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This study embarks on an exploration of the thermal deflection characteristics of finite 

hollow cylinders, employing the space-time fractional heat conduction equation within a 

quasi-static framework. Heat application is executed on the upper surface of the cylinder, 

whilst maintaining a zero-temperature condition on the remaining boundaries. 

Temperature distribution across the cylinder is determined using the integral transform 

technique, a method ensuring precision in the computation of thermal responses. The 

discourse on thermal deflection is grounded in the principles of fractional diffusion wave 

theory, a contemporary approach providing deeper insights into heat conduction dynamics. 

Numerical analyses are presented, illustrating transient and long-range interaction 

responses of the hollow cylinder under various diffusion scenarios, namely sub-diffusion, 

normal diffusion, and super-diffusion. 
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1. INTRODUCTION

Fractional calculus has recently garnered significant 

attention in various engineering disciplines, including 

applications in proportional-integral-derivative controllers, 

fluid mechanics, bio-mathematics, viscoelasticity, 

electrochemistry, and signal processing. This surge in interest 

has catalyzed research in non-integer calculus. The concept of 

fractional-order calculus, while intriguing, presents substantial 

challenges in understanding its physical interpretations. 

Podlubny [1] has contributed to this field with a discussion on 

the geometric and physical exposition of fractional integration. 

A notable advantage of fractional differential equations is their 

nonlocal property, which offers a broader scope of application 

compared to traditional methods. 

Riemann-Liouville's introduction of fractional derivatives 

has been instrumental in the evolution of fractional calculus. 

This concept has been extensively applied in mathematical 

formulations, offering unique and advantageous approaches. 

The field of fractional calculus has witnessed considerable 

research, driven by the interest in various methods of defining 

and utilizing fractional order derivatives. The adoption of 

fractional theory is attributed to its ability to represent delayed 

reactions to physical stimuli observed in nature, a feature not 

encapsulated by the generalized theory of thermoelasticity, 

which assumes immediate responses to such stimuli. 

Sherief et al. [2] advanced the fractional-order theory of 

thermoelasticity, marking a significant contribution in this 

field. Povstenko [3-7] conducted in-depth studies on fractional 

thermoelasticity, employing the quasi-static theory. Raslan [8] 

addressed a specific problem related to a thick plate with 

symmetric temperature distribution. The work of Khobragade 

and Deshmukh [9] successfully tackled the inverse 

thermoelastic problem, providing a thorough analysis of quasi-

static thermal deflection in circular plates. Deshmukh et al. 

[10] focused on a thin circular plate containing a heat source,

employing a quasi-static methodology to ascertain the thermal

deflection. Further contributions in this domain include those

by Warbhe et al. [11, 12], who explored various problems

within fractional order thermoelasticity using a quasi-static

approach. Tripathi et al. [13] examined fractional order

thermoelastic deflection in thin circular plates with constant

temperature distribution. Additionally, Tripathi et al. [14]

solved a problem involving a heat source inducing a fractional

order generalized thermoelastic response in a half space,

which changed periodically. Recently, Warbhe [15]

investigated simply supported rectangular plates, focusing on

determining thermal stresses through thermal bending

moments, facilitated by a time-dependent fractional

derivative. Ezzat et al. [16, 17], El-Sayed and Gaber [18]

delved into a range of problems in fractional-order

thermoelasticity, expanding the scope of research in this

specialized area.

Research on thermoelasticity in fractional-order space-time 

domains has attracted attention from various scholars. Fil’ 

Shtinskii et al. [19] successfully solved the equation describing 

heat flow in fractional space and time, further analyzing its 

thermoelastic behavior in a one-dimensional half-space 

scenario. Povstenko [20] has contributed significantly to the 

discourse on space and time fractional diffusion equations. 

Sherief et al. [21] explored the realm of two-dimensional half-

space problems, delving into the novel theory of fractional 

order thermoelasticity. Hussein [22] focused on fractional 

order thermoelastic problems in the context of an infinitely 
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long solid circular cylinder. In a similar vein, Zhang and Li 

[23] examined the transient response of a hygrothermoelastic 

cylinder, grounding their analysis in fractional diffusion wave 

theory. These studies collectively underscore the growing 

interest and diversity in research approaches within the field 

of fractional-order thermoelasticity. 

In this study, a mathematical formulation is presented to 

describe heat flow in materials characterized by spatial and 

temporal variations. This formulation employs a time 

fractional differential operator to encapsulate memory effects, 

while the space fractional differential operator is used to model 

long-range interactions. The practical applications of 

fractional calculus have motivated the development of a 

mathematical model that integrates the space-time fractional 

differential operator. This model is constructed using a quasi-

static approach to examine its thermoelastic effects. 

The focus of the current study is a hollow cylinder subject 

to arbitrary temperature gradients, with the application of 

space-time fractional order derivatives. The problem is 

addressed using the integral transform technique. The 

discussion centers on thermal deflection, analyzed through the 

lens of time and space fractional order parameters, and these 

parameters are elucidated graphically. The mathematical 

model is specifically tailored for pure copper material and has 

undergone testing using Mathcad Prime 1.0 version. This 

approach provides a comprehensive understanding of the 

thermoelastic behavior of materials under fractional order 

space-time conditions. 

 

 

2. FORMULATION OF THE PROBLEM 

 

Consider a two-dimensional heat conduction equation in a 

hollow cylinder in the space-time domain, taking into account 

fractional order effects with dimensions b≤r≤c; 0≤z≤h, r>0, 

t>0. Maintained temperature zero at the inner boundary, outer 

boundary and on the lower surface, respectively. The 

temperature in terms of 
𝑄(𝑡)𝛿(𝑟)

2𝜋𝑟

 

is prescribed at the upper 

surface. The solution to the problem is obtained by using the 

integral transform technique.  

The definition of Caputo type fractional derivative is given 

by Povstenko [20]: 
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The Laplace transform for Caputo derivative is given as 

Warbhe et al. [12]: 
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where, s is the Laplace transform parameter. 

The formula of finite Riesz fractional derivative is defined 

in El-Sayed and Ezzat [24] as: 
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Liouville fractional integrals, ω>0. 

The space-fractional derivative of order β is defined in 

Povstenko [25] as pseudo-differential operator with the 

following rule for the Fourier transform: 
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where, ξ is the Fourier transform variable. 

The equation of space-time fractional-order heat conduction 

with arbitrary temperature for a hollow cylinder in the domain 

defined as b≤r≤c, 0≤z≤h: 
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with boundary conditions 

 

0=T , at hzbr = 0, , (6) 

 

0=T , at hzcr = 0, , (7) 

 

0=T , at crbz = ,0 , (8) 
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and initial conditions 

 

0=T , when 10,0 = t , (10) 

 

0=




t

T  when 21,0 = t , (11) 

 

where, a=thermal diffusivity, r=radius, δ=Dirac-delta function. 

The temperature on the surface (z=h) chosen in terms of 
𝛿(𝑟)

2𝜋𝑟
 

with the inclusion of function Q(t) jumps for t>0. 

Thermal deflection ω(r, t). 

The differential equation satisfies ω(r, t) which is given in 

reference to Warbhe et al. [12] as: 
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where, MT=thermal moment and it is defined as: 
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and D=flexural rigidity of the cylinder defined as: 
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where, E=Young’s modulus, at=coefficient of the linear 

thermal expansion and v=Poisson’s ratio. 

As the hollow cylinder is fixed on the inner and outer edges, 

we have: 

 

0=  at br =  and cr = . (15) 

 

 

3. SOLUTION OF THE PROBLEM 

 

3.1 Temperature distribution function 

 

On applying Hankel transform, finite Fourier Sine 

transform, and Laplace transform technique and their 

inversions respectively; to the system of Eqs. (5) to (11), one 

obtains the temperature distribution as: 
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where, Finite Hankel transforms and its inversion over the 

spatial variable r, in the range b≤r≤c defined in the study of 

Sneddon [26] as: drtzrTrKrtzT
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is the generalized Mittag - Leffler function. 

The normalized eigen function K0(ηp, r) is defined as: 
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3.2 Thermal deflection 

 

Using Eq. (16) in Eq. (13), we have obtained the thermal 

moment as: 
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Assuming the solution of Eq. (12), this satisfies the Eq. (15), 

as: 
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Substituting Eqs. (19), (20) into Eq. (12), and simplifying, 

one obtains: 
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Substituting Eq. (21) into Eq. (18), the thermal deflection 

obtained as: 
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4. NUMERICAL COMPUTATIONS 

 

To prepare the mathematical model for different parameters 

and functions for a copper (pure) material to discuss the 

fractional-order thermal deflection, we choose the following 

values defined (see reference Warbhe et al. [12]) as, b=1 m, 

c=2 m, z=0.4 m, w=5, t=5 sec., ν=0.35, h=0.4, τ=4.5 sec., 

μ=26.67 GPa, a=112.34×10-6 m2s-1, at=16.5×10-6 K. 

The distribution of the function jumps time t>0 for that we 

set the function Q(t), as Q(t)=e-wt, t>0, w>0. 

 

 

5. FIGURES 

 

Temperature-time dependence for β=1.75 and various 

values of α is presented in Figure 1. For the distinct values of 

α increases, it is observed that the impact of the region of heat 

disturbances is fluctuating throughout the region 1≤r≤2, which 

indicates the non-uniform pattern with concerning to radius. It 

is observed that for a small value of α the temperature 

equilibrium is faster and interpolating the classical heat 

conduction equation when α=0, α=1, α=2 which represent the 

liberalized heat conduction equation, diffusion equation, wave 

equation, it is shown that the sub-diffusion (0<α<1) implies an 

anomalous heat conduction with the convergent thermal 

conductivity and super-diffusion (1<α<2) implies an 

anomalous heat conduction with divergent thermal 

conductivity. When α=1, classical heat conduction occurs, 

which is prescribed as Fourier law of heat conduction. 
 

 
 

Figure 1. Effect of temperature on r for β=1.75 and distinct 

values of α 
 

Temperature-space dependence for α=2 and various values 

of β=1,1.5,2 is presented in Figure 2, which shows the 

interpolation of the classical heat conduction equation. When 

α=1, β=2 Eq. (1) becomes diffusion equation and when α=2, 

β=2 the Eq. (1) becomes wave equation. The classical heat 

equation which indicates the temperature is in the form of a 

wave equation. 

Thermal deflection time dependence for β=1.75 and various 

values of α is presented in Figure 3. From the graph, it is 

observed that thermal deflection radial direction shows weak, 

moderate, super conductivity for the different values of 

α=1,1.5,2, which predict the memory impact on the hollow 

cylinder. 
 

 
 

Figure 2. Effect of temperature on z for α=2 and distinct 

values of β 

 

 
 

Figure 3. Dependence of thermal deflection on r for β=1.75 

and distinct values of α 

 

Thermal deflection space dependence for α=2 and various 

values of β is presented in Figure 4. Thermal deflection is 

affected due to the inclusion of the jump function at the upper 

surface of the cylinder. Therefore, slow variation occurs in the 

region 0<z<1.5 and the peak of positive thermal deflection is 

observed in the region 1.5<z<2 with the distinct spatial 

fractional parameter β. 

The variation of thermal deflection depends not only on the 

values of  temperature in the neighbourhood of the selected 

point, but also depends on its value in a remote point. 

Therefore, the significant differences in thermal deflection 

distribution take place only for the values of a spatial variable. 

When α=1 and β=2, the fractional heat conduction equation 

turns into Fourier law of heat equation. 
 

 
 

Figure 4. Dependence of thermal deflection on z for α=2 and 

distinct values of β 

 

 

6. CONCLUSIONS 

 

In this study, we consider the space-time heat conduction 
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equation with the fractional order parameter in a hollow 

cylinder. Here, the operator 




t


 represent Caputo fractional 

derivative which predict memory effects whereas the 

fractional parameter 




t


 is finite Riesz fractional derivative 

predicted the long range interaction.  

In this problem considering a finite hollow cylinder and 

discuss the thermal deflection behavior with the help of 

temperature distribution  in terms of space  and time fractional 

order using a quasi-static approach. The temperature 

maintained zero at the inner and outer radii whereas the 

arbitrary temperature defined in Eq. (9) is prescribed on the 

upper surface of the hollow cylinder. As per as the condition 

(10) and (11) must be needed to reflect sub diffusion, normal 

diffusion and super diffusion it means which interpolates the 

classical heat conduction equation. With the help of 

temperature distribution the thermal deflection has been 

studied and illustrated graphically.  

The fractional-order theory foresees a delayed response to 

physical stimuli, while the space fractional differential 

operator effectively accounts for long-range interactions, 

aligning with observations in the natural world. To sum up, the 

outcomes detailed in this article are expected to be of value to 

researchers in the field of material sciences, as well as to 

material designers and those dedicated to advancing the theory 

of thermoelasticity through a quasi-static approach that 

incorporates fractional calculus. 

The main aim to study this problem is to interpolate the 

classical heat conduction equation for the different 

conductivity. It is observed that graphically, the variation of 

thermal deflection shows weak, moderate and 

superconductivity for different space-time fractional 

parameters with fixed time t=5.  

No one studied the space-time heat conduction equation in 

a finite length hollow cylinder and the impact of thermal 

stresses. Therefore, we claim that this is new and novel 

contribution to this field.  
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NOMENCLATURE 

 

r radius, m 

z thickness, m 

b inner radius of the disk, m 

c outer radius of the disk, m 

a thermal diffusivity, m2s-1 

at coefficient of linear thermal expansion, 
1

𝐾 
T(r, z, t) temperature distribution function, K

 

ω(r, t) thermal deflection, mm 

μ
 

Lamé constant 

v
 

Poisson ratio 

E
 

Young’s modulus 

 

Greek symbols 

 

α fractional order parameter for time 

β fractional order parameter for space 
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