎𝑙𝑙)

𝛽2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 where β=1,

Accuracy=
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑛+𝑓𝑝
 where, tp- true positive, tn-

(11)

1613

true negative, fn-false negative, fp-false positive

The following Table 3 (Input class) and Table 4 has listed

out a random sample of 1000 nodes to assess the classification

of fuzzy models (DT, NCT or CT), error rate and accuracy.

For input variables: CRT, DPD, FT, and TQT.

Table 3. Class table

Categories Class Lables Class Names No.of Instances

Normal

Byzantine

C1 CRT 3297

C2 DPD 2564

C3 FT 9372

C4 TQT 5060

Table 4. Experimental results of type-1 fuzzy system

Training (1000 Nodes)
Testing (1000

Nodes)

CRT-ms DPD-ms FT-ms TQT-ms Category Error Accuracy
1.2 3.6 0.4 1.72 NCT 0.004 0.996

1.0 2.8 0.9 2.52 NCT 0.002 0.998

1.3 1.9 0.5 1.23 NCT 0.003 0.997
2.0 1.8 0.6 2.16 NCT 0.009 0.991

1.5 2.6 0.9 3.51 CT 0.006 0.994

1.6 2.0 0.7 2.24 NCT 0.005 0.995
2.2 3.4 0.5 3.74 CT 0.006 0.994

2.1 2.8 0.7 4.11 DT 0.004 0.996

2.0 1.4 0.5 1.4 NCT 0.001 0.999
1.6 1.8 0.9 2.59 NCT 0.006 0.994

2.5 2.0 0.8 4.0 DT 0.002 0.998

3.0 1.8 1.0 5.4 DT 0.005 0.995
2.8 1.8 0.4 2.02 NCT 0.003 0.997

1.6 2.0 0.7 2.24 NCT 0.004 0.996

2.0 1.7 0.9 3.06 CT 0.003 0.997

The following Figure 2 defines the confusion matrix for the

total input instances of 20293.

Figure 2. Confusion matrix

Table 4 presents a random set of 15 experimental cases fed

to the input of the fuzzy model, as well as the computed

criticality scores (DT, CT, NCT) with the corresponding errors

and accuracies. From the results of measuring the modeling

error approximately (σ=0.05) and the accuracy (0.995), it can

be concluded that the type-1 fuzzy model to predict the

byzantines in an IoT system foresight is accurate.

The Table 5 has listed out the actual outcome of accuracy,

recall, and F-Score for the various classes.

Table 5. Outcome of type-1 fuzzy of various classes

Classes Accu. Reca. F-Score

C1 99.79 98.98 98.17

C2 99.85 99.04 99.12

C3 99.81 98.75 98.97

C4 99.86 99.09 99.06

Average 99.50 98.89 98.83

4.2 Performance assessment of BFT

The average delay and average throughput were measured

and compared with PBFT and Scalable Tree-based Byzantine

Fault Tolerance (STBFT) for 1000 nodes, as shown in (Figure

3 and Figure 4 respectively).

Figure 3. Analysis of average delay

The average delay and average throughput of STBFT

(Average probability of faulty nodes and Average proportions

of faulty nodes) were 8.48% (decreased) and 8.69%

(increased), respectively, compared with those of PBFT.

However, the proposed F-BFT obtained a smaller delay and

higher throughput than the STBFT because of its type-1 fuzzy

system based detection operation.

Figure 4. Analysis of average throughput

Here, the average delay of the F-BFT detection algorithm

was 4.7% (decreased) and average throughput was 5.0%

(increased) when compared to the STBFT. Thus, the proposed

F-BFT algorithm was found to be more efficient than STBFT

and PBFT.

The performance metrics such as delay and throughput of

this work are listed in Table 6 and Table 7 respectively.

Table 6. Comparison of BFT for delay

Total Nodes
PBFT STBFT F-BFT

Delay/ms Delay/ms Delay/ms

200 500 70 55

400 1500 300 150

600 2000 500 220

800 4000 700 310

1000 6000 800 400

1614

Table 7. Comparison of BFT for throughput

Total

Nodes

PBFT STBFT F-BFT

Throughput/tps Throughput/tps Throughput/tps

200 18 24 39

400 10 22 35

600 7 20 34

800 3 18 32

1000 1 17 31

An increasing number of devices or nodes in the network

increases the delay and decreases throughput. Throughput is

the rate at which the network sends or receives data between

devices and gateway. When the number of devices that this

network reserves for network performance increases, the

network throughput increases.

The results were also compared with those of the existing

system, which proved that the F-BFT has a smaller delay and

higher throughput than the existing system.

The reliability of participating devices in an IoT

environment can be extensively increased by establishing a

strong security layer (F-BFT) based communication system.

Fairness in device selection (H) for computing anomalous

behaviors was executed dynamically for the detection process

of byzantines. In this F-BFT, the communication complexity

was evaluated based on the number of participating devices (m)

in the network by which network operations and byzantine

node detection were executed. These participating devices (m)

were subsets of the network (n). When compared with various

BFT methods, the complexity of the F-BFT process was

reduced from multiple evaluations to a single evaluation using

type-1 fuzzy system, thereby reducing the complexity from

O(m2) to O(m). The detailed comparisons are presented in

Table 8.

Table 8. Analysis of reliability, fairness, and communication

complexity

BFT

Methods

Node

Reliability

Node

Fairness

Communication

Complexity

PBFT O(n2)

STBFT O(m2) where m<n

F-BFT O(m) where m<n

5. CONCLUSIONS

This work presented a detailed discussion on the security of

devices, and investigated the byzantine fault problem in an IoT

system, for which the proposed F-BFT implemented a fault

tolerance mechanism through a byzantine detection and

elimination strategy. This work included a dynamic behavior

analysis of nodes by CRT, DPD, FT, and TQT, computing

confirmed byzantine nodes through type-1 fuzzy system, and

applying automated failover mechanisms. From the results of

measuring the modeling error approximately (𝜎 = 0.05) and

the accuracy (99.5%), Recall (98.89%), and F-Score (98.83%).

The average delay and average throughput were measured

and compared with PBFT and Scalable Tree-based Byzantine

Fault Tolerance (STBFT) for 1000 nodes. The average delay

and average throughput of STBFT (Average probability of

faulty nodes and Average proportions of faulty nodes) were

8.48% (decreased) and 8.69% (increased), respectively,

compared with those of PBFT. However, the proposed F-BFT

obtained a smaller delay and higher throughput than the

STBFT. Here, the average delay of the F-BFT detection

algorithm was 4.7% (decreased) and average throughput was

5.0% (increased) when compared to the STBFT. An increasing

number of devices or nodes in the network increases the delay

and decreases throughput. In this F-BFT, the communication

complexity was evaluated based on the number of

participating devices (m) in the network When compared with

various BFT methods, the complexity of the F-BFT process

was reduced from multiple evaluations to a single evaluation

using type-1 fuzzy system, thereby reducing the complexity

from O(m2) to O(m).

While our work focuses on the impact of BFT solution

through detection operations, by using a simulation test bed

and mathematical design, a significant set of challenges is

derived from the deployment of proposed BFT. Indeed, the

computational requirements of the BFT approaches might not

be satisfied by constrained IoT devices in terms of computing

power, energy consumption, and memory. To address such

limitations, the use of edge computing by establishing

intermediate nodes shall resolve the issues of low resource

constraints of IoT devices.

In the future, this work can be further extended by

incorporating artificial intelligence techniques to reduce the

complexity and dynamic decisions associated with byzantine

behaviors of participating nodes in the network.

ACKNOWLEDGMENT

The authors are grateful to all who supported us in

producing this article and to those who contributed to this

study.

REFERENCES

[1] Abiodun, E.O., Jantan, A., Abiodun, O.I., Arshad, H.

(2020). Reinforcing the security of instant messaging

systems using an enhanced honey encryption scheme:

The case of WhatsApp. Wireless Personal

Communications, 112: 2533-2556.

https://doi.org/10.1007/s11277-020-07163-y

[2] Williams, P., Dutta, I.K., Daoud, H., Bayoumi, M. (2022).

A survey on security in internet of things with a focus on

the impact of emerging technologies. Internet of Things,

19: 100564. https://doi.org/10.1016/j.iot.2022.100564

[3] Zawaideh, F., Salamah, M., Al-Bahadili, H. (2017). A

fair trust-based malicious node detection and isolation

scheme for WSNs. In 2017 2nd International Conference

on the Applications of Information Technology in

Developing Renewable Energy Processes & Systems

(IT-DREPS), Amman, Jordan, pp. 1-6.

https://doi.org/10.1109/IT-DREPS.2017.8277813

[4] Ram Prabha, V., Latha, P. (2017). Fuzzy trust protocol

for malicious node detection in wireless sensor networks.

Wireless Personal Communications, 94(4): 2549-2559.

https://doi.org/10.1007/s11277-016-3666-1

[5] Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P. (2003).

Byzantine fault tolerance, from theory to reality. In

International Conference on Computer Safety,

Reliability, and Security, Edinburgh, UK, pp. 235-248.

https://doi.org/10.1007/978-3-540-39878-3_19

[6] Rahli, V., Vukotic, I., Völp, M., Esteves-Verissimo, P.

(2018). Velisarios: Byzantine fault-tolerant protocols

1615

https://doi.org/10.1007/s11277-020-07163-y
https://doi.org/10.1016/j.iot.2022.100564

powered by Coq. In Programming Languages and

Systems: 27th European Symposium on Programming,

ESOP 2018, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, pp. 619-650.

https://doi.org/10.1007/978-3-319-89884-1_22

[7] Sousa, J., Bessani, A., Vukolic, M. (2018). A byzantine

fault-tolerant ordering service for the hyperledger fabric

blockchain platform. In 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks (DSN), Luxembourg, Luxembourg, pp. 51-58.

https://doi.org/10.1109/DSN.2018.00018

[8] Zhang, T., Wang, C., Chandrasena, M.I.U. (2023).

Blockchain-assisted data sharing supports deduplication

for cloud storage. Connection Science, 35(1): 2174081.

https://doi.org/10.1080/09540091.2023.2174081

[9] Thai, Q.T., Yim, J.C., Yoo, T.W., Yoo, H.K., Kwak, J.Y.,

Kim, S.M. (2019). Hierarchical Byzantine fault-

tolerance protocol for permissioned blockchain systems.

The Journal of Supercomputing, 75(11): 7337-7365.

https://doi.org/10.1007/s11227-019-02939-x

[10] Binun, A., Dolev, S., Hadad, T. (2019). Self-stabilizing

byzantine consensus for blockchain: (Brief

announcement). In Cyber Security Cryptography and

Machine Learning: Third International Symposium,

CSCML 2019, Beer-Sheva, Israel, pp. 106-110.

https://doi.org/10.1007/978-3-030-20951-3_10

[11] Vinayakumar, R., Alazab, M., Soman, K.P.,

Poornachandran, P., Al-Nemrat, A., Venkatraman, S.

(2019). Deep learning approach for intelligent intrusion

detection system. IEEE Access, 7: 41525-41550.

https://doi.org/10.1109/ACCESS.2019.2895334

[12] Yu, X., Qin, J., Chen, P. (2022). GPBFT: A practical

byzantine fault-tolerant consensus algorithm based on

dual administrator short group signatures. Security and

Communication Networks, 2022: 83-94.

https://doi.org/10.1155/2022/8311821

[13] Almseidin, M., Alkasassbeh, M. (2022). An accurate

detection approach for IoT botnet attacks using

interpolation reasoning method. Information, 13(6): 300.

https://doi.org/10.3390/info13060300

[14] Palanikkumar, D., Alrasheedi, A.F., Parthasarathi, P.,

Askar, S.S., Abouhawwash, M. (2023). Hybrid smart

contracts for securing IoMT Data. Computer Systems

Science and Engineering, 44(1): 457-469.

https://doi.org/10.32604/csse.2023.024884

[15] Jiang, W., Wu, X., Song, M., Qin, J., Jia, Z. (2023). A

scalable byzantine fault tolerance algorithm based on a

tree topology network. IEEE Access, 11: 33509-33519.

https://doi.org/10.1109/ACCESS.2023.3264011

[16] Yuan, X., Luo, F., Zeeshan, M., Haider, Chen, Z., et al.

(2021). Efficient byzantine consensus mechanism based

on reputation in IoT blockchain, Wireless

Communication and Mobile Computing, 9(5): 218-232.

[17] Lachouri, C.E., Mansouri, K., Lafifi, M.M. (2022).

Greenhouse climate modeling using fuzzy neural

network machine learning technique. Revue

d'Intelligence Artificielle, 36(6): 925-930.

https://doi.org/10.18280/ria.360614

[18] Tyagi, H., Kumar, R. (2021). Attack and anomaly

detection in IoT networks using supervised machine

learning approaches. Revue d'Intelligence Artificielle,

35(1): 11-21. https://doi.org/10.18280/ria.350102

1616

https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/s11227-019-02939-x
https://doi.org/10.1155/2022/8311821
https://doi.org/10.32604/csse.2023.024884

