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This paper analyzes the features of emergency surgeries under urban emergencies, and 

establishes a model for batch surgery scheduling, taking the issue as the flow-shop scheduling 

problem (FSP) with parallel machines. The modelling also takes account of the fatigue of 

doctors after long-term continuous operations, which causes the aging of the operating time 

and the success rate of saving lives. Then, the improved moth-flame optimization (IMFO) was 

adopted to solve the established emergency surgery scheduling model. Finally, the proposed 

model and algorithm were verified through an actual case. 
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1. INTRODUCTION

In recent years, the continuous expansion of the city scale, 

coupled with the constant influx of migrants, has posed a 

serious threat to public security in urban areas [1]. Due to the 

high density of buildings and the narrow spaces in cities, it is 

highly difficult to implement rescue operations against 

emergencies. Under the co-scheduling of urban emergency 

rescue management system, the injury conditions must be 

identified and classified: those with light injuries should be 

treated at the site, while those with serious injuries should be 

transferred immediately to the hospital for surgery and first aid 

[2]. However, medical institutions are often overwhelmed by 

the sheer number of seriously injured people in urban 

emergencies. Against this backdrop, the urban public safety 

emergency management system should improve the efficiency 

of emergency surgery, trying to save the lives of the injured as 

much as possible through highly efficient utilization of limited 

medical resources. 

The existing optimization plans for hospital operating room 

mainly focus on the optimization of surgical scheduling. For 

example, Luo et al. established a mixed integer programming 

model for the balanced use of the operating room, aiming to 

maximize the utilization of the operating room [3]. 

Considering the uncertainty of the operating time, Wang et al. 

[4] created a deterministic model of the surgical scheduling

problem to maximize the hospital benefits, and proposed a

two-stage robust optimization method for the interval

operation scheduling problem. In light of the uncertainty of the

surgical procedure, Denton et al. [5] established a robust

optimization model to minimize the operating cost, and

determined the upper and lower bounds of the optimal number

of open operating rooms. Zhong et al. [6] described surgical

scheduling as a parallel machine scheduling problem, and

solved it by a two-stage approach.

These studies mainly consider how to reduce the operating 

time through maximal use of operating room resources under 

normal surgeries. However, there is no report on minimizing 

the operating time and maximizing the resource utilization 

facing the numerous seriously injured people under emergency 

surgeries. 

This paper identifies the features of emergency surgery 

under urban emergencies, and views emergency surgery 

scheduling as a flow-shop scheduling problem (FSP) with 

parallel machines. On this basis, the batch surgery scheduling 

was modelled, considering the fatigue of doctors performing 

long-term continuous emergency surgeries. The fatigue 

problem causes the aging of the operating time and the success 

rate of saving lives. Then, the emergency surgery model was 

solved by the improved moth-flame optimization (IMFO) 

algorithm. Finally, the model and algorithm were proved 

effective through empirical analysis. 

2. EMERGENCY SURGERY SCHEDULING 

PROBLEM

2.1 Problem description 

The theories and methods of production scheduling have not 

been widely applied in the service industry, despite the 

extensive implementation in the manufacturing industry. In 

fact, the production scheduling theory in the medical service 

industry needs to be improved more urgently. Based on the 

production scheduling theory, Bai et al. [7] reviewed the 

relevant studies on production scheduling theory and 

operating room scheduling, analyzed the applicability and 

difference of production scheduling theories in the operating 

room, and proposed the operating room scheduling framework. 

Pham et al. [8] regarded the optimization problem as a multi-

module shop scheduling problem, and established a 

corresponding mixed integer linear programming model to 

reduce the effects of performance indices on operating room 

timeout. Zhong et al. [9] managed operating room scheduling 

based on such theories as operational research, combinatorial 

optimization and scheduling theory. 
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In the daily hospital operation, there is basically no surgery 

on lots of injured people. However, once an emergency occurs, 

many injured people will be received to the hospital, waiting 

for surgery. Most of the injured have the same type of injuries, 

and thus requires similar surgeries. This type of emergency 

surgeries bears high resemblance with the processing of 

manufacturing jobs on machines. Therefore, the emergency 

surgery scheduling can be viewed as job-shop scheduling. 

Currently, many hospitals are ready to separate anesthesia 

preparation room from the anesthesia recovery room, forming 

three independent procedures. As shown in Figure 1, the three 

procedures are preoperative preparation (including anesthesia), 

surgery, and postoperative cleanup (including anesthesia 

recovery). When there is a need for surgery, the surgical 

scheduling center assigns the surgeries to each operating room 

by certain rules, and arranges the sequence between the 

surgeries. For each surgery, the total length covers three 

phases: preoperative preparation (including anesthesia), 

surgery, and postoperative cleanup (including anesthesia 

recovery). From the perspective of production scheduling, the 

entire scheduling process of emergency surgeries can be 

considered as the FSP. With more than one anesthesia 

preparation rooms, the operating rooms and anesthesia 

recovery rooms, the hospital is similar to a parallel machine 

job-shop. Each type of rooms is comparable to a type of 

machines that can be processed in parallel, while each injured 

person as a job. Thus, the emergency operation scheduling 

problem can be regarded as the flexible FSP, indicating that 

the job-shop scheduling theories can be introduced to 

emergency surgery scheduling. 

 

 
 

Figure 1. Emergency surgical procedures 

 

2.2 The aging effect of fatigue problem 

 

The urban emergency is usually associated with a huge 

number of injured people, pushing up the workload of 

surgeons. Under the high pressure, the doctors will inevitably 

suffer from fatigue, owing to such factors as gender, age and 

physical fitness. The fatigue problem has an aging effect on 

emergency surgery scheduling. Recent years has seen much 

attention being paid to scheduling problems with aging effect. 

In the earliest aging effect model, the processing time of each 

job is a non-decreasing linear function determined by the start 

time of the job.  

In addition, many aging effect models have been developed 

based on job position [10]. Nonetheless, the existing aging 

effect models have a common drawback, that is, the job with 

a late start time and a backward processing position needs an 

infinitely long processing time, provided that the start time or 

processing position of the jobs are sufficiently large. This goes 

contrary to the actual production law. The same problem exists 

in emergency surgery scheduling [11-14]. Thus, a upper bound 

must be included in the research of aging effect, such that the 

actual surgery of an injured person will not last for an infinitely 

long time with the increase in the start time or queue position. 

Considering the above, this paper explores the time aging 

effect caused by doctor fatigue in emergency surgeries, and 

builds a realistic emergency surgery scheduling model with 

this effect as the constraint. The aging effect model can be 

expressed as: 

 

ijkikijkijk
SCC +='

                                                                 (1) 

 

where 𝐶𝑖𝑗𝑘
′  and Cijk are the actual treatment time and 

theoretical treatment time of the j-th surgical procedure of the 

i-th injured person on the k-th machine, respectively; αik is the 

aging coefficient of the i-th injured person on the k-th machine; 

Sijk is the start time for the j-th surgical procedure of the i-th 

injured person on the k-th machine [15]. 

 

2.3 Emergency surgery scheduling model 

 

The emergency surgery dispatching problem can be 

described as follows: There are n injured people pi (i=1, 2, …, 

n) to receive three surgical procedures, following the same 

sequence. The j-th surgical procedure contains Sj parallel 

surgical beds (Sj>0, 𝑗 ∈ {1,2,3}). For all injured people, the j-

th surgical procedure can be implemented on any of the Sj 

parallel surgical beds, and each injured person has a unique 

surgical time on the bed. Note that 𝐶𝑖𝑗𝑘
′  and Sijk are the actual 

treatment time and theoretical treatment time of the j-th 

surgical procedure of the i-th injured person on the k-th 

machine, respectively. The scheduling problem is subjected to 

the following hypotheses: 

(1) All injured people share the same emergency surgical 

sequence, consisting of the same procedures. 

(2) There is no priority limit for each injured person, i.e. no 

limit on which injured person should be subjected to surgery 

first. 
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(3) All injured people can receive surgery immediately after 

reaching the hospital. 

(4) Each surgical procedure of each injured person can only 

be implemented on one surgical bed. 

(5) Each surgical bed can only treat one injured person at 

the same time. 

(6) The surgery cannot be interrupted once it begins. 

(7) None of the surgical beds is faulty. 

(8) The doctors will feel fatigued after operating for too 

much time, leading to operation time aging. 

The optimization aims to minimize the maximum makespan: 

 

}}min{max{min '

max i
CC = , ni ,...2,1=                             (2) 

 

where, 𝐶𝑖
′ is the actual completion time of the surgery on the 

injured person pi. There exists the fatigue-induced aging 

relationship between the actual completion time and the 

theoretical completion time Ci (i=1,2,...n). 

 

 

3. IMFO DESIGN 

 

3.1 Introduction to the MFO 

 

The MFO [16] is a heuristic optimization algorithm 

proposed by Mirjalili. In this algorithm, the moths in the 

matrix M are candidate solutions, and the corresponding 

fitness values are saved in the array OM. Let n be the scale of 

moth population and d be the dimension of the optimization 

problem. Then, the matrix and the array can be expressed as: 
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Flame is another core component in the algorithm. The 

matrix of flames is denoted as F, which has the same 

dimensions with matrix M. The corresponding fitness values 

are saved in the array OF. Then, the matrix and the array can 

be expressed as: 
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Both moths and flames are candidate solutions. The only 

difference lies in the position update mechanism during 

evolution: each moth moves near the search space, driving the 

flames to approach the optimal position (candidate solution). 

In this way, the moth can find its optimal solution. The MFO 

is similar to a globally optimal triple of the optimization 

problem: 

 

),,( TPIMFO=                                                                  (7) 

where, I is a function that produces a random moth population 

and its fitness values; P is a function that makes the moths 

move in the search space, such as to update the moth positions 

and return the updated matrix M; T is the judgement function 

of the termination condition. The three functions are expressed 

in equations (8)~(10), respectively. 
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MMP →:                                                                          (9) 
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After initialization, function I iterates until returning true. 

To simulate the spiral flight features of moths, the relative 

position of each moth to each flame can be defined as: 
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where, Mi is the i-th moth; Fj is the j-th flame; S is the spiral 

function; Di is the distance between the i-th moth and the j-th 

flame; b is a constant that defines the logarithmic spiral 

function; t is a random number in [-1, 1] that defines how close 

the moth approaches the flame at the next position (the closest 

distance and farthest distance are respectively depicted as t=-

1 and t=1). The value of Di can be obtained by: 
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The author put forward an adaptive flame update 

mechanism to reduce the number of flames, thus speeding up 

the convergence of the algorithm: 
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where, 𝐹𝑙𝑎𝑚𝑒𝑁  is the number of flames being reduced 

adaptively; l is the number of the current iteration; N is the 

maximum number of flames; T is the maximum number of 

iterations. 

 

3.2 MFO based on chaotic perturbation 

 

Like many other algorithm, the MFO often falls into the 

local optimum trap when it is adopted to solve real-world 

optimization problems. An effective way to improve the MFO 

is to improve the diversity of the population, such that the 

population maintains the ability of continuous optimization 

throughout the evolution process. 

Chaos is a unique aperiodic motion in nonlinear systems. 

The chaotic behaviors are random and complex, but have 

certain inherent regularity. The basic idea of chaotic 

perturbation is as follows: mapping the optimization variables 

to the value interval of chaotic variable space by chaotic 

mapping rules; searching for the optimal solution using the 

ergodicity and randomness of chaotic variables; converting the 

acquired optimal solution into the optimization space. In this 

paper, the MFO is improved based on the chaotic sequence 

generated by the logic self-mapping function below: 
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Chaos will occur whenever the initial value of the iteration 

is not zero. The mapping domain is (-1, 1), excluding 0 and 

0.5. d refers to the spatial dimension. 

The MFO was improved based on chaotic perturbation 

through the following steps. Firstly, the i-th moth is located at 

position x in the D-dimensional space; each dimension in the 

spatial position of the moth needs to be mapped to [-1, 1] by 

equation (15) according to the nature of the logical self-

mapping function. Secondly, the carrier operation is 

performed by equation (14); the resulting chaotic variables are 

introduced to the optimization variables, and used to search for 

the optimal solution; in this way, the new individual can be 

obtained through chaotic operation. Finally, the obtained 

chaotic variable sequence is transformed into the original 

solution space by equation (16); if a better solution is found, it 

should replace the original position of the i-th moth; otherwise, 

the chaotic search needs to be continued until reaching the pre-

set number of searches. 
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where, αid and bid are the upper and lower bounds of the d-

dimensional variable of individual moth. 

 

3.3 Coding design 

 

The commonly used coding methods are not applicable to 

emergency surgery scheduling, for the problem aims to select 

a surgical bed from multiple parallel beds for a surgical 

procedure of each injured person. Thus, this paper proposes a 

matrix coding method to store feasible scheduling solution 

information, which saves moth positions as vectors in a matrix. 

Each feasible solution to the problem has two attributes: 

surgical bed selection from multiple parallel beds for a surgical 

procedure of each injured person, and the surgical sequence of 

each injured person. Suppose there are n injured people, 

denoted as pi (i=1,2,...n), to receive surgeries with m 

procedures (S1, S2, …, Sm). For emergency surgeries, it is 

obvious that, when m=3, there are Si parallel surgical beds for 

the i-th procedure. Then, a feasible scheduling plan of the 

problem can be described as: 
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where, X is the matrix of surgical beds, with 𝑥𝑖𝑗  (1≤i≤m, 1≤i≤n) 

being the serial number of surgical beds for the i-th procedure 

of injured person pj; XT is the matrix of surgical sequences, 

with 𝑥𝑡𝑖𝑗  being the sequence of surgical beds for the i-th 

procedure of injured person pj. If xij=xik (j≠k), then injured 

person pj selects the same surgical beds for the i-th procedure. 

The treatment time of the injured people on each surgical 

bed is also stored in a matrix. There are Si parallel surgical beds 

in each surgical procedure. For convenience, the surgical beds 

are numbered in turn as 1, 2, ..., λ (𝜆 = ∑ 𝑆𝑖
𝑚
𝑖=1 ). For any 

surgical procedure k (1≤k≤m), the serial number ω of parallel 

surgical beds Mω falls in the range below: 
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For example, there were five wounded awaiting surgery. 

During the operation, there are 2 anesthesia preparation beds, 

1 operation room and 3 anesthesia resuscitation beds. Then the 

number of operation beds in the three operation processes are 

{1,2}, {3}, {4,5,6} respectively. A feasible scheduling scheme 

is as follows: 
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From the matrix X, x11=x13=x15=1 indicates that the first 

operating procedures of wounded persons p1, p3 and p5 are 

anaesthetized on the operating bed. From the matrix XT, xt11=2, 

xt13=1, xt15=3, which indicates that the queuing order of 

wounded p1, p3 and p5 on the operating bed M1 is 2→1→3. 

That is, p1 is anesthetized first, then p3, and finally p5. 

 

3.4 Population initialization 

 

The initial population of the standard MFO is generated by 

random. In this paper, the moth information is initialized in the 

solution space, and the initial position information of some 

moths is optimized to improve the quality of the initial 

population. Each feasible solution contains two attributes, 

namely, the surgical bed selection from multiple parallel beds 

and the surgical sequence of the injured people. The 

information of the two attributes must be initialized at the 

same time. The initial information of surgical bed selection is 

randomly generated from the range of the serial number of 

parallel surgical beds available for each procedure, as 

specified in equation (18), aiming to ensure the feasibility of 

the randomly generated scheduling plan. 

The surgical sequence of the injured people is initialized as 

vectors, whose values are all 1, and then modified according 

to the surgical bed selection information. The modification is 

a two-step process: converting all information on surgical bed 

selection into a scheduling matrix 𝑋 = [𝑥𝑖𝑗]𝑚×𝑛; determining 

the surgical sequence values of the injured people according 

to the following method: 

(1) For xij=xik (j≠k), if i=1, i.e. i is the first surgical 

procedure, then the surgical sequence of the injured people 

should be ranked in ascending order by the surgical time; 

(2) Otherwise, the surgical sequence of the injured people 

should be determined by ranking the completion time of the 

previous procedure of each injured person in ascending order. 

 

3.5 Implementation steps 

 

The IMFO-based emergency surgery scheduling contains 

the following steps: 

52



 

Step 1: Determine equation (2) as the fitness function of the 

algorithm. 

Step 2: Initialize the algorithm parameters. Set the size of 

the moth population n, the maximum number of iterations T, 

the search space dimension d, the maximum number of flames 

N, and the current number of iterations η=0. Configure the 

coding of moths and flames according to the coding design, 

and initialize the population. 

Step 3: Calculate the individual fitness of individual moth, 

find and save the current best position of individual moth. 

Determine whether the termination condition is satisfied. If 

yes, go to Step 9; otherwise, go to Step 4. 

Step 4: Perform iterations. Update the number of flames by 

equation (13), compute the distance between the flame and the 

moth, and update the moth-flame position by equation (11). 

Step 5: Calculate the fitness of individual moth, and save 

the positions of the moths and flames using equations (4) and 

(6), respectively. 

Step 6: Find the current best position of individual moth. If 

it is better than the position reserved in the previous iteration, 

then save the current flame position as the optimal position. 

Step 7: Evaluate the moth population, select the best 20% 

moths as the elite individuals, and perform chaos optimization 

by equations (14)~(16). Meanwhile, select the worst 20% of 

moths and replace them with randomly generated new 

individuals. 

Step 8: Recalculate the individual fitness of each moth 

according to the position of the moth after moving. If the 

search accuracy or the maximum number of searches is 

reached, go to Step 9, otherwise go to step 3. 

Step 9: Determine whether the termination condition is 

satisfied. If yes, go to Step 10; otherwise, let η=η+1 and 

perform Steps 4~8. 

Step 10: Output the final position of the flame and the 

corresponding fitness, forming the emergency surgery 

scheduling plan. Terminate the algorithm.  

 

 

4. EXPERIMENTAL VERIFICATION 

 

The proposed IMFO was verified by an emergency in a 

Chinese city. In this emergency, 12 patients with bone 

fractures are waiting for emergency surgery. All of them need 

to go through three surgical procedures: anesthesia, surgery 

and recovery. There are 2 beds in the anesthesia room, 5 tables 

in the operating room, and 3 beds in the recovery room. The 

anesthesia time of the patients differs by 1~2min because of 

the conditions of the doctor and patient; the surgical time of 

the patients differs within 10min; the recovery time of the 

patients differs within 10min (Conclusion the data of Shanghai 

Xinhua hospital were analyzed). The specific treatment time is 

listed in Table 1 below. 

The emergency surgery scheduling aims to minimize the 

maximum surgical completion time of the injured people. For 

comparison, the IMFO was contrasted with the classic MFO, 

the particle swarm optimization (PSO) and the cuckoo search 

(CS) algorithm. The numbers of moths, flames, particles and 

nests were all set to 30, and the maximum number of iterations 

was set to 500. The parameter settings of each algorithm are 

given in Table 2. The simulation was carried out on Windows 

7, Intel® Core™ i3-2350M Processor (2.0GHz), 2GB memory 

and Matlab 2015b. 

 

Table 1. The treatment time of the injured people in each 

surgical procedure (min) 

 

Patient 
S1 S2 S3 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

p1 2 2 60 60 58 58 57 27 28 27 

P2 4 2 58 56 59 59 58 30 29 30 

P3 3 2 58 57 61 58 59 31 34 29 
P4 2 2 59 61 58 60 58 33 35 32 

P5 2 3 58 57 58 57 60 32 33 28 

P6 3 2 57 63 65 58 61 35 36 35 
P7 3 2 56 57 59 59 62 29 30 29 

P8 3 2 57 66 66 58 58 32 35 34 

P9 2 4 58 59 62 60 59 33 32 31 
p10 4 2 59 63 65 62 58 35 34 33 

p11 2 3 58 57 58 59 60 29 28 28 

p12 3 3 59 64 62 60 61 30 29 32 

 

Table 2. Parameter settings of each algorithm 

 
Algorithm Parameters 

IMFO 𝑏 = 1, 𝑡 ∈ [−1,1] 
MFO 𝑏 = 1, 𝑡 ∈ [−1,1] 
PSO 𝑤 = 0.9, 𝑐1 = 𝑐2 = 2 

CS 𝑃𝑎 = 0.25 

 

The mean value was obtained after 20 random simulations. 

The results are recorded in Table 3 below. 

 

Table 3. Maximum completion time and mean value of each 

algorithm after 20 simulations 

 
Algorithm IMFO MFO PSO CS 

Target value after 

20 simulations 

1 210 240 258 210 

2 210 210 240 230 

3 210 234 246 210 

4 210 210 210 236 

5 210 214 210 236 

6 210 210 220 210 

7 210 216 224 210 

8 210 218 218 210 

9 210 217 210 210 

10 218 210 252 226 

11 210 220 230 210 

12 220 210 210 230 

13 210 214 231 224 

14 210 210 242 224 

15 210 210 210 210 

16 216 210 216 226 

17 210 210 224 225 

18 219 230 231 223 

19 210 234 230 220 

20 210 234 245 219 

Mean value 211.65 218.45 227.85 220.15 

 

As shown in Table 3, the minimum value of the objective 

function converges to the extreme value as the population 

evolves. After 20 simulations, the IMFO reached the minimum 

16 times, while the classic MFO only reached the minimum 9 

times, indicating that the MFO with chaotic perturbation can 

effectively avoid the local optimum trap. In addition, the PSO 

reached the minimum 5 times and the CS reached the 

minimum 8 times. This means the MFO enjoys better global 

convergence than the PSO and the CS. To present a clear 

picture of the convergence speed of each algorithm, the 

convergence curve of each algorithm in the 13th simulation 

was plotted (Figure 2). 
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Figure 2. The optimal target value convergence curves of the four algorithms in the 13th simulation 

 

It can be seen from Figure 2 that the IMFO converged to the 

optimal target value faster than the classic MFO, the PSO and 

the CS. Thus, the optimal scheduling plan can be obtained as: 
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The Gantt chart of the parallel surgical bed selection for the 

problem is presented in Figure 3. 

 

 

 

 

Figure 3. The optimal Gantt chart for emergency surgery scheduling 

 

Figure 3 shows that the emergency surgery tasks of the 

injured people are relatively compact, and the treatment time 

is basically continuous. In this way, the total surgery time can 

be minimized, indicating that the scheduling results are 

reasonable. 

 

5. CONCLUSIONS 

 

In this paper, a surgery scheduling model is established in 

light of flexible FSP, considering the aging effect of fatigue 

among doctors after prolonged working. Then, the model was 

solved by the MFO with chaotic perturbation, the information 
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of feasible scheduling solution was saved in matrix coding, the 

population was initialized, and the algorithm steps were 

specified. Finally, the proposed model and algorithm were 

verified through a case study on emergency surgeries for 12 

patients with bone fractures. 

The results show that the proposed emergency surgery 

scheduling model can describe emergency surgeries well, 

while the IMFO can output a rational scheduling plan and 

outperform the classic MFO, PSO and CS. Of course, the 

proposed solution only applies to single-objective 

optimization problems. The future research will explore the 

emergency surgery scheduling with multiple objectives and 

resource constraints. 
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