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Suspension systems are crucial for enhancing passenger comfort, steering stability, and 

overall ride quality. They should also ensure effective directional control during 

handling manoeuvres and adeptly insulate passengers from external disturbances. In 

this study, a comparative evaluation was conducted between the Firefly Algorithm (FA) 

and Particle Swarm Optimisation (PSO) for optimising proportional-integral-derivative 

(PID) controllers in active suspension systems. Both algorithms, inspired by natural 

phenomena, have been previously successful in addressing diverse problems. By 

employing a mathematical model of the active suspension system and the MATLAB 

Simulation Toolbox, the behaviour of the system under these two optimisation 

techniques was investigated. The primary objective was to minimise the acceleration of 

the sprung mass in response to varied driving conditions. Results from the simulation 

process suggested a notable superiority of the FA over PSO when integrated with the 

PID controller, particularly in reducing the acceleration of sprung masses. 
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1. INTRODUCTION

Suspension systems provide a fundamental link between a 

vehicle's structure and its tyres. Among the main principles in 

vehicle engineering lies the need for passenger comfort, 

particularly minimizing disturbances caused by external 

vibrations. Such vibrations can emanate from multifarious 

causes, such as braking, engine operation, and unpaved roads. 

Referring to ISO2631-1 [1], Figure 1 indicates the frequency 

weightings that demonstrate human body susceptibility to 

vibrations. It is seen that the 0.5-2 Hz on the horizontal axis 

and 4-10 Hz on the vertical axis are the areas where the human 

body shows the most sensitivity. Therefore, to elevate ride 

comfort, efforts should concentrate on reducing the 

accelerations of the sprung mass, specifically within the 4-10 

Hz range [2]. 

Figure 1. Specified frequency weightings in ISO 2631-1 [2] 

Vehicle suspensions can largely be categorised based on 

operational principles. The initial category is the passive 

suspension system, constructed predominantly from dampers 

and springs. When integrated with electric, hydraulic, or 

pneumatic devices, this system evolves into an active 

suspension. Challenges pertaining to active vehicle suspension 

systems predominantly surround the need for reliable control 

strategies. Such strategies must effectively modulate hydraulic 

actuators to deliver optimal suspension characteristics, whilst 

concurrently accounting for model uncertainties, parameter 

variations, and erratic feedback readings [3]. A distinctive 

capability of active suspensions, not seen in traditional passive 

systems, is the ability to introduce energy into the system [4]. 

Typically, in active suspension configurations, actuators are 

aligned in parallel with the spring and shock absorber 

components. The core philosophy of active suspension control 

rests in the deployment of requisite forces between the 

vehicle's body and the wheel axle through an active element, 

commonly recognised as the actuator. 

In recent years, active suspension systems have been the 

subject of a wide variety of investigations. Many of these 

examinations have applied various approaches to the PID 

controller, owing to its cost-effectiveness, reliability and 

suitability for many usages. For example, attempts to nullify 

sprung mass acceleration, suspension deflection and tyre 

deflection led to the production of the H-infinity control 

system for actuator time-delayed active suspension systems 

[5]. A separate study [6] proposed the construction of a 

disturbance observer-based sliding mode controller in order to 
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increase the efficacy of the vehicle's active suspension system 

when it comes to sprung mass displacement and acceleration. 

The aim of this exercise was to diminish body displacement 

and vibrational duration following exposure to exterior 

disruptions. Subsequently, a robust controller, a fractional 

order controller with PID, was formulated to mitigate the 

effects of such perturbations and optimised using Whale 

Optimisation Algorithm (WOA) and the PSO methodology [7]. 

On the opposite end of the spectrum, contrasting studies have 

explored fuzzy logic controllers (FLC) for vehicular 

suspensions, revealing a superior performance of FLC 

compared to other approaches [8]. In a groundbreaking study, 

an active suspension quarter was built using the first adaptive 

control method. This particular effort used an approximation 

dynamic programming (ADP) algorithm. This study 

highlighted the widespread use of linear control techniques in 

the field [9]. Subsequently, the introduction of the PID method 

was reported for the first time for a three-dimensional impact 

dynamics model [10]. indicating significant progress in the 

field. Advances in this field have not only incorporated 

sophisticated control techniques, but also for systems 

equipped with two hydraulic systems, it has been 

demonstrated that such devices this ability to independently 

operate two components provides high efficiency compared to 

other systems, as described by Nguyen [11]. Such innovations 

are essential in exploiting the infinite advantages of modern 

algorithms, which have implications for cost reduction and 

time efficiency in design and testing. The development of the 

field is evident, as exemplified by Rodriguez-Guerra et al. 

LPV) method used it is shown that the constantly changing 

parameters of this method are consistent with the selected 

model [12]. At the same time, stronger control mechanisms 

have been found to help reduce vehicle vibration [13]. 

Generally, artificial neural network (ANN)-based algorithms 

have been shown to enhance control process stability [14, 15]. 

In the realm of active suspension control, a unique method was 

developed that fuses a PID controller with a fuzzy neural 

network. The primary optimisation focus of this method lies in 

body acceleration, with real-time adjustments made to the 

parameters of the PID controller [16]. A specific method is 

introduced for active suspension systems using a fuzzy sliding 

mode control (SMC) method motivated by bionic nonlinear 

dynamics [17 that concludes by taking advantage of the 

nonlinear stiffness damping properties of the biomimetic 

reference model a are used efficiently Despite its energy 

efficiency performance, an adaptive neural network output 

feedback control case of a quarter car active suspension system 

was investigated [18]. 

Research efforts have expanded in the area of control 

algorithms used for active suspension systems. One such study 

introduced a linear quadratic regulator (LQR) control 

algorithm, where an in-loop optimization procedure was used 

to optimize the parameters of the LQR controller Another 

work used a dynamic model with multiple parameters [19] to 

simulate vehicle oscillations in the four-way surface excitation 

scenarios [20] in this regard The study also laid the foundation 

for adaptive fuzzy sliding mode proportional (AFSP) control 

solutions for active suspension systems. Another notable 

approach focused on adaptive extended Kalman estimation 

filtering (AEKF-UI) without known inputs, with an explicit 

relationship between parking and road complexity as its 

cornerstone on the reference [21]. An active suspension test 

system was also established, in which stiffness and damping 

properties of front and rear suspensions were evaluated under 

various conditions [22]. The test used an A-level road power 

spectrum as an input excitation. Subsequently, Min et al. [23] 

introduced an adaptive fuzzy optimal controller with dynamic 

capabilities for active suspension systems. Lastly, Mustafa et 

al. [24] proposed a PSO-based model-free fuzzy intelligent 

PID controller, further advancing the field. 

The present study focuses on the development of a PID 

controller optimized by FA and PSO. The PSO-PID, FA-PID, 

and uncontrollable schemes are compared. PID controllers, as 

designed, have fast and consistent power delivery, 

characterized by reduced error, steady-state error elimination, 

reduced overshoot and oscillations Key metrics for measuring 

suspension systems no efforts include spring mass 

acceleration, displacement, suspension deflection and tire 

acceleration Finally bound metrics are After this introduction, 

the analysis goes into detail on the numerical examples in 

Section 2. Section 3 covers the development of PID controller 

with optimization -communicated using FA and PSO 

capabilities. Finally, Section 4 presents simulation results and 

insights gained from the implemented controller. 

 

 

2. MATHEMATICAL MODELLING 
 

A detailed mathematical model was established in order to 

optimize the PID control system of the active suspension 

system. The active suspension system consisting of actuators 

along with springs and dampers was thoroughly investigated. 

It was found that the necessary energy is applied in the 

suspension system to reduce unwanted vibrations. A quarter-

car model, as illustrated in Figure 2, provides a detailed 

schematic representation. 

 

 
 

Figure 2. Quarter-car suspension system 

 

Utilising Newton's fundamental laws of motion coupled 

with the free body diagram technique, a mathematical model 

for a quarter-car active suspension system was formulated [25]. 

This model is governed by the following equations: 

 

∑ 𝐹 = 𝑚𝑎 (1) 

 

𝑚1�̈�1 = −𝑘1(𝑦1 − 𝑦2) − 𝑏(�̇�1 − �̇�2) (2) 

 
The Laplace transform was subsequently applied to Eq. (2), 

yielding: 

 

𝑚1𝑠2𝑦1(𝑠) = −𝑘1(𝑦1(𝑠) − 𝑦2(𝑠))
− 𝑏(𝑠𝑦1(𝑠) − 𝑠𝑦2(𝑠)) 

(3) 
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(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1)𝑦1(𝑠) − (𝑏𝑠 + 𝑘1)𝑦2(𝑠) = 0 (4) 

 

𝑦2(𝑠) =
(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1)𝑦1(𝑠)

(𝑏𝑠 + 𝑘1)𝑦2
 (5) 

 

𝑚2�̈�2 = 𝑘1(𝑦1 − 𝑦2) + 𝑏(�̇�1 − �̇�2) + 𝑘2(𝑦2

− 𝑥) 
(6) 

 

Further, the Laplace transform was also employed for Eq. 

(6), resulting in: 

 

𝑚1𝑠2𝑦2 = 𝑘1(𝑦1(𝑠) − 𝑦2(𝑠))

− 𝑏(𝑠𝑦1(𝑠) + 𝑠𝑦2(𝑠)) + 𝑋(𝑠) 
(7) 

 

(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1 + 𝑘2)𝑦2(𝑠) − (𝑏𝑠 + 𝑘1)𝑦1(𝑠)

= 𝑘2𝑋(𝑠) 
(8) 

 

(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1

+ 𝑘2)
(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1)𝑦1(𝑠)

(𝑏𝑠 + 𝑘1)𝑦2

− (𝑏𝑠 + 𝑘1)𝑦1 = 𝑘2𝑋(𝑠) 

(9) 

 
𝑦1(𝑠)

𝑥(𝑠)

=
𝑘2(𝑏𝑠 + 𝑘1)

(𝑚2𝑠2 + 𝑏𝑠 + 𝑘1 + 𝑘2)(𝑚1𝑠2 + 𝑏𝑠 + 𝑘1) − (𝑏𝑠 + 𝑘1)2 
(10) 

 

𝐺(𝑠)

=
 2.4𝑒08𝑠 +  2.56𝑒09

12500𝑠4 +  450000 𝑠3 + 4.48𝑒07 𝑠2 + 2.4𝑒08 𝑠 + 2.56𝑒09
 

(11) 

 

In this representation, X(s) denotes the control effort, while 

y1 and y2 signify the vertical displacements of the tyre and 

sprung mass respectively. Table 1 offers a detailed account of 

the parameters [26] considered for this quarter vehicle active 

suspension system model. 
 

Table 1. Parameters of the quarter vehicle active suspension 

system [26] 
 

Notation Description Value Unit 

M1 Sprung mass 250 kg 

M2 Unsprung mass  50 kg 

K1 Spring stiffness 16,000 N/m 

K2 Tyre stiffness 160,000 N/m 

b Damping coefficient 1,500  N.s/m 

 

 

3. OPTIMISATION 

 

3.1 PSO-based optimisation for PID control 

parameters 
 

PSO emerged as a compelling intelligent swarm 

optimisation technique, inspired by the natural behaviours 

observed in flocks of birds. The inception of PSO is attributed 

to Kennedy, Eberhart, and Shi. Within the PSO algorithm, 

every particle in the population is orchestrated to gravitate 

towards the currently superior particle at a specific velocity. 

This gravitation seeks to discern the optimal solution among 

the available alternatives. Owing to its pronounced 

convergence properties and parallel global search capabilities, 

PSO frequently discovers the global optimum, adeptly 

addressing formidable optimisation challenges [26, 27]. The 

effectiveness of a control system is heavily influenced by the 

interaction among the particles, and their associated fitness 

values, as determined through the amalgamation of the PSO 

method and a pertinent simulation model [28]. 

Compared to other population-centric stochastic 

optimisation algorithms such as the genetic algorithm (GA) 

and Ant Colony Optimisation (ACO), PSO often exhibits 

comparable, if not superior, search performance for a myriad 

of optimisation quandaries. PSO's primary merits lie in its 

straightforward implementation, rapid convergence to 

satisfactory solutions, and efficacy. Nonetheless, PSO is not 

without limitations. For instance, a definitive convergence 

guarantee is absent. Given its stochastic nature, the algorithm 

can become ensnared in a local optimum, potentially missing 

the global pinnacle. Furthermore, the sensitivity of PSO to 

parameter selection poses difficulties. The inertia weight, 

which plays a crucial role in determining how much particles' 

ideal placements affect their movements, requires careful 

calibration. An excessive level of inertia might cause 

stagnation. However, a minimal level of it leads to 

unpredictable particle movements. Both of these situations 

limit the thorough exploration of the search domain. PSO's 

convergence speed has been found to be limited, especially in 

search spaces with several dimensions. The delayed 

convergence of the PSO method can be linked to the limited 

knowledge that each particle holds about the search space. It 

is a result of the system's fundamental architecture. To 

implement PSO, it is necessary to initialise a group of particles 

with random positions and velocities within the specified 

search area. The following steps consist of evaluating the 

fitness of each particle, updating the best positions for both 

individual particles and the entire swarm, modifying the 

velocity of each particle based on the optimal positions, and 

repeating this process until a specified termination condition 

is satisfied. 

 

𝑣𝑖+1 = 𝑤 ∗ 𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖)
+ 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥1) 

(12) 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 (13) 

 

The PSO algorithm's core variables include the inertia 

weight (w), which enhances search stability, alongside the 

cognitive (c1) and social coefficients (c2), with the former 

regulating the retention of a particle's initial velocity (v), and 

the latter two influencing the extent to which a particle is 

swayed by its own optimum position and that of its 

neighbours. The equilibrium between exploration and 

exploitation, pivotal for discerning the global optimum, is 

modulated by these variables. Random values, r1 and r2, fall 

within the [0-1] range. The terms pbest and Gbest correspond 

to the finest individual and collective particle positions in the 

swarm, while xi represents the current position. Eq. (12) 

computes the new particle velocity given the prior velocity and 

the positional discrepancy with the optimum, whereas Eq. (13) 

facilitates the particle's trajectory towards a new position. The 
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prowess of a particle is evaluated via its fitness function, 

enabling the pursuit of the finest global and local positions, 

reflected in diverse PSO performance metrics. Table 2 lists the 

settings for the PSO algorithm. 

 

Table 2. Configuration parameters for the PSO algorithm 

 
Swarm Size 20 

Maximum iterations 100 

Problem dimension (kp, ki and kd) 3 

Cognitive acceleration (c2) 1.4 

Social acceleration (c1) 1.2 

Inertial weight (w) 0.9 

 

3.2 Description of the FA 

 

The FA has been recognized in recent literature as a 

prominent method within evolutionary computation, primarily 

attributed to its transparent evolutionary mechanism, minimal 

parameter requirements, and notable efficacy in low-

dimensional searches. A surge in interest in FA has led to its 

application in a plethora of domains. Notably, Chatterjee et al. 

demonstrated superior performance of the FA over the 

Artificial Bee Colony (ABC) algorithm in the realm of antenna 

design optimisation [29]. Elsewhere, the FA was successfully 

integrated for tuning the adaptive network-based fuzzy 

inference system (ANFIS) and PID controllers in managing 

water discharge levels in tanks [30]. Furthermore, the PID 

controller parameters within an Automatic Voltage Regulator 

(AVR) system were optimised using the FA [31]. Essentially, 

PID controller gains were adjusted during the FA's 

optimisation process to enhance control performance under 

typical conditions. Via this algorithm and subsequent 

simulations, attempts were made to refine the PID parameters: 

kp, ki and kd. 

Yang is credited with the development of FA, which was 

modeled on the basis of flame behavior and light-beam 

patterns, and is a population-based method [32] Each firefly 

generates a specific heat pattern that serves two purposes: 

attraction and communication. The absorbance is determined 

by the inherent brightness of the flame associated with the 

specified objective function. In this algorithm, each flame 

occupies the position x=(x1..., xd), the attraction value, the 

deviation (x) in the segment d-dimensional field, which 

corresponds to the function f(x) and then in form on the 

opposite light intensity I(x) is absorbed for the other fireflies 

( . It is functional to evaluate f x) as depicted in Eq. (14) [33, 

34]. 

 

𝐼 = 𝐼0𝑒−𝛾𝑟 (14) 

 

where, γ denotes the light absorption coefficient, and I0 

represents the initial light intensity. Given the inverse 

relationship between a firefly's allure and its perceived 

brightness by other fireflies, the attractiveness β is defined as: 

 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟2
 (15) 

 

In this context, β symbolises the attractiveness at r=0, while 

Eq. (15) depicts the attractiveness's variation β0 with distance 

r. Predicated upon these, an initial solution is proposed by Eq. 

(16): 

 

𝑋𝑗 = 𝑟 and (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏 (16) 

 
where, upper and lower boundaries are denoted by Ub and Lb 

respectively. Eq. (17) provides an illustration of a firefly's 

trajectory towards another more luminous firefly.  

 

𝑋𝑖
𝑟+1 = 𝑋𝑖

𝑟 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑋𝑗 − 𝑋𝑖) + 𝛼𝜀𝑖 (17) 

 

where, Xi and Xj delineate the distance between any two 

fireflies. The parameters implemented in this study associated 

with the firefly are exhibited in Table 3. 

 
Table 3. Parameters of the FA 

 
Parameter Name Value 

Firefly size 20 

Max generation  100 

Alpha (𝛼) 0.25 

Beta (𝛽) 1 

Gamma (𝛾) 0.2 

Lower bounded (Lb) [5000,100,0] 

Upper bounded (Ub) [10000,1000,1000] 

 
The parameter α was identified as being of paramount 

significance. Experimental sets were conducted, varying its 

value from 0 to 1 in increments of 0.25, culminating in an 

optimal value of 0.25. γ is the subsequent pivotal parameter, 

with its range typically spanning from 0.01 to 100 [35]. The 

final noteworthy parameter is the population size N, with 

experimental sizes extending from 100 to 1,000. 

 

 

4. SIMULATION RESULT AND CONTROLLER 

 
The research foundation for this study was derived from a 

vehicle described in a previous study. The parameters listed in 

Table 1 were derived from the standard values associated with 

that study. Figure 3 shows a schematic diagram of the quarter 

driving system. This model includes two full bodies, 

representing fourth wheels and wheels, with a combination of 

lumped characteristics that provide suspension and tire 

stiffness and damping Single bumps were chosen for the road 

profile, which was similar the size of the true path system [36]. 

The perturbation on the road, induced by this bump, can be 

represented by Eq. (18). 

 

𝑅𝑑 = {

𝐴

2
(1 − cos 2𝜋 (

1

𝑇𝑏

)   𝑓𝑜𝑟 𝑇𝑏 ≤ 𝑡 ≤ 2𝑇𝑏  

 0                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

 (18) 

 

where, A signifies the height of the bump, set at 0.05m, and Tb 

denotes its duration, which lies in the range between 0.5 and 

0.75 seconds. Figure 3 portrays a road profile characterized by 

a single bump. 
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Figure 3. Simulink model of the active suspension system for quarter-cars 

 
Next, a dynamic simulation of the four-vehicle system was 

performed, clarifying the dynamic response of the system, 

affected by changes in the error signal including suspension 

deflection, acceleration, and car body displacement about, and 

the input was adjusted to match the default specification or set 

point. The displacement of the vehicle body was used as a 

feedback mechanism for calibration purposes, aiming to 

generate the required hydraulic actuator force. Figures 4, 5, 

and 6 elucidate the velocity, acceleration, and displacement of 

the car body in relation to the system devoid of a controller, 

respectively. 

 

 
 

Figure 4. Temporal response of vehicle velocity 

 

The apparent oscillatory instability of the system was 

attributed to changes in the response. The main objective of 

the implementation system was to ensure consistent 

operational capability of the vehicles despite variations in the 

route. The PID auto-tuner was found to be insufficient to be a 

reliable controller for the active suspension system under 

study. Instead, FA and PSO methods were used to determine 

the optimal PID parameters. 

 
 

Figure 5. Temporal response of vehicle body acceleration 

 

 
 

Figure 6. Temporal response of car displacement 

 

In the MATLAB/Simulink environment, a one-bump road 

profile was modelled for the active suspension system 

equipped with a PID controller. Tables 2 and 3 elucidate the 

parameter tuning results for the proposed controller using both 
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the FA and PSO algorithms. A disturbance magnitude of 

0.05m was set for the single bump. Figures 7, 8, and 9 depict 

the time-domain response of vibrations experienced by the 

passenger seat in a vertical orientation, drawing comparisons 

between controlled and uncontrolled scenarios. 

 

 
 

Figure 7. Response of car displacement body 

 

 
 

Figure 8. Response of car body velocity 

 

 
 

Figure 9. Response of car body displacement 

 

Post-optimisation, a discernible reduction in amplitude 

oscillations in the controlled system was observed, as 

evidenced in Figures 7, 8, and 9. The PID controller, fine-

tuned using FA and PSO approaches, exhibited diminished 

overshoot values and reduced settling times across parameters, 

such as sprung mass acceleration (indicative of passenger 

comfort), displacement, and vehicle velocity, in contrast to the 

uncontrolled system. Table 4 enumerates the percentage 

decrease in peak values for each parameter for the one-bump 

disturbance. 

 
Table 4. Reduction of overshoot levels for a single input 

 

Parameter 

Amplitudes 

Reduction with 

PSO-PID 

Controller 

Reduction with 

FA-PID Controller 

Car body 

displacement (m) 
18.09% 53.19% 

Car velocity 32.3% 54.42% 

Car body acceleration  44.2% 55.75% 

 
The graphical representations substantiate that the PID 

controller, augmented with PSO and FA, enabled the 

controlled variable to approach its set point within 

approximately two seconds. Notably, the suspension 

performance indices, particularly suspension dynamic travel 

and vertical acceleration, witnessed significant enhancement 

both pre and post-optimisation. It was determined that the PSO 

and FA algorithms hold considerable promise for application 

in suspension control. In direct comparisons, the FA-

optimised control demonstrated a superior performance over 

the PSO-optimised PID controller. This superiority of the FA 

algorithm suggests potential improvements in vehicle 

handling dynamics. 

 

 
5. CONCLUSIONS 

 
The suspension system stands as a pivotal component of a 

vehicle, instrumental in mitigating vibrations and impacts 

from uneven road terrains while transmitting force. For the 

quarter-car active suspension model under investigation, a PID 

controller was optimised using the FA and PSO. It was 

observed that with an increment in the number of iterations for 

both the FA and PSO algorithms, there was a significant 

reduction in the sprung mass displacement: 18.09% with PSO 

and 53.19% with FA. Similarly, car body acceleration 

witnessed a reduction of 44.2% with PSO and 55.75% with FA. 

These outcomes highlight enhanced system dynamic 

responsiveness, specifically in the displacement of the car 

body, an indicator of passenger comfort and vehicular stability. 

Future avenues of study are proposed to investigate hybrid 

algorithms, encompassing combinations such as FA combined 

with grey wolf optimisation (FA+GWO), FA combined with 

PSO (FA+PSO), and FA combined with ABC (FA+ABC). 

Such hybrids promise to amalgamate the strengths of 

individual optimisation techniques, potentially circumventing 

their inherent limitations. Employing these multi-strategy 

approaches could facilitate a more expansive exploration of 

search spaces, thereby diminishing the risk of converging to 

local optima. Additionally, the synergistic employment of 

diverse optimisation strategies might streamline the search, 

cutting down computational time. This aspect is particularly 

critical, given that extended computation remains a significant 

impediment in such studies. 

 

 

 

2028



 

ACKNOWLEDGMENT 

 

We would like to express our sincere appreciation to the 

authors whose works on FA and PSO algorithms have 

appeared in numerous papers and conference proceedings. 

 

 

REFERENCES 

 

[1] ISO. (1997). ISO 2631-1:1997 Mechanical vibration and 

shock evaluation of human exposure to whole-body 

vibration, Part 1: General requirements. International 

Organization for Standardization. 

[2] Rimell, A.N., Mansfield, N.J. (2007). Design of digital 

filters for frequency weightings required for risk 

assessments of workers exposed to vibration. Industrial 

Health, 45(4): 512-519. 

https://doi.org/10.2486/indhealth.45.512 

[3] Karam, Z.A., Awad, O.A. (2020). Design of active 

fractional PID controller based on whale's optimisation 

algorithm for stabilizing a quarter vehicle suspension 

system. Periodica Polytechnica Electrical Engineering 

and Computer Science, 64(3): 247-263. 

https://doi.org/10.3311/PPee.14904 

[4] Priyandoko, G., Mailah, M. (2007). Simulation of 

suspension system with adaptive fuzzy active force 

control. International Journal of Simulation Modelling, 

1: 25-36. https://doi.org/10.2507/IJSIMM06(1)3.079  

[5] Du, H., Zhang, N. (2007). H∞ control of active vehicle 

suspensions with actuator time delay. Journal of Sound 

and Vibration, 301(1-2): 236-252. 

https://doi.org/10.1016/j.jsv.2006.09.022 

[6] Deshpande, V.S., Mohan, B., Shendge, P.D., Phadke, 

S.B. (2014). Disturbance observer based sliding mode 

control of active suspension systems. Journal of Sound 

and Vibration, 333(11): 2281-2296. 

https://doi.org/10.1016/j.jsv.2014.01.023 

[7] Nasiri, J., Khiyabani, F.M. (2018). A whale optimization 

algorithm (WOA) approach for clustering. Cogent 

Mathematics & Statistics, 5(1): 1483565. 

https://doi.org/10.1080/25742558.2018.1483565 

[8] Aly, A.A., Salem, F.A. (2013). Vehicle suspension 

systems control: A review. International Journal of 

Control, Automation and Systems, 2(2): 46-54. 

[9] Fu, Z.J., Li, B., Ning, X.B., Xie, W.D. (2017). Online 

adaptive optimal control of vehicle active suspension 

systems using singlenetwork approximate dynamic 

programming. Mathematical Problems in Engineering, 

4575926. https://doi.org/10.1155/2017/4575926 

[10] Anh, N.T. (2020). Control an active suspension system 

by using PID and LQR controller. International Journal 

of Mechanical and Production, 10(3): 7003-7012. 

https://doi.org/10.24247/ijmperdjun2020662 

[11] Nguyen, T.A. (2021). Improving the comfort of the 

vehicle based on using the active suspension system 

controlled by the double-integrated controller. Shock and 

Vibration, 2021: 1-11. 

https://doi.org/10.1155/2021/1426003 

[12] Rodriguez-Guevara, D., Favela-Contreras, A., Beltran-

Carbajal, F., Sotelo, D., Sotelo, C. (2021). Active 

suspension control using an MPC-LQR-LPV controller 

with attraction sets and quadratic stability conditions. 

Mathematics, 9(20): 2533. 

https://doi.org/10.3390/math9202533 

[13] Faraji-Niri, M., Khani, F. (2021). Robust guaranteed-cost 

control for half-vehicle active suspension systems 

subject to Markovian controller uncertainties. IETE 

Journal of Research, 69: 1-9. 

https://doi.org/10.1080/03772063.2021.1905083 

[14] Zhang, J.X., Li, K.W., Li, Y.M. (2021). Neuro-adaptive 

optimized control for full active suspension systems with 

full state constraints. Neurocomputing, 458: 478-489. 

https://doi.org/10.1016/j.neucom.2021.06.069 

[15] Al Aela, A.M., Kenne, J.-P., Mintsa, H.A. (2020). 

Adaptive neural network and nonlinear electrohydraulic 

active suspension control system. Journal of Vibration 

and Control, 28(3-4): 1-17. 

https://doi.org/10.1177/1077546320975979 

[16] Li, M., Li, J.P., Li, G.S., Xu, J. (2022). Analysis of active 

suspension control based on improved fuzzy neural 

network PID. World Electric Vehicle Journal, 13(12): 

226. https://doi.org/10.3390/wevj13120226 

[17] Zhang, M., Zhang, J. (2022). Fuzzy SMC method for 

active suspension systems with non-ideal inputs based on 

a bioinspired reference model. IFAC-PapersOnLine, 

55(27): 404-409. 

https://doi.org/10.1016/j.ifacol.2022.10.547 

[18] Wang, T., Li, Y. (2020). Neural-network adaptive 

output-feedback saturation control for uncertain active 

suspension systems. IEEE Transactions on Cybernetics, 

52(3): 1881-1890. 

https://doi.org/10.1109/TCYB.2020.3001581 

[19] Nguyen, M.L., Tran, T.T.H., Nguyen, T.A., Nguyen, 

D.N., Dang, N.D. (2022). Application of MIMO control 

algorithm for active suspension system: A new model 

with 5 state variables. Latin American Journal of Solids 

and Structures, 19(2). https://doi.org/10.1590/1679-

78256992 

[20] Nguyen, T.A. (2023). Design a new control algorithm 

AFSP (Adaptive Fuzzy–Sliding Mode–Proportional–

Integral) for automotive suspension system. Advances in 

Mechanical Engineering, 15(2). 

https://doi.org/10.1177/16878132231154189 

[21] Yang, H., Kim, B.G., Oh, J.S., Kim, G.W. (2022). 

Simultaneous estimation of vehicle mass and unknown 

road roughness based on adaptive extended Kalman 

filtering of suspension systems. Electronics, 11(16): 

2544. https://doi.org/10.3390/electronics11162544 

[22] Xiong, J. (2023). Vibration test and robust optimisation 

analysis of vehicle suspension system based on Taguchi 

method. SN Applied Sciences, 5: 4. 

https://doi.org/10.1007/s42452-022-05236-0 

[23] Min, X., Li, Y.M., Tong, S.C. (2020) Adaptive fuzzy 

output feedback inverse optimal control for vehicle 

active suspension systems. Neurocomputing, 403: 257-

267. https://doi.org/10.1016/j.neucom.2020.04.096 

[24] Mustafa, G.I.Y., Wang, H.P., Tian, Y. (2019). Vibration 

control of an active vehicle suspension systems using 

optimized model-free fuzzy logic controller based on 

time delay estimation. Advances in Engineering 

Software, 127: 141-149. 

https://doi.org/10.1016/j.advengsoft.2018.04.009 

[25] Zhao, L.L., Zeng, Z.Y., Wang, Z.Y., Ji, C.F. (2021). PID 

control of vehicle active suspension based on particle 

Swarm optimisation. Journal of Physics: Conference 

Series, 1748: 032028. https://doi.org/10.1088/1742-

6596/1748/3/032028 

[26] Hurel, J., Mandow, A., Garcia-Cerezo, A. (2012). Tuning 

2029



 

a fuzzy controller by particle swarm optimisation for an 

active suspension system. In IECON 2012 - 38th Annual 

Conference on IEEE Industrial Electronics Society, 

Montreal, QC, Canada, pp. 2524-2529. 

https://doi.org/10.1109/IECON.2012.6388697 

[27] Kadirkamanathan, V., Selvarajah, K., Fleming, P.J. 

(2006). Stability analysis of the particle dynamics in 

particle swarm optimizer. IEEE Transactions on 

Evolutionary Computation, 10(3): 245-255. 

https://doi.org/10.1109/TEVC.2005.85707 

[28] Čorić, M., Deur, J., Xu, L., Tseng, H.E., Hrovat, D. 

(2016). Optimisation of active suspension control inputs 

for improved vehicle ride performance. Vehicle System 

Dynamics, 54(7): 1004-1030. 

https://doi.org/10.1080/00423114.2016.1177655 

[29] Chatterjee, A., Mahanti, G., Chatterjee, A. (2012). 

Design of a fully digital controlled reconfigurable 

switched beam concentric ring array antenna using 

firefly and particle swarm optimisation algorithm. 

Progress in Electromagnetics Research B, 36: 113-131. 

https://doi.org/10.2528/PIERB11083005 

[30] Ali, M., Afandi, A.N., Parwati, A., Hidayat, R., Hasyim, 

C. (2019). Design of water level control systems using 

PID and ANFIS based on Firefly Algorithm. Journal of 

Electrical Engineering, Mechatronic and Computer 

Science, 2(1): 9-14. 

https://doi.org/10.26905/jeemecs.v2i1.2804 

[31] Bendjeghaba, O. (2014). Continuous Firefly Algorithm 

for optimal tuning of PID controller in AVR system. 

Journal of Electrical Engineering, 65(1): 44-49. 

https://doi.org/10.2478/jee-2014-0006 

[32] Malathi, M., Ramar, K., Paramasivam, C. (2016). 

Optimal path planning for mobile robots using particle 

swarm optimisation and dijkstra algorithm with 

performance comparison. Middle-East Journal of 

Scientific Research, 24(S1): 312-20. 

https://doi.org/10.5829/idosi.mejsr.2016.24.S1.65 

[33] Yang, X.S. (2009). Firefly Algorithm for multimodal 

optimisation. In Lecture Notes in Computing Sciences, 

5792: 169-178. https://doi.org/10.1007/978-3-642-

04944-6_14 

[34] Yang, X.S. (2010). Firefly Algorithm, levy flights and 

global optimisation. In Research and Development in 

Intelligent Systems XXVI, pp. 209-218, Springer, 

London, UK. 

[35] Yang, X.S. (2009). Firefly Algorithms for multimodal 

optimisation. In International Symposium on Stochastic 

Algorithms, pp. 169-178, Springer, Berlin, Heidelberg.  

https://doi.org/10.1007/978-3-642-04944-6_14 

[36] Choi, S.B., Kim, W.K. (2000). Vibration control of a 

semi-active suspension featuring electrorheological fluid 

dampers. Journal of Sound and Vibration, 234(3): 537-

546.  https://doi.org/10.1006/JSVI.1999.2849 

 

2030




