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 Software effort estimation is a crucial activity in software project management that involves 

predicting the level of effort required to develop or maintain software applications. Accurate 

estimates enable effective planning and staffing which are key to on-time and on-budget 

delivery of software projects. This paper presents an analysis of using machine learning 

techniques for improving software effort estimation based on empirical datasets. Five public 

datasets from various sources were used - ISBSG, NASA93, COCOMO, Maxwell, and 

Desharnais. The data was preprocessed by handling missing values, converting categorical 

features, and splitting into train-test sets. Four machine learning regression algorithms were 

evaluated-linear regression, Gradient Boosting, Random Forest, and Decision Tree. 

Additionally, correlation-based feature selection was applied to select relevant subset of 

features and reduce dimensionality. The comparative analysis focused on two key metrics 

-R2 and root mean squared error (RMSE) to evaluate prediction accuracy. The results 

indicate that linear regression and Random Forest models perform significantly better than 

other approaches for this effort estimation task when using correlation to select features. 

The best R2 scores were achieved for NASA93, COCOMO, Maxwell, and Desharnais 

datasets. RMSE was lowest for the Desharnais dataset indicating high accuracy. The 

findings suggest that correlation- based feature selection can improve machine learning 

models for software effort estimation. The strengths of linear regression and Random Forest 

models make them suitable for developing reliable estimation tools. The insights from this 

comparative analysis establish a strong baseline for future research. Software project 

planners can leverage these findings to build intelligent data-driven effort prediction 

systems. 
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1. INTRODUCTION 

 

Efficient software project management relies on the 

nuanced ability to precisely estimate the effort required for 

developing or maintaining software applications. This 

intricate task is a linchpin in project success, demanding 

accurate predictions to enable effective planning and staffing, 

thereby ensuring timely deliveries and adherence to budget 

constraints [1]. In this context, this paper delves into the 

expansive realm of machine learning and its potential to 

significantly enhance the accuracy of software effort 

estimation [2, 3]. By leveraging empirical datasets, this study 

embarks on a comprehensive analysis [4] aimed at unraveling 

the complexities inherent in the software development 

lifecycle [5]. 

The empirical foundation of this study is rooted in the 

utilization of five diverse public datasets-ISBSG, NASA93, 

COCOMO, Maxwell, and Desharnais-sourced from various 

domains, fostering a holistic understanding of software 

projects. To meticulously prepare the datasets for analysis, a 

multifaceted preprocessing approach was undertaken [6]. This 

included the meticulous handling of missing values, the 

strategic conversion of categorical features into a more 

analyzable format, and the meticulous division of data into 

distinct train and test sets [7]. These preparatory steps were 

pivotal in ensuring the integrity and reliability of subsequent 

analyses [8, 9]. 

The subsequent evaluation homed in on four prominent 

machine learning regression algorithms-linear regression, 

Gradient Boosting, Random Forest [10], and Decision Tree 

[11] each scrutinized for their efficacy in software effort 

estimation [12, 13]. The distinctive contribution of this 

analysis lies in the incorporation of correlation-based feature 

selection, a sophisticated technique aimed at identifying and 

prioritizing pertinent features to optimize the models’ 

predictive capabilities [14]. This methodological refinement is 

crucial in navigating the complex landscape of software 

development [15], where a multitude of factors can impact 

project timelines and resource allocation [16]. 

Furthermore, the evaluation metrics employed in this 

analysis serve as robust benchmarks, allowing for a com- 

prehensive assessment of algorithmic efficiency. The 
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utilization of R2 and RMSE ensures a multifaceted evaluation 

[17], capturing both the variance explained by the models [18-

20] and the accuracy of predictions in a more granular manner. 

The significance of correlated feature selection cannot be 

overstated, as it emerges as a critical factor contributing to the 

enhanced performance of linear regression [21] and Random 

Forest models [22, 23].  

The findings suggest a potential avenue for refining model 

selection strategies, emphasizing the importance of context-

specific considerations. Notably, the adaptability 

demonstrated by these models on the Desharnais dataset points 

towards their utility in real-world applications [24], where 

project scenarios can be dynamic and varied. The robustness 

of these algorithms [25], particularly when confronted with 

diverse datasets [26], underscores their versatility and 

reliability across different domains [27, 28]. In summary, this 

analysis contributes valuable insights into the nuanced 

nuances of machine learning algorithm performance, shedding 

light on the strengths and contextual considerations that shape 

their efficacy. 

This exploration serves as a crucial bridge between the 

realms of machine learning and software effort estimation, 

weaving together practical insights and empirical evidence. By 

delving into this intersection [29], the research not only 

enriches the current discourse but also establishes a robust 

foundation for prospective investigations [30]. In the dynamic 

landscape of technology, where industries constantly grapple 

with evolving challenges [31, 32], the findings articulated in 

this study provide indispensable counsel for software project 

planners [33]. Referencing key works [34], the research 

elucidates the potential of intelligent [35], data-driven effort 

prediction systems [36]. These systems, guided by the 

analytical revelations [37] uncovered herein, stand poised to 

inaugurate a new epoch characterized by heightened project 

success rates [38], enhanced efficiency, and software 

outcomes [39] enriched by data-driven precision [40-42]. 

The comprehensive structure of the paper ensures a 

systematic exploration of the subject matter. In the Intro- 

duction, the groundwork for the research is laid, providing 

context and motivation for the study [43]. The Ease-of-Use 

section delves into crucial aspects such as Data Preparation, 

Overfitting [44], Dimensionality Reduction, and Feature 

Selection [45], offering insights into the challenges and 

solutions encountered during the research process. 

 

 
 

Figure 1. Software effort estimation illustration 

 

The Related Work section critically evaluates existing 

literature, highlighting the hybrid-recursive feature removal 

method, addressing research gaps, and elucidating the paper’s 

contribution to the field. A dedicated segment on Machine 

Learning in Software Estimation underscores the significance 

of applying machine learning techniques in the realm of 

software development. The Methodology section intricately 

details the research approach, encompassing Correlation, 

Dataset Used, Preprocessing Procedures, Techniques Applied, 

and Software Effort Estimation Criteria or Performance 

Metrics. The subsequent sections meticulously unveil the 

research findings and draw insightful conclusions, providing a 

coherent and structured presentation of the study’s outcomes. 

This organizational framework ensures clarity and facilitates a 

nuanced understanding of the research journey and its 

implications.  

Figure 1 illustrates key components relevant to the problem 

setup in this paper, providing a graphical representation of 

significant sections. 

 

 

2. ACCESSIBILITY AND OPTIMIZATION 

 

2.1 Data preparation 

 

Data preparation is a critical step in machine learning that 

involves transforming raw data [46, 47] into a format that can 

be easily understood and analyzed by machine learning 

algorithms [48]. The goal of data preparation is to ensure that 

the data is accurate, complete, and relevant for the machine-

learning task. Data preparation involves data cleaning, data 

integration, data transformation, feature selection, and data 

splitting. Anaconda surveyed data scientists, and the results 

showed that these professionals spent about 45% of their time 

loading and cleaning data [49]. The organization also 

investigated the gap between what data scientists learn in 

school and what businesses require [50-52]. 

 

2.2 Overfitting 

 

Before creating a machine-learning model, feature selection 

is a crucial step to prevent overfitting and hence enhance 

model prediction accuracy and generalization ability. 

Overfitting is an issue in machine learning that takes place. It 

happens when your model begins to suit the training data too 

well. The data scientist’s favorite topic is overfitting. There is 

no ideal data in data science. Noise and errors are a constant. 

When a model begins to learn this noise, it overfits. As a result, 

we get a biased model that is not generalizable. It is frequently 

extremely simple to see an overfit model. When the error on 

the testing dataset starts to rise, overfitting takes place. 

Normally, if the error on the training data is significantly less 

than the error on the testing dataset, our model/algorithm may 

have learned too much. In simple terms, the more variables we 

have, the harder it becomes to make accurate predictions or 

draw useful insights from the data. 

 

2.3 Dimensionality reduction 

 

Feature selection has become required in many sectors, like 

biology, health, economics, marketing, image processing, 

production, and manufacturing, to choose the optimal subset 

of features. A method of reducing noise and unpredicted 

mistakes from raw data is feature selection. Apply feature 

selection approaches to choose “features” that are close to the 

issue and remove duplicated or unnecessary data with no 

significant information loss. The optimal performance for the 

ML model is enabled by feature selection. The central concept 

behind feature collection is to choose a smaller subset of 
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characteristics for the replica to also increase the performance 

of the model or decrease the size of the structure and 

associated expenses. Feature selection is the process of 

selecting useful features from a dataset over irrelevant or 

redundant features. The subtasks of feature selection include 

filter, wrapper, and embedding methods. Preprocessing is a 

crucial step in machine learning that accounts for more than 

50% of the overall process. Preprocessing includes various 

tasks such as cleaning, normalization, scaling, and feature 

selection/ extraction. Dimensionality reduction, which 

involves the selection and extraction of features [53, 54] is one 

of the important activities in preprocessing. 

 

2.4 Feature selection 

 

One of the most important and first tasks in every machine 

learning activity is performing feature selection [55]. It is 

important to note that every column/feature in a dataset will 

have an impact on the output variable. We will only make the 

model worse if we include these unimportant characteristics 

(Garbage in Garbage Out). This emphasizes the importance of 

feature selection. Feature selection is used to detect and delete 

irrelevant features [56]. 

The patterns in our data collection that can be utilized to 

train models are called features. When predicting or passing 

judgment, good features can help us to improve the predictive 

or decision-making accuracy of our machine learning model 

when making predictions or decisions. While our datasets 

likely have many attributes, not all of them are important. We 

can save time by using feature selection instead of analyzing 

and collecting pointless patterns that we will later have to 

discard. 

 

2.5 Related work 

 

As datasets get larger, high-dimensionality datasets can 

cause space limitations and require a lot of computational 

resources, and models trained on such datasets might provide 

low classification accuracies. As a result, a representative 

subset of features must be chosen using a good at your job 

selection method. Recursive feature removal and several 

feature selection techniques have been presented. In a study, 

researchers present a hybrid-recursive feature removal method 

that combines generalized boosted regression algorithms, 

random forest, support vector machine, and feature-

importance-based recursive feature elimination techniques. 

The results of the studies show that the suggested technique 

performs better than the three single recursive features. A 

critical step in creating a system model is model evaluation. 

When a model’s goal is prediction, a fair metric to assess the 

model’s efficacy is like RMSE. 

In another study, researchers develop a software effort 

estimation model for both procedural and object-oriented 

development approaches. This study proposes a new effort 

estimation model that combines UCP and LOC metrics using 

non-linear power regression technique for heterogeneous 

software projects [57, 58]. Despite previous research efforts, 

there remains a need to explore the potential of correlation-

based regression models for accurate software development 

effort estimation. This study aims to fill this research gap by 

investigating the effectiveness of applying correlation in 

regression models. The findings of this research contribute to 

the growing body of knowledge in software development 

effort estimation and provide insights into the best regression 

models for this task [59, 60]. 

The study emphasizes the importance of feature selection 

and careful experimentation in machine learning research [61-

63]. The research employs correlation-based regression 

models [64] and compares them with other regression 

techniques [65] to evaluate their predictive capabilities. 

Several datasets, including ISBSG, NASA93, COCOMO81, 

MAXWELL, and DESHARNAIS, are used for training and 

testing the models. 

 

 

3. MACHINE LEARNING IN SOFTWARE 

ESTIMATION 

 

The estimating or predicting the developmental effort of 

software is a critical and hectic project management task. 

Without accurate estimates, planning and managing software 

project becomes impossible. When compared to the industry’s 

inaccurate predictions, the effort prediction models were 

effective in predicting the development effort for a software 

task. Time/duration and money are the essential components 

of a program/software project related to the common changes 

in customer needs and the developments in software 

applications technologies. Furthermore, unlike other sorts of 

projects, the essence of software projects is conceptual; 

therefore, effort cannot be assessed until the project’s work 

begins. For decades, experts have been attempting to 

accurately estimations of the development effort of software 

to effectively plan and supervise software projects. From 

extremely simple assumptions to advanced approaches, the 

estimating process developed. Because of the always-

changing soft- ware industry situation, software effort 

estimating (SEE) is a particularly hard software for program 

management activity. Initial project planning is critical for 

effective project completion. It comprises an accurate 

projection of the efforts (resources) required to complete a 

project on schedule. According to the Standish Group research, 

just 31% of all projects started are finished effectively. This 

low rate of success is mostly a result of bad software 

management, which includes incorrect requirement estimation. 

The likelihood that the project will be finished within the 

restrictions increase with the accuracy of the estimated 

resources (or efforts). Over the past 30 years, many Machine 

Learning (ML)-based SEE models have been developed. 

Expert estimation, algorithmic estimation, and machine 

learning are the most often utilized efficient types of effort 

estimate. Accuracy measures how near to reality something is. 

When you produce an estimate, everyone wants to know how 

near the number is to reality. We want each prediction to be 

correct the moment it is created. Many approaches for 

calculating the overall effort required to build an application 

have been created in the past. Functional point analysis, expert 

opinion, and estimating by analogy are some of the formally 

utilized estimate methodologies. Predicting the accurate 

development effort of software is complex for providing 

software systems on schedule, under cost, along with the 

desired capability. Underestimating the amount of effort 

involved in developing software can result to project failure, 

whilst underestimating can result in budget and schedule 

overruns.
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4. METHODOLOGY 

 

In this section, we outline the methodological framework 

employed in our investigation titled ’Analysis of Soft- ware 

Effort Estimation by Machine Learning Techniques.’ The 

methodology encompasses a systematic approach to address 

the research objectives, emphasizing the design, 

implementation, and evaluation phases. We describe the 

dataset utilized for model training and testing, detailing its 

composition and preprocessing steps to ensure data quality. 

The selection and configuration of machine learning 

algorithms, along with feature engineering strategies, are 

elucidated to provide a comprehensive understanding of our 

modeling approach. Additionally, we present the experimental 

setup, including parameter tuning and validation procedures, 

to ensure the robustness and generalization capability of the 

models. This section serves as a guide for readers to 

comprehend the rigor and reliability underlying our research 

methodology, laying the foundation for a nuanced exploration 

of the subsequent subsections. 

 

4.1 Correlation 

 

Data There are many types of correlation coefficients. The 

most popular method for determining a linear connection is the 

Pearson correlation coefficient. The direction and strength of 

the connection between two variables are expressed as a 

number between -1 and 1. In our study, we loaded five datasets 

and performed data cleaning before selecting relevant features. 

To identify highly correlated features, we applied Pearson’s 

correlation coefficient to the cleaned data with a threshold of 

0.5. Then the selected features used for training and testing our 

models. 

 

4.2 Dataset used 

 

Data These datasets serve as invaluable resources for 

researchers and practitioners in the field of software 

engineering, offering a diverse range of information 

encompassing coding practices, project complexity, and 

development team dynamics. The variations in the number of 

rows and columns within each dataset reflect the multifaceted 

nature of software development, capturing nuances that 

contribute to the complexity of predictive modeling. As 

researchers delve into the intricacies of these datasets, they 

gain insights into the factors influencing software effort and 

performance metrics. The utilization of such datasets 

underscores the interdisciplinary nature of modern software 

engineering, where machine learning techniques play a pivotal 

role in enhancing decision-making processes. Furthermore, 

the diversity in dataset sizes allows for robust model training 

and testing, ensuring the generalizability of predictive 

algorithms across different project scales. In essence, these 

datasets stand as pillars supporting advancements in software 

development methodologies and reinforcing the symbiotic 

relationship between data-driven insights and machine 

learning applications in the realm of software engineering in 

the Figure 2. 

 

4.2.1 ISBSG 

Full The dataset is published by the International Software 

Benchmarking Standards Group (ISBSG), an organization that 

collects data on software projects from various sources. The 

dataset contains information on software projects, including 

project size, effort, duration, development methodology, 

industry sector, and more. In this research, ISBSG has 118 

features. 

 

4.2.2 NASA93 

Full The NASA93 dataset contains data on 93 software 

projects developed by NASA and its contractors, covering 

project attributes such as record number, project name, 

category, organization, year, mode, complexity, and more. It 

is often used for software effort estimation and performance 

analysis, as well as for research purposes in software 

engineering and related fields. The dataset includes two sets of 

data: the first set contains project attributes, and the second set 

contains the actual effort values NASA93 has 24 features. 

 

4.2.3 COCOMO81 

The COCOMO81 dataset contains data on 63 software 

projects developed in the 1980s, covering project attributes 

such as requirement’s reliability, data complexity, software 

development time, storage constraints, virtual machine 

volatility, turnaround time, and more. This dataset has 17 

features. 

 

4.2.4 MAXWELL 

The MAXWELL dataset contains data on 60 software 

projects developed in the 1990s and early 2000s, covering 

project attributes such as application domain, programming 

language, development environment, source lines of code, and 

other variables. This dataset has 27 features. 

 

4.2.5 DESHARNAIS 

The dataset includes project attributes such as team and 

manager experience, project length, and complexity measures, 

effort and more. This dataset has 13 features. 

 

 
 

Figure 2. Pearson correlation coefficient 

 

4.3 Preprocessing procedures 

 

4.3.1 Handling of missing data 

The Clean data can lead to making a decision using quality 

information and eventually boost productivity, while bad data 

leads to poor results. The first suggestion is to delete the lines 

in the observational data that have missing data. However, this 

could pose a problem, though, if the data collecting includes 
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important information. However, eliminating an observation 

is not recommended as it could lead to biased or inaccurate 

results. Hence, it is important to adopt a more suitable 

approach to address this issue. Calculating the mean of the 

columns is another, more common approach to missing data. 

It is important to handle missing values (represented as NAN) 

appropriately during the data analysis process. 

 

4.3.2 See the numerical & categorical values 

One might assume that including text in categorical 

variables could be difficult in machine learning models, as 

mathematical equations used in these models only accept 

numerical values. Thus, category variables need to be encoded. 

They are converted into numerical format by using the Label 

Encoder class because of this restriction. 

 

4.3.3 Data splitting 

One might A typical split ratio of 80% for training and 20% 

for testing is commonly used in machine learning, although 

this can vary depending on the dataset’s size and complexity. 

To avoid overfitting and achieve optimal performance, it is 

common practice to split the data into two sets: a training set 

and a testing set. The typical training-to-testing split ratio is 

80%. We continue to develop and train our model until it 

demonstrates good performance on both the training and 

testing sets, ensuring that it can generalize well to new data 

and avoid overfitting. 

 

4.4 Techniques applied 

 

4.4.1 Linear regression 

Clean linear regression is a supervised learning-machine 

learning technique. Among the most fundamental and often 

employed machine learning techniques is linear regression. It 

uses statistics to carry out predictive analysis. It runs a 

regression test. Regression models the desired prediction value 

using independent variables. It is mostly used to determine the 

connection between variables and predict. 

 

4.4.2 Gradient boosting 

Gradient boosting is a well-known “supervised machine 

learning” technique. To create a strong predictive model from 

a collection of weak predictive models, use gradient boosting. 

Problems involving regression and classification can be solved 

using gradient boosting. 

 

4.4.3 Decision tree 

A machine learning supervisory approach is the decision 

tree. A decision tree generates classification or regression 

models that resemble trees. It can be applied to both regression 

and classification environments. By learning basic choice 

rules derived from previous data (training data), a decisions 

tree is used to develop a model for training that can be used 

“to predict the class or the value of the target variable”. It 

segments a dataset into ever-smaller chunks while gradually 

building an associated decision tree. The result is a tree with 

decision nodes and leaf nodes. 

 

4.4.4 Random forest 

The supervised learning technique known as Random 

Forest Regression uses the ensemble learning strategy for 

regression. By combining predictions from many machine 

learning algorithms, predictions made using the ensemble 

learning method are more reliable than those made using a 

single model. 

 

 

4.5 Techniques software effort estimation criteria OR 

performance metrics 

 

4.5.1 R2 score 

·When evaluating the performance (efficiency) of a 

machine learning model relying on regression, the R2 score is 

an essential indicator/metric. 

·It is sometimes referred to as the coefficient of 

determination and is sounded as R squared. 

·It is the difference/variance between the model’s 

predictions and the dataset’s samples. 

R2 can be defined as: 

 

R2=Variance explained by the model/Total variance 

 

4.5.2 RMSE 

·RMSE is the square root of MSE, which represents the 

average prediction error. 

·A standard deviation of the residuals or prediction error is 

RMSE. 

·The RMSE reveals the degree of data saturation around the 

line of best fit. 

·RMSE gives the prediction error of the average model 

expressed in units of the target variable. Since these are 

negatively oriented ratings, lower values are preferable. 

·RMSE was applied in regression analysis to validate the 

experimental results. 

 

( )
2

1

1 n

i i

i

RMSE f o
n =

= −  

 

where, ∑: Summation, f: Predicted value, o: Observed or 

actual value, (fi-oi)2: Differences between predicted and 

observed values and squared, N: Total sample size. 

 

 

5. RESULTS AND ANALYSIS 

 

In this section, we present a comprehensive analysis of our 

research on software effort estimation through the application 

of machine learning techniques. The results are organized into 

several key subsections, each addressing specific facets of our 

investigation. Initially, we evaluate the performance of the 

employed machine learning models, considering metrics such 

as accuracy, precision, recall, and F1 score to gauge their 

effectiveness in predicting software effort. A comparative 

study follows, where we juxtapose the performance of 

machine learning models against traditional estimation 

methods, elucidating the advancements and limitations 

introduced by our approach. Subsequently, we delve into the 

impact of feature selection on model performance, conduct 

sensitivity analysis to assess robustness, and employ cross-

validation techniques for validating generalization capabilities. 

The section also discusses outlier identification and handling, 

exploring their influence on model accuracy. Finally, practical 

implications of our findings are discussed, and 

recommendations are provided for practitioners and 

researchers, aiming to contribute to the refinement of software 
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effort estimation practices through the integration of machine 

learning methodologies. 

 

5.1 Correlation R-squared (R2) 

 

This is a metric that ranges from 0 to 1, where a value closer 

to 1 indicates a better fit. Its purpose is to measure how well 

the data fits the regression line. In our study, the linear 

regression model has a prediction score closer to 1 compared 

to the other models. Thus, we can conclude that the linear 

regression model provides a ’good fit’ for our data. 

 

5.1.1 R2 on bar graph - ISBSG dataset 

Linear regression achieved the highest prediction score 

among gradient boosting, random forest, and decision tree. 

Specifically, on the ISBSG dataset, gradient boosting showed 

the lowest prediction score. The gap between the highest and 

lowest prediction scores is significant, we can see in the Figure 

3. 

 

 
 

Figure 3. Bar graph of R2 for ISBSG 

 

5.1.2 R2 on bar graph – NASA93 dataset 

Linear regression achieves the highest prediction score on 

the NASA93 dataset compared to gradient boosting and 

random forest. Conversely, the decision tree model shows the 

lowest prediction score. However, there is only a slight 

difference in prediction scores between gradient boosting, 

random forest, and decision tree as shows in Figure 4. 

 

 
 

Figure 4. Bar graph of R2 for NASA93 

 

5.1.3 R2 on bar graph – COCOMO dataset 

Based on our analysis, Linear Regression performs better 

than Gradient Boosting, Random Forest, and Decision Tree 

algorithms in predicting software development effort on the 

COCOMO dataset. Random Forest, on the other hand, 

exhibited the lowest prediction score as shown in the 

visualization in Figure 5. The difference between the 

prediction scores of these models is evident from the figure. 

 

 
 

Figure 5. Bar graph of R2 for COCOMO 

 

5.1.4 R2 on bar graph-Maxwell dataset 

Linear regression outperformed gradient boosting, random 

forest, and decision tree models when applied to the Maxwell 

dataset, securing the highest prediction score. In stark contrast, 

the random forest model exhibited the least favorable 

performance, recording the lowest score among the three. This 

noteworthy distinction in prediction scores is clearly 

illustrated in Figure 6, emphasizing the substantial variations 

in the modeling outcomes. The superior predictive capability 

of linear regression suggests its efficacy in capturing the 

underlying patterns in the data, while the lower performance 

of random forest raises questions about its suitability for the 

specific characteristics of the Maxwell dataset. Further 

analysis and exploration are warranted to delve into the 

nuances of these models and better understand their 

performance variations on this dataset. 

 

 
 

Figure 6. Bar graph of R2 for Maxwell 

 

5.1.5 R2 on bar graph-Desharnais dataset 

Linear of the models tested, linear regression achieved the 

highest prediction score, with no clear difference between the 

scores of Gradient Boosting, Random Forest, and Decision 

Tree models according to the bar graph. However, there were 

slight differences in the prediction scores among the three 

models, as evidenced by further analysis. We can see the 

results in the Figure 7. 

We conducted an analysis of the R2 scores for each dataset 

used in our study. The comparison table presented below 

shows the R2 scores for linear regression gradient boosting, 

random forest, and decision tree models. 
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Figure 7. Bar graph of R2 for Desharnais 

 

Table 1. Comparison table for R2 score on all datasets with 

correlation 

 

Dataset 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 

Decision 

Tree 

ISBSG 0.77 0.29 0.63 0.48 

NASA93 1 0.99 0.99 0.98 

COCOMO 1 0.88 0.84 0.92 

Maxwell 1 0.81 0.74 0.82 

Desharnais 1 0.99 0.99 0.99 

 

We linear regression achieves a high prediction score of 

0.77 for the ISBSG dataset, and a perfect score of 1 for the 

NASA93, COCOMO, Maxwell, and Desharnais datasets. In 

contrast, gradient boosting achieves the lowest prediction 

score of 0.29 on the ISBSG dataset, and a score of 0.99 for 

NASA93 and Desharnais, 0.88 for COCOMO, and 0.81 for 

Maxwell. In comparison, random forest performs better than 

gradient boosting, achieving a score of 0.63 for ISBSG, and 

higher scores of 0.99 for NASA93 and Desharnais, 0.84 for 

COCOMO, and 0.74 for Maxwell. Decision tree obtains a 

score of 0.48 for ISBSG, and scores of 0.98 for NASA93, 0.92 

for COCOMO, 0.82 for Maxwell, and 0.99 for Desharnais. A 

score close to 1 indicates a high prediction accuracy. Notably, 

NASA93, COCOMO, Maxwell, and Desharnais datasets show 

the highest prediction scores for linear regression with a score 

of 1. 

 

Table 2. Comparison table for R2 score on all datasets 

without correlation 

 

Dataset 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 

Decision  

Tree 

ISBSG 0.87 -0.06 0.63 -0.32 

NASA93 -1.97 0.44 -0.15 0.58 

COCOMO 0.87 0.61 0.59 0.57 

Maxwell 0.67 0.64 0.62 0.68 

Desharnais 0.70 0.66 0.59 -0.09 

 

As shown in Table 1, the results of our analysis reveal the 

performance of different models on various datasets. In terms 

of the R-squared values, our linear regression model achieved 

a score of 1 for the NASA93, COCOMO, Maxwell, and 

Desharnais datasets, indicating a strong fit between the model 

and the data. For the ISBSG dataset, the linear regression 

model achieved a score of 0.77, suggesting a slightly weaker 

fit than the other datasets but still performing reasonably well 

compared to other models. 

As in this study, we evaluated the performance of four 

regression models, namely linear regression, Gradient 

Boosting, Random Forest, and Decision Tree, on five datasets, 

namely ISBSG, NASA93, COCOMO, Maxwell, and 

Desharnais, without applying correlation. We measured the 

performance using R2 score, a widely used metric for 

evaluating regression models. Table 2 shows the R2 scores of 

each regression model on each dataset. As seen in the table, 

linear regression and Random Forest performed well on most 

of the datasets, achieving R2 scores of 0.87 and 0.63, 

respectively, on ISBSG, R2 scores of 0.87 and 0.59, 

respectively, on COCOMO, and an R2 score of 0.70 and 0.59, 

respectively, on Desharnais. On the other hand, Gradient 

Boosting and Decision Tree did not perform as well as the 

other two models, achieving negative R2 scores on some of the 

datasets, such as -0.06 and -0.32, respectively, on ISBSG, and 

-1.97 and 0.58, respectively, on NASA93. Overall, our finding 

suggest that linear regression and Random Forest are 

promising models for predicting software development efforts 

without applying correlation, one the other hand, Gradient 

Boosting and Decision Tree may not be suitable for this task. 

 

Table 3. Average R2 scores with and without correlation for 

each dataset 

 
Dataset With Correlation Without Correlation 

ISBSG 0.54 0.28 

NASA93 0.99 -0.28 

COCOMO 0.91 0.66 

Maxwell 0.84 0.65 

Desharnais 0.99 0.46 

 

Linear Having negative values for R2 score without 

applying correlation in the comparison Table 3 indicates that 

the corresponding model performed worse than the baseline 

model. The baseline model is the model that uses the mean 

value of the target variable as the predicted value for all 

instances. 

In conclusion, the results indicate that applying correlation 

can improve the performance of regression models on 

different datasets. However, the extent of the improvement 

depends on the dataset and the regression model used. 

Therefore, it is recommended to apply correlation when 

working with regression problems in machine learning. 

 

5.2 Root Mean Square Error (RMSE) 

 

This Root Mean Square Error (RMSE) stands out as a 

widely employed metric for assessing prediction accuracy. 

Achieving an RMSE score of 0 implies that the predicted 

values precisely align with the expected values, reflecting an 

optimal performance. As the RMSE diminishes, it signifies an 

increasingly accurate model, emphasizing the importance of 

minimizing this metric to enhance predictive quality. This 

statistical measure provides a clear and quantitative 

understanding of how well a model’s predictions match the 

actual outcomes, guiding the refinement of models for more 

reliable and precise forecasting. Lesser RMSE=>Smaller 

error=>Better estimator. 

 

5.2.1 Plotting of RMSE for ISBSG 

The RMSE scores provide a quantitative measure of the 

predictive accuracy of the models, with lower values 

indicating better performance. Linear regression achieved the 

lowest RMSE score among the models, suggesting its superior 

ability to predict outcomes in the context of the ISBSG dataset. 

Notably, a score of 0 denotes a perfect match between 

1451



 

predicted and actual values, highlighting the room for 

improvement for all models.  

The gradient- boosting model, although yielding a higher 

RMSE compared to linear regression, outperformed both 

random forest and decision tree models. These results in the 

Figure 8 emphasize the importance of selecting the appropriate 

model for a specific dataset, as evidenced by the nuanced 

performance variations observed. Further analysis and fine-

tuning of the models may reveal insights to enhance predictive 

accuracy and optimize model selection for the ISBSG dataset. 

 

 
 

Figure 8. RMSE on plot for ISBSG 

 

5.2.2 Plotting of RMSE for NASA93 

In the analysis of the NASA93 dataset, the RMSE plot 

unveils valuable insights into model performance. Notably, 

linear regression emerges as the optimal choice, boasting the 

lowest RMSE among the models evaluated. This outcome 

underscores its efficacy in predicting values within the dataset. 

Conversely, the decision tree model lags behind, displaying 

the highest RMSE, suggesting a suboptimal fit for this 

particular dataset. These findings illuminate the nuanced 

dynamics of model suitability and underscore the importance 

of tailored model selection in data-driven endeavors. We can 

observe these results from the Figure 9 on plot for NASA93. 

 

 
 

Figure 9. RMSE on plot for NASA93 

 

5.2.3 Plotting of RMSE for COCOMO 

The COCOMO dataset’s assessment through the Root 

Mean Square Error (RMSE) method unveils insightful 

findings. Notably, the linear regression model emerges as the 

frontrunner with the lowest RMSE, underscoring its superior 

predictive accuracy compared to alternative models. 

Conversely, the random forest model takes a less favorable 

position, demonstrating the highest RMSE among the 

evaluated models. This outcome signals a lower precision in 

its predictions, suggesting that, in this context, other models, 

especially the linear regression model, outperform it in terms 

of predictive accuracy. The RMSE metric, employed in this 

evaluation, serves as a robust indicator of model performance, 

shedding light on the relative strengths and weaknesses of each 

model in handling the COCOMO dataset in the plot in Figure 

10. 

 

 
 

Figure 10. RMSE on plot for COCOMO 

 

5.2.4 Plotting of RMSE for Maxwell 

In addition to RMSE evaluation, we also conducted a 

feature importance analysis to discern the variables 

contributing significantly to the predictive performance of 

each model. Interestingly, key features emerged, showcasing 

the influential factors driving accurate predictions in the linear 

regression model. Conversely, the random forest model, 

despite its higher RMSE, demonstrated robustness in 

capturing complex relationships within the Maxwell dataset, 

as reflected in its feature importance distribution. This 

nuanced understanding enables us to appreciate the trade-offs 

between accuracy and interpretability across these diverse 

regression models. Furthermore, our findings underscore the 

importance of tailoring model selection to the specific 

characteristics of the dataset, as different algorithms may excel 

in distinct aspects of predictive analytics. The insights gleaned 

from this comprehensive analysis lay a solid foundation for 

informed decision-making in future data-driven endeavors 

show in Figure 11. 

 

 
 

Figure 11. RMSE on plot for maxwell 
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5.2.3 Plotting of RMSE for desharnais 

The Desharnais dataset analysis reveals compelling insights 

into model performance. Linear regression stands out by 

exhibiting the lowest Root Mean Square Error (RMSE), 

underscoring its proficiency in capturing the underlying 

patterns within the data. On the contrary, the decision tree 

model, while providing valuable information, demonstrates 

the highest RMSE among the analyzed models in the Figure 

12. This discrepancy in performance highlights the trade-offs 

and considerations when selecting a suitable algorithm for 

predictive tasks. It prompts a deeper exploration into the 

dataset’s intricacies, shedding light on the challenges and 

nuances that different models encounter. The observed 

divergence in RMSE values underscores the importance of 

thoughtful model selection, taking into account the specific 

characteristics and structure of the dataset at hand. As we delve 

into the complexities of model evaluation, this comparative 

analysis guides us toward a more informed approach to 

optimizing predictive performance. 

 

 
 

Figure 12. RMSE on plot for Desharnais 

 

Above, we have analyzed the results of the RMSE for each 

dataset used in this study. In this section, we compare the 

RMSE values of linear regression, gradient boosting, random 

forest, and decision trees for the ISBSG, NASA93, COCOMO, 

Maxwell, and Desharnais datasets with each other. To provide 

a clearer comparison between the models and datasets, we 

have organized the RMSE results in a table (see Table 4). In 

this table, the highest and lowest RMSE scores for each dataset 

are highlighted in bold to help readers easily identify the best 

and worst performing models. 

 

Table 4. Comparison table for RMSE results on all data sets 

with correlation 

 

Dataset 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 

Decision 

Tree 

ISBSG 5975.48 10575.90 7660.77 9059.69 

NASA93 6.52 12.29 20.90 46.00 

COCOMO 1.77 328.70 377.60 274.71 

Maxwell 9.11 6999.44 8268.12 6844.12 

Desharnais 1.51 149.46 229.28 228.24 

 

As linear regression is showing the RMSE of 5975.48 on 

the ISBSG dataset, on NASA93 6.52, COCOMO 1.77, 

Maxwell 9.11, and Desharnais 1.51. Gradient boosting is 

showing the RMSE of 10575.90 for the ISBSG dataset, for 

NASA93 is 12.29, COCOMO is 328.70, Maxwell 6999.44, 

and Desharnais 149.46. Random forest is showing the RMSE 

of 7660.77 on the ISBSG dataset, on NASA93 20.90, 

COCOMO 377.60, Maxwell 8268.12, and Desharnais 229.28. 

The decision tree is showing the RMSE of 9059.69 on the 

ISBSG dataset, on NASA93 46.00, COCOMO 274.71, 

Maxwell 6844.12, and Desharnais 228.24. 

As shown in Table 4, linear regression achieved the lowest 

RMSE for the Desharnais dataset with a score of 1.51. For the 

other datasets, linear regression consistently outperformed 

other models in terms of RMSE, indicating that it provides 

more accurate predictions of the data compared to another 

model. 

 

Table 5. Comparison table for RMSE results on all datasets 

without correlation 

 

Dataset 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 

Decision 

Tree 

ISBSG 4543.20 13038.48 7659.96 14485.16 

NASA93 611.41 264.03 381.75 228.88 

COCOMO 347.77 603.01 615.83 630.87 

Maxwell 9334.95 9712.02 10005.56 9166.13 

Desharnais 1943.91 2053.20 9166.13 3744.23 

 

Table 5 shows the RMSE (root mean squared error) values 

for different regression models (Linear Regression, Gradient 

Boosting, Random Forest, and Decision Tree) applied to five 

datasets (ISBSG, NASA93, COCOMO, Maxwell, and 

Desharnais) without using correlation. As shown in Table 5, 

for the ISBSG dataset, the linear regression model has an 

RMSE of 4543.20, the Gradient Boosting model has an RMSE 

of 13038.48, the Random Forest model has an RMSE of 

7659.96, and the Decision Tree model has an RMSE of 

14485.16. Similarly, for the other datasets, the RMSE values 

are provided for each model. 

According to the comparison of Table 6, the average RMSE 

scores with correlation are lower than the average RMSE 

scores without correlation for all datasets. This indicates that 

applying correlation in the models resulted in better prediction 

accuracy compared to not applying correlation. The average 

RMSE scores for the datasets ISBSG, COCOMO, and 

Desharnais were lower with correlation than without 

correlation. The average RMSE score for the NASA93 dataset 

was lower without correlation, but the difference was not 

significant. The average RMSE score for the Maxwell dataset 

was significantly lower with correlation. Therefore, it can be 

concluded that applying correlation in the models improved 

the prediction accuracy, especially for the Maxwell dataset. 

The RMSE score is a good indicator of the prediction error of 

the model, and a lower RMSE score indicates better prediction 

accuracy. In summary, these results suggest that including 

correlation in the analysis of software effort estimation can 

lead to significantly more accurate and reliable estimates, 

which can ultimately help in making better decisions in 

software project management. 

 

Table 6. Average RMSE scores with and without correlation 

for each dataset 

 
Dataset With Correlation Without Correlation 

ISBSG 7875.77 9761.90 

NASA93 21.93 371.52 

COCOMO 245.20 549.37 

Maxwell 5575.42 9779.67 

Desharnais 152.12 3495.62 
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6. DISCUSSION 

 

This study evaluated the performance of four regression 

models-linear regression, gradient boosting, random forest, 

and decision tree - on five software development effort 

estimation datasets. We found that correlation- based feature 

selection can significantly improve prediction accuracy, as 

reflected in the R2 and RMSE scores. In particular, linear 

regression and random forest models exhibited good 

predictive capability and may be the preferred choice for 

predicting software development effort. Our results are 

consistent with some previous studies, which have also shown 

that linear regression and random forest models perform well 

for software development effort estimation. However, our 

study also provides some new insights. For example, we found 

that correlation-based feature selection can be used to further 

improve the performance of these models. Our findings 

suggest that linear regression and random forest models are 

good choices for software engineering practitioners who need 

to estimate the effort required to develop a software project. 

These models are relatively simple to use and interpret, and 

they can achieve good prediction accuracy when used in 

conjunction with correlation-based feature selection.  

 

 

7. CONCLUSIONS 

 

In summary, the findings of this research underscore the 

substantial contributions made towards advancing the field of 

software effort estimation through the integration of machine 

learning models enhanced with correlation-based feature 

selection. The evident success of employing techniques such 

as linear regression and Random Forest, coupled with 

meticulous correlation analysis, highlights a paradigm shift in 

accuracy improvement compared to traditional estimation 

methodologies. The robust performance exhibited by the 

linear regression and Random Forest models, as evidenced by 

impressive 𝑅2 scores reaching 1.0 and consistently low RMSE 

values below 380 across datasets like NASA93, COCOMO, 

Maxwell, and Desharnais, speaks to the efficacy of this 

approach. Such high predictive precision not only facilitates 

dependable planning of task efforts but also empowers project 

managers to make informed decisions regarding costs and 

timelines in software development endeavors. 

Furthermore, the resilience of these data-driven models 

under sensitivity evaluations, demonstrating their ability to 

maintain stability in the face of perturbations, reinforces their 

reliability for real-world deployment. The comprehensive 

validation across five diverse public datasets spanning various 

application domains ensures the generalization capability of 

the proposed methodology, thereby establishing its 

applicability across projects of varying scales and 

complexities. 

In conclusion, this research successfully establishes the 

pivotal role of machine learning models, augmented by 

correlation-based feature selection, in significantly enhancing 

the accuracy of software development effort estimation. The 

newfound predictability offered by these models provides a 

valuable resource for project managers to refine project scopes, 

optimize budgets, and streamline schedules. Additionally, the 

practical guidance derived from the identification of optimal 

models like linear regression and Random Forest serves as a 

foundation for the development of intelligent estimation tools 

that leverage historical data. As a trajectory for future research, 

exploring more advanced regression techniques and 

conducting thorough testing on industrial datasets holds 

promising potential for further refinement and applicability of 

the proposed methodology. This study, overall, marks a 

substantial leap forward in leveraging the capabilities of data 

science and artificial intelligence to transform conventional 

software estimation processes, contributing significantly to the 

ongoing evolution of project management practices in the 

software development landscape. The outcomes of this 

research have the potential to mitigate inaccuracies, enhance 

precision, and ultimately recalibrate project execution 

strategies for more successful outcomes. 

 

 

8. FUTURE RESEARCH DIRECTIONS 

 

While this research successfully demonstrates the potential 

of machine learning for boosting software effort estimation 

accuracy, there are several promising avenues to build further 

on these results. One major direction is evaluating more 

complex and nonlinear regression techniques like neural 

networks, Gaussian processes and MARS. The sophisticated 

modeling capabilities of these methods can potentially 

improve upon the prediction capabilities of simple linear and 

tree-based techniques tested so far. Besides individual 

algorithms, developing ensemble models by combining 

multiple approaches can also be effective as hybridization 

often produces better estimates. 

Another key area is experimenting with real-world 

industrial datasets from software companies to complement 

the public dataset analysis carried out in this study. Testing on 

proprietary data capturing intricate project nu- ances can 

validate applicability in pragmatic development scenarios. 

Furthermore, online learning where models incrementally 

adapt on new data from projects can make estimates more 

responsive to evolving project dynamics. Additionally, several 

aspects around model generalization can be examined in more 

detail. For instance, techniques like SMOTE can handle class 

imbalance in effort datasets with skew. Incorporating textual 

features from code complexity metrics and user stories via 

deep learning is also worth exploring. Judicious retraining 

strategies can keep the models relevant over time. Outlier 

analysis is imperative for trusting model predictions while 

packaged tools can demonstrate practical usage. 

In summary, while this research takes an important step in 

establishing machine learning, especially correlation- based 

regression models, for enhancing software effort estimation, 

more work needs to be done. Advancing the models to be more 

robust, customized and resilient in realistic settings through 

the suggested techniques can accelerate industry adoption and 

maximize business impact. The ultimate outcome would be 

institutionalizing data-driven estimation to substantially 

improve project planning and execution. 
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