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Ground penetrating radar (GPR) weak signals have the characteristics of low signal-to-noise 

ratio (SNR) and high frequency, which is a major challenge to noise attenuation. In this paper, 

we propose a GPR denoising approach based on empirical wavelet transform (EWT) combined 

with semi-soft thresholding. According to the frequency characteristics of signal, a spectrum 

segmentation strategy is designed. It can adaptively decompose signal and noise into different 

modes. The mode which contains more valid signals is processed by hard thresholding to 

reserve amplitude; the other modes which contain useless signals are processed by soft 

threshold functions to maintain the continuity of the signal. After weak signal denoising by 

our proposed method, we compared its performance on synthetic and field data using complete 

ensemble empirical mode decomposition (CEEMD) and synchro squeezed wavelet transform 

(SWT). The proposed method denoising performance is better than other two methods. 
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1. INTRODUCTION

The underground damages are challenging the road security. 

These underground damages are usually caused by 

underground construction, rainfall and so on. Underground 

damages may cause road slurry, cracking and collapse. 

Figure 1. Road collapse 

The underground damages have become a serious problem 

a few years ago. Several big voids were found under the road 

near the construction site of high-rise buildings in Beijing. In 

addition, lots of underground damages have been reported. For 

example, Figure 1 shows a road collapse, 10 m long, 5 m wide, 

and 3 m deep, caused by underground damages. 

To prevent road collapse, some people decided to find 

underground damages. Among various non-destructive tests, a 

ground penetrating radar (GPR) test was selected because 

GPR is the most convenient and accurate tool [1]. The GPR 

test can be carried out while driving on the road, so it is 

suitable for urban area because it does not need traffic control 

and can quickly survey large area. Ground penetrating radar 

signals become weak when investigation depth increases. 

Ground penetrating radar weak signals have the characteristics 

of low signal-to-noise ratio and high frequency, which needs 

to be reduced. 

Many methods have been developed for random noise 

reduction and reflected events recovery. Recently, Time-

frequency peak filtering method [2], singular value 

decomposition method [3], local signal-and-noise 

orthogonalization [4], and dictionary method [5], have been 

exclusively used for GPR data denoising. Because of the high 

SNR of GPR signals, it is easier to denoise. But these methods 

are not ideal for GPR weak signals denoising. Some 

algorithms are applied to GPR weak signals denoising, such as 

wavelet transform (WT) and empirical mode decomposition 

(EMD). In order to increase the amplitude of the GPR weak 

signals, time-reversal-based processing techniques are 

designed [6]. However, these methods perform poorly in weak 

reflection events, particularly when the SNR is below a given 

threshold. The two improved methods of EMD [7], EEMD [8] 

and CEEMD [9], are effective signal analysis methods. But 

they have no adequate theoretical basis. Some algorithms are 

applied to GPR weak signals denoising, like low-rank filtering 

[10], synchrosqueezed wavelet transform (SWT) [11] and 

Hidden Markov model [12-13], are not suitable for downhole 

GPR weak signal denoising. Pattern recognition and 

incremental nonnegative matrix factorization [14] and neural 

network [15] are methods for GPR event detection and SNR 

enhancement. Whereas, the main work of these methods focus 

on signal detection instead of SNR enhancement. Multi-

resolution analysis algorithms [16] has good performance for 

downhole GPR weak signals denoising, but its time 

complexity is high. 
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Recently, empirical wavelet transform (EWT) has been 

proven to be an useful signal analysis method [17]. It applies 

Littlewood-Paley and Meyer’s wavelets to extracts the 

amplitude modulated-frequency modulated (AM-FM) 

components, which are defined as Intrinsic Mode Function 

(IMF). An equivalent of the Harmonic wavelet, when the basis 

function is real, is Littlewood–Paley wavelet [18]. Meyer 

wavelet is a classic wavelet. It has many good properties, for 

example derivation infinitely, smoothness, attenuates fast [19]. 

EWT has been applied in many fields. When analyzing the 

time-frequency characteristics of GPR signals, EWT can 

provide a high resolution [20]. Meanwhile, it effectively 

remove the powerline interference and baseline wander in the 

electrocardiogram signal [21]. In research and application, 

EWT is a new and effective algorithm. 

In this paper, we research on noise attenuation for GPR 

weak signal via EWT algorithm. EWT effectively decomposes 

GPR weak signal. Meanwhile, the combination of hard 

threshold function and soft threshold function, improved 

threshold function can better preserve signal. As a 

consequence, underground events become clearer after 

denoising. This paper is structured as follows. Section II 

describes the theory of EWT. Section III introduces spectrum 

segmentation schemes and threshold functions. Section IV 

presents the results and the comparative analysis. Eventually, 

Section V concludes this paper. 

 

 

2. THEORY OF EWT 

 

EWT is a completely adaptive and data driven method with 

solid mathematical foundations. The steps for this approach 

are as follows. 

IMF needs to meet the following rules:  

1. To acquire signal Fourier spectrum F(ω) , we compute 

the fast Fourier transform (FFT) of signal f (t). 

2. Segment the Fourier spectrum correctly. The set of 

boundaries is𝛺 = {𝜔𝑘}𝑘=0,2,...,𝐾. Separate the Fourier spectrum 

[0,π] into K-1 contiguous parts and 𝜔0 = 0 , 𝜔𝐾 = 𝜋 . In 

Section III, the segmentation method will be introduced in 

detail. 

3. Littlewood-Paley and Meyer wavelets can be used to 

design low-pass and band-pass filter. 

The expression of Littlewood-Paley wavelet is as follows: 
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The expression of Meyer wavelet is as follows: 
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where, 𝜑(𝜔) is scaling function and 𝜓(𝜔) is Meyer’s wavelet 

function. 

The empirical scaling function 𝜓1(𝜔)  and the empirical 

wavelets 𝜓𝑘(𝜔) are defined by expressions of equation (4) 

and (5). 
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where, ω is the frequency, ωk is the kth boundary frequency, γ 

is a parameter that ensures no overlap between the two 

consecutive transitions, and β(x) is an arbitrary function that 

satisfies the following conditions such as 
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Many functions satisfy these conditions, the most 

commonly used in the literature is 

 
4 2 3( ) (35 84 70 20 )x x x x x = − + −                (7) 

 

4. Extract different modes according to the scale function 

and the empirical wavelet function. The scale coefficients are 

given by the inner products with the scale function: 

 

(1, ) , ( ) ( )W t f f t d    = = −                  (8) 

 

The detailed coefficients are obtained by the inner product 

with empirical wavelets: 

 

( , ) , ( ) ( )W k t f f t d    = = −                 (9) 

 

where, τ is the time point, ⟨•⟩ is the inner product, over-bar 

represents the conjugation of a function and W(k,t) denotes the 

coefficients for the kth filter bank at the tth time point. The 

noise coefficients are less than the effective signal coefficients. 

Then by the mechanism of the scale difference of empirical 

wavelet coefficients for signal and noise, the empirical wavelet 

coefficients of noisy are threshold processed. 

 

 

3. GPR WEAK SIGNAL DENOISING VIA EWT 

 

3.1 Segmentation of the Fourier spectrum 

 

The segmentation mechanism of Fourier spectrum is a vital 
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step in separating signals and noise, which provides a 

theoretical basis for the adaptive analysis of signals. Therefore, 

even in the case of low SNR, EWT can analyze the signal 

effectively. There are four segmentation methods in EWT, 

named localmax, localmaxmin, localmaxminf, and adaptive, 

respectively. Because adaptive method shows better frequency 

division ability, it is used in this paper.  

The main idea of adaptive method is that starts from an 

initial set of boundaries and then adapts them as the smallest 

minimum within a window around considered boundary. The 

minimum are computed from the original spectrum. Since 0 

and π are always used in the first boundary and the last 

boundary, we need to find extra 𝑘 − 1 boundaries. Assuming 

that initial boundary is set to 𝑎𝑘 , 𝑘 = 0,1, . . . , 𝐾 , 𝑎𝑘 ∈
[0, 𝜔𝑚𝑎𝑥  and 𝑎0 = 0 , 𝑎𝑘 = 𝜔𝑚𝑎𝑥  ( 𝜔𝑚𝑎𝑥  is the maximum 

frequency of the signal), the window can be calculated by 

equation (10). 
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where, round(•)  means rounded function. The lower and 

upper are the lower and upper limits of the window, 

respectively. 

The expression of the boundary is as follows: 

 

𝜔𝑘 = 𝑎𝑟𝑔
𝜔

𝑚𝑖𝑛 𝐹𝑙 (𝜔),  𝜔 ∈ [𝐿𝑘 , 𝑈𝑘]             (11) 

 

where, 𝐹𝑙(𝜔) is minimum value within a window. 

To demonstrate the feasibility of adaptive method, we use 

the sinusoidal wave with SNR equaling to -50 dB to simulate 

signal. The expression of sinusoidal wave x(t) is as follows: 

 

1 1 2 2( ) sin( ) sin( )x t a t a t = +
                    (12) 

 

where, 𝑎1, 𝑎2  are amplitudes 𝜔1, 𝜔2  are angular frequencies 

and t is time. The spectrum of the pure signal, noisy and mixed 

signal are shown in Figure 2, we can see that the dominant 

frequency of the mixed signal ranges from 0 to 500 MHz. In 

order to make full use of the spectral characteristics, we set 

𝑘 = 3 . Boundaries and filtering bank of the adaptive are 

shown in Figure 3. 

 

 
 

Figure 2. The spectrum of the signal. (a) Pure signal. (b) 

Noisy. (c) Mixed signal 

 

  
(a)                                        (b) 

 

Figure 3. Boundaries and filtering bank of the adaptive. (a) 

Boundaries. (b) Filtering bank 

 

 
 

Figure 4. Empirical wavelet coefficients from three 

subbases. (a) Band1. (b) Band2. (c) Band3 

 

3.2 Threshold functions 

 

Hard threshold function has been widely used, since it is 

good on keeping signal amplitude. But there are some 

shortcomings. For example, the reconstructed data will be 

discontinuous at threshold point; the reconstructed signal is 

prone to Pseudo-Gibbo phenomenon. A new threshold 

approach overcomes the disadvantage which is not continuous, 

but advantage of hard threshold is not preserved. 

We assume that 𝑊𝑖,𝑡 , 𝑖 = 1,2, . . . , 𝐾, 𝑡 = 1,2, . . . , 𝑁  is 

empirical wavelet coefficient matrix of the ith mode. �̂�𝑖,𝑡 is 

coefficient matrix after threshold. 𝜆𝑖  is threshold which is 

related to the variance of the noise. 𝑠𝑔𝑛(•) is the sign function. 

The expressions of hard threshold function, soft threshold 

function and the improved threshold function are as follows. 

Hard threshold function is 
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Soft threshold function is 
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The semi-soft threshold function is 

 

( ), , , ,

,

,

(1 )sgn( ) ,
ˆ

0,

i t i t i t i i t i

i t

i t i

W W W W
W

W

   



 + − − 


    (15) 

209



 

where 
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When 𝛼 → 0 is the hard threshold function, 𝛼 → 1 is the 

soft threshold function. In general, 𝛼 = 0.05 . Due to 

subtraction, the coefficients by threshold processed are less 

than the original coefficients. The amplitude of the denoised 

signals will be less than the pure signals. 

To check the feasibility and validity of our threshold 

algorithm, we use the four threshold methods to process the 

synthetic signals. We not only analyze the denoised waveform, 

but also analyze the denoising results using SNR, peak signal 

to noise ratio (PSNR), mean square error (MSE) and mean 

absolute error (MAE). Higher SNR, PSNR and lower MSE, 

MAE mean better denoising results. The expression are as 

follows. 
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where 𝐹𝑖,𝑡 is the pure signal, �̂�𝑖,𝑡 is the denoised signal, and N 

is the length of signal.  

After signal denoising via CEEMD, SWT, results are shown 

Figure 5 and Figure 6. 

 

 
 

Figure 5. IMFs via CEEMD algorithm. (a) IMF5 + IMF4 + 

IMF3.  (b) IMF2. (c) IMF1 

 

 
 

Figure 6. Mixed signal denoising via SWT. (a) Mixed signal. 

(b) Denoised signal. (c) Residual signal 

 

We analyze quantitatively the denoising results of the three 

methods with the help of SNR, PSNR, MSE and MAE.  

 

Table 1. Denoising results of different methods 

 

Method SNR(dB) PSNR(dB) MSE MAE 

Mixed signal 19.843 33.987 2.276 0.0815 

CEEMD 31.122 39.626 0.621 0.0218 

SWT 31.796 39.963 0.575 0.0206 

EWT 32.427 40.278 0.534 0.0192 

 

The results show that the proposed algorithm has better 

performance than CEEMD and SWT methods. Under the 

proposed algorithm, different threshold functions are 

compared with the help of SNR, PSNR, MSE and MAE. From 

Table 2, we can find that semi-soft threshold method obtains 

the largest SNR and the smallest MSE. 

 

Table 2. Denoising results of different threshold methods 

 

Method SNR(dB) PSNR(dB) MSE MAE 

Hard threshold 27.692 34.126 0.913 0.0738 

Soft threshold 30.588 38.921 0.701 0.0379 

Semi-soft Threshold 31.796 39.963 0.575 0.0206 

 

 

4. EXPERIMENT RESULTS 

 

A synthetic GPR data was used to check the feasibility and 

validity of EWT algorithm. The comparation of CEEMD, 

SWT and the proposed algorithms will prove the improvement 

on previous work. The field GPR data was used to check the 

practicability and reliability of EWT algorithm. 

 

4.1 Synthetic example 

 

To check the feasibility and validity of EWT algorithm, we 

use a synthetic GPR data with the dominant frequency of 200 

Hz, and the wave velocity is about 1.11105 km/s. The 

synthetic GPR data was generated by finite difference-time 

domain method. The simulative model is as shown in Figure 

7a. The sampling frequency is about 10 GHz, and the SNR is 

-50dB (Figure 7b). The EWT algorithm is compared with 

CEEMD and SWT algorithm. 
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(a)                                   (b) 

 

Figure 7. GPR synthetic signal. (a) GPR synthetic model. (b) 

SNR is -50 dB 

 

For A-Scan GPR data (trace number is 180), the results 

based on three types of methods are shown in Figure 8.  

 

 
 

Figure 8. GPR synthetic signal. SNR is -50 dB 

 

The EWT algorithm is compared with CEEMD and SWT 

algorithm. For GPR A-Scan signal, the results based on three 

types of methods are shown in Figure 9. In the result of 

CEEMD, there is a lot of noise residue near useful signal. In 

the enlarged part, CEEMD and SWT are all leak signal. In 

contrast, the proposed algorithm can preserve valid signals 

better, including peaks and troughs. Meanwhile, a larger 

amount of random noise is eliminated by using proposed 

algorithm in smooth regions.  

As far as spectrum is concerned, the spectrum of CEEMD 

almost concentrates in low frequency constituents, and the 

spectrum of SWT almost concentrates in middle frequency 

constituents. The spectrum of EWT is closer to the high 

frequency and low frequency constituents of pure signal.  

 

 
 

Figure 9. Results of different denoising method 

 
 

Figure 10. The spectrum of different denoising method 

 

   
(a)                                 (b) 

   
(c)                             (d) 

 

Figure 11. Field results of different denoising method. (a) 

GPR data. (b) Denoising results of SWT. (c) Denoising 

results of CEEMD. (d) Denoising results of EWT 

 

Table 3. Synthetic GPR data denoising results 

 

Method SNR(dB) PSNR(dB) MSE MAE 

Mixed signal -50.000 -0.858 3068.4 216.54 

CEEMD -47.966 3.361 2395.0 169.94 

SWT -43.315 5.225 1587.7 113.35 

EWT -42.027 6.018 1366.7 93.43 

 

 
 

Figure 12. SNR results of different denoising method 
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Figure 13. MSE results of different denoising method 

 

The SNR , PSNR, MSE and MAE are four objective indexes 

in GPR signal processing. Table 3 shows the denoising results 

based on the synthetic GPR data. Comparing with the CEEMD 

and SWT, the EWT gets a higher SNR and smaller MSE in a 

variety of situations. We can see that the denoising result 

weakened when the SNR is below −60dB from Figure 13. 

Therefore, the SNR of the recorded data is required no less 

than −60dB for efficient performance of the presented EWT 

method. When the pure data are unknown for field data 

denoising tests, the SNR-based evaluation becomes 

unavailable.  

 

4.2 GPR field data 

 

 
 

Figure 14. 300MHz GPR was used to detect the urban roads 

 

   
(a)                                     (b) 

   
(c)                                  (d) 

 

Figure 15. Field results of different denoising method. (a) 

GPR data. (b) Denoising results of SWT. (c) Denoising 

results of CEEMD. (d) Denoising results of EWT 

In order to prove the practicability and reliability of 

proposed method, it is necessary to apply this method to actual 

data. We use the field signals from a GPR with the dominant 

frequency of 300 MHz (Figure 14). After being enhanced, the 

GPR weak signals always include a lot of noise (Figure 15a). 

In Figure 15, three algorithms are applied to B-Scan GPR 

signals. It clearly shows that EWT method (Figure 15d) 

obtains the most satisfactory output, and the events become 

clearer. At the reflection part, our algorithm keeps the 

important details of the input signal. The waveform of SWT 

results (Figure 15b) is distorted. The noise and signal are all 

reduced in the results of CEEMD (Figure 15c). There are 

effective signals in the error images of SWT (Figure 15b) and 

CEEMD (Figure 15c). 

 

   
(a)                                           (b) 

 
(c)                                       (d) 

 

Figure 16. The error images of different denoising method. 

(a) Two regions of GPR data. (b) The error image of E 

CEEMD. (c) The error image of SWT. (d) The error image of 

EWT 

 

To display merits of EWT algorithm prominently, three 

methods are compared in regions A and B. Region A contains 

a large number of valid signals, and region B contains a lot of 

noise. Figure 15b, Figure 15c, and Figure 15d are the 

denoising results of SWT, CEEMD, and EWT methods, 

respectively. Region B shows that CEEMD denoised signal 

distortion is greater than SWT. Whereas EWT denoised signal 

distortion is minimal.  Region A shows that there is a great 

deal of noise residual. The noise contained in the SWT 

denoising results is the most, followed by CEEMD, but the 

noise in the EWT is the least. From the box of residual graph, 

we can see that CEEMD and SWT algorithms lose the useful 

signal parts (Figure 16b, Figure 16c). The signal leakage 

through EWT is less than other two methods (Figure 16d). In 

suppression noise, the result obtained by proposed method 

outperforms the results from the CEEMD and SWT. By 

contrast, we can find that the EWT algorithm can improve the 

SNR and the continuity of events is better. Therefore, the EWT 

denoising performance is better than other two methods. 

 

 

5. CONCLUSION 

 

This paper presents a new algorithm for GPR weak signal 

denoising based on EWT. It builds a wavelet filter bank based 
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on Fourier supports detected from the information contained 

in the processed signal spectrum. In order to increase 

denoising ability of EWT, it is combined with improved 

threshold functions to retain effective signals. The 

experimental results on synthetic and field data show that the 

CEEMD and SWT algorithm leads to distortion of the 

reconstructed signal. However, EWT can retain the effective 

signal while suppressing the noise. Furthermore, we analyze 

quantitatively the denoising results of the three methods with 

the help of SNR, PSNR, MSE and MAE. Experiments show 

that the proposed algorithm have better performance than 

CEEMD and SWT methods in keeping detail information and 

improving SNR of reconstruction signal. 
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