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The proposed methodology employs a variety of image processing and analysis techniques 

to achieve accurate detection results. To begin, the acquired lung cancer images are pre-

processed with a multidimensional filter and histogram equalization in order to improve 

their quality and subsequent analysis. Histogram equalization optimizes an image's 

dynamic range, enhancing visibility of structures and abnormalities. This technique proves 

invaluable in medical imaging, revealing subtle features for accurate anomaly detection. 

Meanwhile, Multidimensional Filtering refines image analysis with intelligent filtering 

methods. Pre-processing, segmentation, and feature extraction from lung cancer images are 

all part of the method. For accurate lung cancer detection, a deep neural network is trained 

and tested. The proposed method achieves 99.1251% specificity, 99.1121% sensitivity, and 

99.269% accuracy. MATLAB is used to run the entire simulation. The architectural 

representation distinctly illustrates the method's superior ability to discern true negatives 

and true positives in lung cancer detection. The research advances lung cancer diagnosis 

and has the potential for early detection and improved patient care. 
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1. INTRODUCTION

The increase in the cases of Lung Cancers these days has 

created an emergency to detect them at the early stage to battle 

the disease [1-3]. The early detection and diagnosis of lung 

cancer over the years, has led to improved patient outcomes 

and survival rates [4]. Computed Tomography (CT) scans 

have emerged as a powerful tool for visualising the internal 

structures of the lungs with high-resolution images among 

these modalities [5]. Lung cancer has historically been 

associated with high mortality rates due to the difficulties in 

detecting [6]. Because CT scans can capture detailed cross-

sectional images of the lungs, radiologists and clinicians can 

detect suspicious lesions, nodules, and tumours at an earlier 

stage than ever before [7]. The contribution of this study lies 

in the development of enhanced deep learning approaches that 

leverage Complexity Feature extraction and GLCM feature 

extraction techniques, along with CNNs, for accurate lung 

cancer detection and classification. The utilization of DOST as 

an intermediate stage further enhances the performance of 

these methods [8-11]. The imaging modalities such as CT and 

MRI have transformed the detection and characterization of 

lung cancer, providing vital information about tumour size, 

location, and extent [12-14]. Furthermore, advances in 

computer-aided diagnosis (CAD) systems have improved the 

accuracy and efficiency of lung cancer detection by assisting 

radiologists in interpreting complex CT images [15]. 

Despite these advances, detecting lung cancer accurately 

and precisely remains a difficult task. The sheer volume of CT 

scans produced in clinical settings, combined with subtle 

differences in tumour appearance and the need for early 

detection, necessitates robust and efficient automated 

approaches [16-18]. Deep learning techniques have shown 

enormous promise in this area. 

For example, in the TNM system, Stage I lung cancer 

generally refers to tumors that are relatively small and 

confined to the lung tissue, without evidence of spread to 

lymph nodes or distant sites. These are considered 'early stage' 

cancers because they are localized and have not yet advanced 

to a more aggressive or widespread form. 

The need for a morphology-based deep learning approach 

for precise lung cancer detection stems from the limitations of 

traditional methods, which are time-consuming and prone to 

errors. It is possible to automatically learn and extract 

meaningful features from CT scans allowing for more accurate 

identification and classification of lung cancer. 

2. RELATED WORKS

In general, the literature review section will delve into 

current research and studies on lung cancer diagnosis, medical 

imaging modalities, and the use of deep learning techniques. 

The review will lay down the foundation for the suggested 

morphology-based deep learning strategy and back up its 

significance in progressing lung cancer detection from lung 
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CT scans through analysing and synthesising this literature. 

Dritsas et al. proposed Rotation Forest in 2022, a high-

performance algorithm assessed via well-known metrics [19]. 

They reported an impressive 97.1% accuracy. However, one 

limitation of the research is that it did not specifically discuss 

the Rotation Forest algorithm's potential challenges or 

limitations. 

Naseer et al. [20] used the LUNA16 dataset, for various 

stages of lung nodules, to implement a CNN with optimizers. 

While they achieved an impressive accuracy of 97.42%, one 

limitation of traditional CNNs, as mentioned in their study, is 

the need for a large amount of labelled data for training, which 

can be difficult to obtain and may affect the generalizability of 

the results. Venkadesh et al. [21] used an ensemble model in 

2021 for the purpose of feature extraction. These features were 

then combined as input for classification. The limitation of this 

approach is the lack of discussion about the potential 

drawbacks or limitations of the ensemble model used. 

For early tumour diagnosis, Agarwal et al. [22] proposed a 

standard Convolutional Neural Network (CNN) with the 

AlexNet Network Model. Their research used a private dataset 

and had a 96% accuracy rate. The use of a private dataset, 

however, is a limitation of this study, as it may introduce bias 

and limit the generalizability of the findings to other datasets. 

Masud et al. [23] discussed of using a light CNN architecture 

in 2020, achieved a high classification accuracy of 97.9%. 

However, one limitation of this study is that it only looked at 

the LIDC dataset, leaving the performance on other datasets 

unexplored. Similarly, Al-Yasriy et al. [24] proposed a CNN 

technique for cancer detection and categorization using 

AlexNet. Despite their accuracy of 93.548%, the use of an 

imbalanced dataset poses a limitation, as imbalanced data can 

lead to biassed model performance and reduced effectiveness 

in detecting minority classes. I In 2019, Toraman et al. [25] 

suggested Fourier Transform Infrared (FTIR) spectroscopy 

signals. They attained an accuracy of 95.71%. 

Nasser et al. [26] created an Artificial Neural Network 

(ANN) with an accuracy of 96.67% for lung nodule detection. 

The lack of a detailed analysis or discussion of potential 

limitations or challenges encountered during the ANN 

development and training process is a limitation of this study. 

Selvanambi et al. [27] demonstrated a Glow-worm swarm 

optimisation in 2018, with an accuracy of 98%. However, the 

study's limitation is the lack of a comprehensive discussion of 

the potential challenges or limitations associated with the GSO 

algorithm and its application in lung cancer prediction. Zhao 

et al. [28] proposed a hybrid CNN that makes use of networks 

like LeNet and AlexNet. They reported an 87.7% accuracy rate. 

However, one limitation of this study is the comparatively 

lower accuracy obtained, which may be problematic and have 

an impact on the proposed hybrid CNN approach's 

dependability and effectiveness. 
 

Table 1. Research gaps 

 

Study Proposed Method 
Reported 

Accuracy 
Limitations 

Dritsas et al. (2022) 

[19] 
Rotation Forest 97.10% Lack of discussion on algorithm's challenges/limitations 

Naseer et al. (2022) 

[20] 

CNN with optimizers (using 

LUNA16 dataset) 
97.42% Dependence on large labeled datasets for training 

Venkadesh et al. 

(2021) [21] 

Ensemble model for feature 

extraction 
94.5 Absence of discussion on limitations of ensemble model 

Agarwal et al. 

(2021) [22] 

CNN with AlexNet (using 

private dataset) 
96% 

Potential bias and limited generalizability due to private dataset 

use 

Masud et al. (2020) 

[23] 

Light CNN architecture (using 

LIDC dataset) 
97.90% Performance on other datasets unexplored 

Al-Yasriy et al. 

(2020) [24] 

CNN with AlexNet (using 

imbalanced dataset) 
93.55% 

Biassed model performance and reduced effectiveness for 

minority classes due to imbalanced data 

Nasser et al. (2019) 

[20] 

Artificial Neural Network 

(ANN) 
96.67% 

Lack of detailed analysis or discussion of limitations/challenges in 

ANN development/training 

Selvanambi et al. 

(2018) [27] 

Glow-worm swarm 

optimisation 
98% 

Absence of comprehensive discussion of potential GSO algorithm 

challenges/limitations 

Zhao et al. (2018) 

[28] 

Hybrid CNN (LeNet and 

AlexNet) 
87.70% 

Lower accuracy may impact dependability and effectiveness of 

hybrid CNN approach 
 

Table 1 provides a clear overview of the strengths and 

limitations of each study. In summary, early detection of lung 

cancer can lead to improved outcomes, reduced mortality rates, 

and a better quality of life for individuals diagnosed with the 

disease. It also has broader societal and economic benefits, 

making it a crucial focus area in the fight against lung cancer. 

CAD systems are specialized software tools designed to 

assist healthcare professionals in the interpretation of medical 

images, such as X-rays, CT scans, and MRIs. These systems 

use advanced algorithms and machine learning techniques to 

analyze images and highlight areas of interest that may require 

further examination. They aim to improve accuracy and 

efficiency in the diagnostic process. The steps include in CAD 

are image preprocessing, Feature Extraction, Classification, 

alert generation. Whle processing the limitations includes false 

negatives, dependence on quality if input images, lack of 

clinical context, limited to image analysis etc. 

The research findings might have positive implications for 

patients in the following ways Reduced Invasive Procedures, 

Decreased Psychological Burden, Improved Quality of Life, 

Enhanced Monitoring and Surveillance, Personalized 

Treatment Approaches, Earlier Detection and Treatment etc. 

In a nutshell while these studies have made substantial 

contributions to lung cancer detection and classification, it is 

critical to recognise the limitations of each approach. 

Addressing these limitations can help future research in this 

area improve its accuracy, generalizability, and effectiveness. 
 
 

3. METHODOLOGY 

 

Figure 1 represents the proposed process flow block 

diagram of the new Improved Enhanced algorithm for 

detecting lung cancer. The algorithm incorporates several key 

1598



 

components. To summarise, the new Improved Enhanced 

algorithm combines several pre-processing techniques, 

including Histogram Equalisation, OTSU Segmentation, 

Sobel Filtering, and GLCM-based feature extraction. These 

steps are intended to improve the image, isolate lung regions, 

extract meaningful features, and then use a CNN with Ranking 

features to detect lung cancer accurately. 

The Otsu method is a thresholding technique used to 

segment images. It calculates an "optimal" threshold value to 

separate foreground and background pixels. The key 

parameter in the Otsu method is the threshold value, which is 

determined by maximizing the between-class variance. This 

threshold value is used to classify pixels into foreground and 

background based on their intensity values. The CNN 

architecture typically includes Input Layer, Convolutional 

Layers, Activation Functions, Pooling Layers, Fully 

Connected Layers, Output Layer, Loss Function and 

Optimizer, Regularization and Dropout, Number of Layers 

and Units. 

 

 
 

Figure 1. Proposed Lung cancer detection method 

 

Algorithm 

Stage 1: Pre-Processing: 

Step i. Import the Lung Cancer CT scan dataset from LIDC. 

Step ii. Perform color mapping process to convert the RGB 

image to grayscale. 

a. Colour mapping is the process of converting an RGB 

image to grayscale by calculating the luminance or intensity 

value for each pixel. The luminosity method is one of the most 

commonly used formulas for performing this conversion. 

The luminosity method calculates the grayscale value (G) 

based on the RGB values of a pixel (R, G, B) using the 

following formula: 

 

𝐺 = 0.21 𝑅 + 0.72 𝐺 + 0.07  𝐵 (1) 

 

In this formula, the coefficients 0.21, 0.72, and 0.07 

represent the perceived luminance contributions of the red, 

green, and blue channels, respectively. 

Step iii. Apply histogram equalization to enhance the image 

contrast. 

a. Compute the histogram of the grayscale image input. The 

frequency of occurrence of each intensity value in the image 

is represented by the histogram. 

b. Determine the histogram's cumulative distribution 

function (CDF). The cumulative probability of occurrence for 

each intensity value is represented by the CDF. 

c. Normalise the CDF to a scale of [0, 255] (for 8-bit 

grayscale images). This step ensures that histogram 

equalisation works across the entire intensity range. 

 

𝑐𝑑𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  

= (𝑐𝑑𝑓 − 𝑐𝑑𝑓𝑚𝑖𝑛) ∗
(𝐿 − 1)

(𝑀 ∗ 𝑁 − 𝑐𝑑𝑓𝑚𝑖𝑛)
 

(2) 

 

where, cdfnormalized: Normalized CDF values; cdf: Cumulative 

distribution function; cdfmin: Minimum value of the CDF; L: 

Number of intensity levels (typically 256 for 8-bit images); M: 

No. of Rows; N: No. of Columns. 

d. Using the normalised CDF, apply the histogram 

equalisation transformation to each pixel in the grayscale 

image. Replace each pixel's intensity value with its 

corresponding value in the normalised CDF. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 = 𝑐𝑑𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙] (3) 

 

e. For display purposes, round the output pixel values to the 

nearest integer. 

f. When compared to the original grayscale image, the 

resulting image will have more contrast. 

Stage 2: Thresholding and Filtering: 

Step i. Perform global image thresholding using the Otsu 

method to segment the image into foreground and background. 

a. Create a histogram of the grayscale image input. 

Assume the grayscale image has intensity values ranging 

from 0 to L-1, where L is the number of intensity levels 

possible. The histogram will be a 1D array of L elements, with 

the element at index i representing the number of pixels in the 

image with intensity i. 

b. Normalise the histogram in step two. 

Divide each histogram element by the total number of pixels 

in the image. This step ensures that the histogram is 

transformed into a probability distribution with a sum of 1. 

c. Determine the normalised histogram's cumulative 

distribution function (CDF). 

The CDF is calculated by adding the normalised histogram 

values from 0 to i, where i is a number ranging from 0 to L-1. 

The CDF will be a 1D array with L elements as well. 

d. Determine the cumulative and total means. 

The cumulative mean at intensity i is calculated by 

multiplying the intensity value i by its corresponding 

normalised histogram value and adding the results from 0 to i. 

The sum of all cumulative means is the total mean. 

The between-class variance is computed for each possible 

threshold from intensity 0 to L-1 using the following equation: 

 

𝜎𝑏2(𝑡) 

=
[𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑛 ⋅ (1 − 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛(𝑡))]

2

𝑃(𝑡)(1 − 𝑃(𝑡))
 

(4) 

 

1599



 

where, P(t) is the probability of the pixels with intensity values 

less than or equal to the threshold. 

e. For each possible threshold, compute the between-class 

variance. 

f. Segment the image using the chosen threshold. Set all 

pixel intensities below the threshold to 0 and all pixel 

intensities equal to or greater than the threshold to 255. 

Step ii. Apply binarization process to convert the 

thresholded image into a binary image. 

Step iii. Apply smoothing effect using the Sobel filter to 

reduce noise and highlight edges. 

Step iv. Perform multi-dimensional filtering process to 

enhance specific features. 

The above discussed part can be provided as a summarised 

Algorithm  

Stage 3: Feature Extraction: 

Step i. Apply morphological image processing by 

introducing a structuring element to extract relevant features. 

Step ii. Perform dilation operation to expand the regions of 

interest and its Pseudocode is  

Step iii. Create a gray-level co-occurrence matrix (GLCM) 

to capture spatial relationships between pixels. 

a. Load the input image and import the necessary libraries. 

b. If the input image is not already grayscale, convert it to 

grayscale. 

c. Define the GLCM calculation's distance and angle offsets. 

For co-occurrence measurements, these offsets determine the 

neighboring pixels. 

d. Set the number of grey levels to be used in quantizing the 

grayscale image. The size of the GLCM matrix is determined 

by this. 

e. Create an empty GLCM matrix of size 

f. Iterate over each pixel in the grayscale image: 

i. Determine the co-occurring pixel based on the distance 

and angle offsets specified. 

ii. Based on the grayscale values of the current and co-

occurring pixels, increment the corresponding element in the 

GLCM matrix. 

g. Divide each element in the GLCM matrix by the sum of 

all elements in the matrix to normalize it. The GLCM is scale-

invariant after this step. 

h. Normalize the GLCM matrix by dividing each element 

by the sum of all elements in the matrix. This step ensures that 

the GLCM is scale-invariant. 

Step iv. Compute statistics from the GLCM, such as energy, 

contrast, and Entropy, as features. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑(𝑖 − 𝑗)2 𝑃(𝑖, 𝑗) (5) 

 

where, (i, j) represents the element in the GLCM matrix and 

P(i, j) is the normalized probability. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑(𝑃(𝑖, 𝑗)2) (6) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ (𝑃(𝑖, 𝑗) 𝑙𝑜𝑔2(𝑃(𝑖, 𝑗))) (7) 

 

Step v. Carry out rank correlation process to select the most 

informative features. 

a. Assign ranks to data points in each dataset based on 

feature values for each computed texture feature. Take the 

following steps: 

i. Sort the data points in each dataset according to their 

feature values. 

ii. Give each data point a rank based on its position in the 

sorted list. If there are ties, give the tied data points the average 

rank. 

b. For the current texture feature, compute the difference in 

ranks for each data point in both datasets. 

c. Squaring the differences to remove the sign. 

d. Add together all of the squared differences for the current 

texture feature to get the sum of squared differences (SSD). 

e. n is the total number of data points. 

f. Calculate the rank correlation coefficient using the 

formula: 

 

𝑅𝑎𝑛𝑘 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 1 − (
(6 𝑆𝑆𝐷)

(𝑛 (𝑛2 − 1))
) (8) 

 

This formula is for the Spearman's rank correlation 

coefficient. 

Pass the resulting features to Stage 4. 

Stage 4: CNN Model Training and Classification: 

Step i. Train a CNN model using the features that have been 

extracted from the previous stage. 

Step ii. Utilize a pre-defined CNN model architecture for 

training. 

Step iii. Compute classification metrics  

Step iv. Perform lung cancer detection by classifying 

whether the image is cancerous or not. 

Step v. Evaluate the performance of the overall system  

The proposed lung cancer detection method using the 

Improved Enhanced algorithm has potential real-world 

applicability in clinical settings. However, there are several 

considerations and potential hurdles that need to be addressed 

for successful integration into a clinical workflow. The stages 

are Data Acquisition and Integration, Pre-Processing and 

Computational Resources, Integration with Existing Systems, 

Clinical Validation and Regulatory Approval, Interpretability 

and Explainability, Continuous Monitoring and Improvement, 

Legal and Ethical Considerations. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 
 

Figure 2. Original lung scan image 

 

The image in Figure 2 is an original lung scan image 

obtained from the LIDC dataset via the Kaggle platform. The 

LIDC dataset is a well-known dataset used in medical imaging 

research, specifically for lung cancer analysis and detection. 

For this study, a subset of 32 samples from the LIDC dataset 

was selected for training. The original lung scan image is used 

to begin further processing and analysis. The resized version 

of the original lung scan image is depicted in Figure 3. 

Resizing is an important step in medical image classification 

tasks for a variety of reasons. For starters, it increases 

computational efficiency by lowering the computational load 

required for subsequent analysis. The computational resources 

and processing time required for feature extraction and 
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classification are reduced when images are resized. Second, 

resizing is required to address memory constraints, 

particularly when working with large datasets. Memory usage 

can be reduced by reducing image dimensions, allowing for 

smoother execution of classification algorithms. Furthermore, 

resizing ensures consistent image sizes, allowing for 

compatibility across images during the classification process. 

It also makes other preprocessing steps easier, such as feature 

extraction, normalisation, and data augmentation, possible. 

 

 
 

Figure 3. Image resize resultant 

 

The image in Figure 4 shows the outcome of histogram 

equalisation on the resized lung scan image. Histogram 

equalisation is a technique used in image processing to 

improve contrast. Histogram equalisation aims to maximise 

the use of an image's dynamic range by redistributing its 

intensity values. This process produces a more contrasted 

image, making the underlying structures and abnormalities 

more visible. Histogram equalisation is especially useful in 

medical image analysis because it improves visibility of subtle 

features and aids in the accurate identification of abnormalities. 

 

 
 

Figure 4. Histogram equalized image 

 

The global thresholded image obtained using the Otsu 

method is shown in Figure 5. The Otsu method is a popular 

image segmentation thresholding technique. Its goal is to find 

the best threshold value for separating the image into 

foreground and background regions. The Otsu method 

determines a threshold that maximises the separation of these 

two regions by calculating the between-class variance of the 

intensity values. The thresholded image in Figure 5 

emphasises the distinct regions within the lung scan, allowing 

subsequent analysis and feature extraction to focus on specific 

areas of interest. 

The image in Figure 6 is the result of applying a multi-

dimensional filter to the thresholded lung scan image, 

specifically the Sobel filter. The Sobel filter is a popular edge 

detection filter that emphasises sharp intensity transitions in 

images. The resulting image in Figure 6 emphasises the edges 

and boundaries of structures within the lung scan by 

convolving the Sobel filter with the thresholded image. This 

edge data is useful for further analysis and feature extraction, 

assisting in the identification and characterization of important 

anatomical structures or abnormalities. 

 
 

Figure 5. Global thresholded image 

 

 
 

Figure 6. Sobel filter based resultant 

 

Figure 7 depicts the morphologically dilated image 

produced by the multi-dimensional filter used in Figure 6. 

Morphological dilation is an image processing operation that 

expands the boundaries of regions or objects. Morphological 

dilation enlarges the regions of interest and connects nearby 

structures by convolving a structuring element with the image. 

Morphological dilation can be useful in the context of lung 

scan analysis for enhancing and consolidating the boundaries 

of lung structures or abnormalities. The resulting dilated image 

in Figure 7 is an intermediate representation that provides a 

clearer and more comprehensive visualisation of the relevant 

anatomical structures or pathologies. 

 

 
 

Figure 7. Morphologically dilated image 

 

Similarly, 32 samples are currently being trained in the 

Lung Cancer detection process, and the features extracted 

using the GLCM process are tabulated in Table 2 for the 

corresponding 5 samples that have been processed to the 

proposed system.   

These features offer quantitative representations of specific 

lung image characteristics relevant for cancer detection. 

 

Table 2. Features extracted for samples of lung cancer 

images 

 
Features 

Extracted 

Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Entropy 0.7642 0.7712 0.7753 0.7572 0.7742 

Contrast 2.942 2.941 2.9291 2.9748 2.9175 

Energy 0.5892 0.5891 0.5873 0.5916 0.5913 
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4.1 Performance evaluation 

 

The accuracy of the Lung Cancer detection can be 

calculated using the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (9) 

 

where, TP: True Positive (identified Tumors); TN: True 

Negative, FP: False Positive; FN: False Negative (not 

identified). 

Specificity is the proportion of true negatives identified 

correctly by the model. It indicates the model's ability to 

correctly classify non-tumor or non-cancer cases. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (10) 

 

Sensitivity is the proportion of true positives that were 

identified by the model. It indicates the model's ability to 

correctly classify tumour or cancer cases. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

Table 3 provides an overview of the proposed method's 

accuracy performance evaluation in comparison to previous 

methods used for lung cancer detection. The proposed method 

achieved an impressive 99.269% accuracy. This accuracy rate 

indicates the proposed approach's ability to correctly classify 

lung cancer cases, making it highly effective in detecting the 

disease's presence. The table also compares the proposed 

method to others, such as Machine Learning [19], CNN 

Alexnet + SGD [20], Alexnet CNN [22], CNN [23], CNN with 

Alexnet [24], and ML with FTIR Signals [25]. This indicates 

that the proposed method significantly improved lung cancer 

detection accuracy when compared to existing techniques, 

which included both traditional machine learning and deep 

learning methods. 

 

Table 3. Accuracy performance evaluation 

 
Year Techniques Used Accuracy (%) 

2022 Machine Learning [19] 97.1 

2022 CNN Alexnet +SGD [20] 97.42 

2021 Alexnet CNN [22] 96 

2020 CNN [23] 97.9 

2020 CNN with Alexnet [24] 93.458 

2019 ML with FTIR Signals [25] 95.71 

 Proposed Method 99.269 

 

Figure 8 shows a comparison plot for lung cancer detection 

accuracy. The plot depicts the accuracy performance of 

various methods, including the proposed morphology-based 

deep learning approach. Figure 8 illustrates the significant 

improvement in accuracy provided by the proposed approach 

when compared to existing techniques. These findings 

emphasise the proposed method's potential to improve lung 

cancer diagnosis and contribute to more accurate and efficient 

clinical decision-making processes. 

Table 4 compares the proposed methodology to several 

previous methods in terms of specificity and sensitivity in lung 

cancer detection. The proposed method had a 99.1251% 

specificity and a 99.1121% sensitivity. These values represent 

the proposed method's ability to accurately identify true 

negatives (specificity) and true positives (sensitivity) in lung 

cancer detection. 

 

 
 

Figure 8. Comparative plot for accuracy in lung cancer 

detection 

 

Table 4. Performance evaluation for specificity and 

sensitivity in lung cancer detection 

 

Year Techniques used 
Specificity 

(%) 

Sensitivity 

(%) 

2022 CNN Alexnet +SGD [20] 97.25 97.58 

2021 Deep Learning [21] 90 86 

2020 CNN with Alexnet [24] 95 95.71 

2019 
ML with FTIR Signals 

[25] 
97.50 93.33 

 Proposed Method 99.1251 99.1121 

 

The following table compares the proposed method's 

performance to CNN Alexnet + SGD [20], Deep Learning [21], 

CNN with Alexnet [24], and ML with FTIR Signals [25]. 

When compared to all previous methods, the proposed 

methodology has higher specificity and sensitivity values. 

This suggests that, when compared to existing techniques, the 

proposed morphology-based deep learning approach has 

significantly improved the specificity and sensitivity of lung 

cancer detection. 

A comparison plot for specificity and sensitivity in lung 

cancer detection is shown in Figure 9. The plot depicts the 

performance differences between the proposed morphology-

based deep learning approach and the previous methods in 

terms of specificity and sensitivity. 

 

 
 

Figure 9. Comparative plot for specificity and sensitivity in 

lung cancer detection 
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The results presented in the study demonstrate a significant 

advancement in the field of lung cancer detection. The 

proposed method achieved an accuracy of 99.269%, 

specificity of 99.1251%, and sensitivity of 99.1121%. These 

results indicate an exceptionally high level of accuracy in 

classifying both cancerous and non-cancerous cases. 

In the context of lung cancer detection, these results have 

several important implications: 

Improved Clinical Decision-Making: The high accuracy, 

specificity, and sensitivity of the proposed method suggest that 

it could serve as a reliable tool for assisting healthcare 

professionals in the early detection of lung cancer. This can 

lead to more accurate diagnoses and treatment plans. 

Early Detection and Intervention: High sensitivity means 

that the proposed method is effective in correctly identifying 

true positives (cases of lung cancer). Early detection of cancer 

is crucial for timely intervention and improved patient 

outcomes. With a sensitivity of 99.1121%, the proposed 

method excels in this aspect. 

Reduced False Positives: The high specificity value 

(99.1251%) implies a low rate of false positives. This is 

particularly important in clinical practice, as it minimizes the 

chances of unnecessary follow-up tests or procedures for 

patients who do not have lung cancer. 

Potential for Screening Programs: The high accuracy of 

the proposed method makes it a promising candidate for use in 

large-scale lung cancer screening programs. Such programs 

can be instrumental in identifying cases at an early, more 

treatable stage. 

Resource Optimization: The reduction in false positives 

and negatives, as indicated by the high specificity and 

sensitivity, respectively, can lead to more efficient allocation 

of healthcare resources. It can help in prioritizing cases that 

require immediate attention. 

Enhanced Patient Outcomes: Accurate and timely 

diagnosis of lung cancer can significantly improve patient 

outcomes. It can lead to earlier treatment initiation, potentially 

increasing survival rates and overall quality of life for patients. 

Research and Development: The high performance of the 

proposed method may encourage further research and 

development in the field of medical image analysis for lung 

cancer detection. This could lead to continuous advancements 

in detection techniques and tools. 

 

 

5. CONCLUSIONS 

 

We presented a methodology for detecting lung cancer 

using lung cancer images obtained from the LIDC Database in 

this paper. To achieve accurate detection results, the proposed 

method combines various image processing and analysis 

techniques. Relevant features are extracted from lung cancer 

images using pre-processing, segmentation, and feature 

extraction. These characteristics are then fed into a deep neural 

network architecture. The experimental results show that the 

proposed methodology is effective, with a high specificity of 

99.1251%, sensitivity of 99.1121%, and overall accuracy of 

99.269%. 

The study's findings represent a significant advancement in 

both the accuracy of lung cancer detection and the potential 

application of deep learning techniques in medical imaging. 

This not only has direct implications for patient care but also 

contributes to the broader landscape of medical research and 

practice. The proposed method's high accuracy, specificity, 

and sensitivity have several direct implications for clinical 

practice by taking the following parameters Enhanced 

Diagnoses, Reduction in False Positives, Early Intervention 

and Treatment, Resource Allocation, Potential for Screening 

Programs, Improved Patient Experience. The findings of this 

study have broader implications for the field of lung cancer 

detection and medical image analysis by the following 

techniques like Advancement in Detection Techniques, 

Integration of Deep Learning in Medical Imaging, Potential 

for Transferable Techniques, Contribution to Research and 

Clinical Practice, Impetus for Further Innovation. 

The use of MATLAB as a computing tool ensured efficient 

implementation and consistent results. Finally, this study 

demonstrated the utility of image processing and deep learning 

techniques in the detection of lung cancer. The proposed 

methodology achieves high accuracy, specificity, and 

sensitivity, indicating that it is effective in identifying lung 

cancer cases. The approach's overall performance and 

applicability in clinical practice will be improved through 

further refinement of the methodology, validation through 

extensive clinical trials, and integration with complementary 

data sources in the future. 
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NOMENCLATURE 

 

G grayscale value 

R Red  

G Green  

B Blue  

cdf cumulative distribution function 

cdf normalised Normalized CDF values 

cdf min Minimum value of the CDF 

L Number of intensity levels 

M Number of Rows  
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N Number of Columns 

i Intensity value 

SSD sum of squared differences 

n total number of data points 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

 

Greek symbols 

 

σ Threshold value 

 

Subscripts 

 

min minimum 

normalised normalised values of cdf 

 

 

 

 

APPENDIX 

 

Chapter 1 discusses the introduction of the morphology-

based deep learning approach used for precise lung cancer 

detection, which addresses the limitations of traditional 

methods. In Chapter 2, a comprehensive literature review is 

presented, incorporating previous works cited in the references 

below. Figure 1 illustrates the Proposed Lung Cancer 

Detection Method. Chapter 3 provides a detailed explanation 

of the algorithms employed in four stages, while Chapter 4 

focuses on the experimental procedures and showcases the 

corresponding results. Figures 3, 4, 5, 6, and 7 present the 

results obtained from each stage, with a particular emphasis on 

the Comparative Plot for Accuracy in Lung Cancer Detection. 

Table 2 displays the Features Extracted for Samples of Lung 

Cancer Images, while Table 3 presents the Accuracy 

Performance Evaluation. Additionally, Table 4 explains the 

Performance Evaluation for Specificity and Sensitivity in 

Lung Cancer Detection. Finally, Figure 9 exhibits the 

Comparative Plot for Specificity and Sensitivity in Lung 

Cancer Detection.  
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