

Analysis of Software Effort Estimation by Machine Learning Techniques

Meharunnisa1 , Muhammad Saqlain2 , Muhammad Abid3 , Muhammad Awais1 , Željko Stević4*

1 Department of Software Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
2 Department of Mathematics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
3 Department of Mathematics, North Carolina State University, Raleigh 27695, North Carolina, United States
4 University of East Sarajevo, Faculty of Transport and Traffic Engineering, Doboj 74000, Bosnia and Herzegovina

Corresponding Author Email: zeljkostevic88@yahoo.com

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.280602

ABSTRACT

Received: 6 September 2023

Revised: 28 October 2023

Accepted: 15 November 2023

Available online: 23 December 2023

 Software effort estimation is a crucial activity in software project management that involves

predicting the level of effort required to develop or maintain software applications. Accurate

estimates enable effective planning and staffing which are key to on-time and on-budget

delivery of software projects. This paper presents an analysis of using machine learning

techniques for improving software effort estimation based on empirical datasets. Five public

datasets from various sources were used - ISBSG, NASA93, COCOMO, Maxwell, and

Desharnais. The data was preprocessed by handling missing values, converting categorical

features, and splitting into train-test sets. Four machine learning regression algorithms were

evaluated-linear regression, Gradient Boosting, Random Forest, and Decision Tree.

Additionally, correlation-based feature selection was applied to select relevant subset of

features and reduce dimensionality. The comparative analysis focused on two key metrics

-R2 and root mean squared error (RMSE) to evaluate prediction accuracy. The results

indicate that linear regression and Random Forest models perform significantly better than

other approaches for this effort estimation task when using correlation to select features.

The best R2 scores were achieved for NASA93, COCOMO, Maxwell, and Desharnais

datasets. RMSE was lowest for the Desharnais dataset indicating high accuracy. The

findings suggest that correlation- based feature selection can improve machine learning

models for software effort estimation. The strengths of linear regression and Random Forest

models make them suitable for developing reliable estimation tools. The insights from this

comparative analysis establish a strong baseline for future research. Software project

planners can leverage these findings to build intelligent data-driven effort prediction

systems.

Keywords:

estimation, machine learning, software,

data-driven, linear regression, gradient

boosting, random forest, root mean squared

error (RMSE)

1. INTRODUCTION

Efficient software project management relies on the

nuanced ability to precisely estimate the effort required for

developing or maintaining software applications. This

intricate task is a linchpin in project success, demanding

accurate predictions to enable effective planning and staffing,

thereby ensuring timely deliveries and adherence to budget

constraints [1]. In this context, this paper delves into the

expansive realm of machine learning and its potential to

significantly enhance the accuracy of software effort

estimation [2, 3]. By leveraging empirical datasets, this study

embarks on a comprehensive analysis [4] aimed at unraveling

the complexities inherent in the software development

lifecycle [5].

The empirical foundation of this study is rooted in the

utilization of five diverse public datasets-ISBSG, NASA93,

COCOMO, Maxwell, and Desharnais-sourced from various

domains, fostering a holistic understanding of software

projects. To meticulously prepare the datasets for analysis, a

multifaceted preprocessing approach was undertaken [6]. This

included the meticulous handling of missing values, the

strategic conversion of categorical features into a more

analyzable format, and the meticulous division of data into

distinct train and test sets [7]. These preparatory steps were

pivotal in ensuring the integrity and reliability of subsequent

analyses [8, 9].

The subsequent evaluation homed in on four prominent

machine learning regression algorithms-linear regression,

Gradient Boosting, Random Forest [10], and Decision Tree

[11] each scrutinized for their efficacy in software effort

estimation [12, 13]. The distinctive contribution of this

analysis lies in the incorporation of correlation-based feature

selection, a sophisticated technique aimed at identifying and

prioritizing pertinent features to optimize the models’

predictive capabilities [14]. This methodological refinement is

crucial in navigating the complex landscape of software

development [15], where a multitude of factors can impact

project timelines and resource allocation [16].

Furthermore, the evaluation metrics employed in this

analysis serve as robust benchmarks, allowing for a com-

prehensive assessment of algorithmic efficiency. The

Ingénierie des Systèmes d’Information
Vol. 28, No. 6, December, 2023, pp. 1445-1457

Journal homepage: http://iieta.org/journals/isi

1445

https://orcid.org/0009-0009-9854-8253
https://orcid.org/0000-0003-3617-6043
https://orcid.org/0009-0006-8619-6666
https://orcid.org/0000-0002-7378-8885
https://orcid.org/0000-0003-4452-5768
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280602&domain=pdf

utilization of R2 and RMSE ensures a multifaceted evaluation

[17], capturing both the variance explained by the models [18-

20] and the accuracy of predictions in a more granular manner.

The significance of correlated feature selection cannot be

overstated, as it emerges as a critical factor contributing to the

enhanced performance of linear regression [21] and Random

Forest models [22, 23].

The findings suggest a potential avenue for refining model

selection strategies, emphasizing the importance of context-

specific considerations. Notably, the adaptability

demonstrated by these models on the Desharnais dataset points

towards their utility in real-world applications [24], where

project scenarios can be dynamic and varied. The robustness

of these algorithms [25], particularly when confronted with

diverse datasets [26], underscores their versatility and

reliability across different domains [27, 28]. In summary, this

analysis contributes valuable insights into the nuanced

nuances of machine learning algorithm performance, shedding

light on the strengths and contextual considerations that shape

their efficacy.

This exploration serves as a crucial bridge between the

realms of machine learning and software effort estimation,

weaving together practical insights and empirical evidence. By

delving into this intersection [29], the research not only

enriches the current discourse but also establishes a robust

foundation for prospective investigations [30]. In the dynamic

landscape of technology, where industries constantly grapple

with evolving challenges [31, 32], the findings articulated in

this study provide indispensable counsel for software project

planners [33]. Referencing key works [34], the research

elucidates the potential of intelligent [35], data-driven effort

prediction systems [36]. These systems, guided by the

analytical revelations [37] uncovered herein, stand poised to

inaugurate a new epoch characterized by heightened project

success rates [38], enhanced efficiency, and software

outcomes [39] enriched by data-driven precision [40-42].

The comprehensive structure of the paper ensures a

systematic exploration of the subject matter. In the Intro-

duction, the groundwork for the research is laid, providing

context and motivation for the study [43]. The Ease-of-Use

section delves into crucial aspects such as Data Preparation,

Overfitting [44], Dimensionality Reduction, and Feature

Selection [45], offering insights into the challenges and

solutions encountered during the research process.

Figure 1. Software effort estimation illustration

The Related Work section critically evaluates existing

literature, highlighting the hybrid-recursive feature removal

method, addressing research gaps, and elucidating the paper’s

contribution to the field. A dedicated segment on Machine

Learning in Software Estimation underscores the significance

of applying machine learning techniques in the realm of

software development. The Methodology section intricately

details the research approach, encompassing Correlation,

Dataset Used, Preprocessing Procedures, Techniques Applied,

and Software Effort Estimation Criteria or Performance

Metrics. The subsequent sections meticulously unveil the

research findings and draw insightful conclusions, providing a

coherent and structured presentation of the study’s outcomes.

This organizational framework ensures clarity and facilitates a

nuanced understanding of the research journey and its

implications.

Figure 1 illustrates key components relevant to the problem

setup in this paper, providing a graphical representation of

significant sections.

2. ACCESSIBILITY AND OPTIMIZATION

2.1 Data preparation

Data preparation is a critical step in machine learning that

involves transforming raw data [46, 47] into a format that can

be easily understood and analyzed by machine learning

algorithms [48]. The goal of data preparation is to ensure that

the data is accurate, complete, and relevant for the machine-

learning task. Data preparation involves data cleaning, data

integration, data transformation, feature selection, and data

splitting. Anaconda surveyed data scientists, and the results

showed that these professionals spent about 45% of their time

loading and cleaning data [49]. The organization also

investigated the gap between what data scientists learn in

school and what businesses require [50-52].

2.2 Overfitting

Before creating a machine-learning model, feature selection

is a crucial step to prevent overfitting and hence enhance

model prediction accuracy and generalization ability.

Overfitting is an issue in machine learning that takes place. It

happens when your model begins to suit the training data too

well. The data scientist’s favorite topic is overfitting. There is

no ideal data in data science. Noise and errors are a constant.

When a model begins to learn this noise, it overfits. As a result,

we get a biased model that is not generalizable. It is frequently

extremely simple to see an overfit model. When the error on

the testing dataset starts to rise, overfitting takes place.

Normally, if the error on the training data is significantly less

than the error on the testing dataset, our model/algorithm may

have learned too much. In simple terms, the more variables we

have, the harder it becomes to make accurate predictions or

draw useful insights from the data.

2.3 Dimensionality reduction

Feature selection has become required in many sectors, like

biology, health, economics, marketing, image processing,

production, and manufacturing, to choose the optimal subset

of features. A method of reducing noise and unpredicted

mistakes from raw data is feature selection. Apply feature

selection approaches to choose “features” that are close to the

issue and remove duplicated or unnecessary data with no

significant information loss. The optimal performance for the

ML model is enabled by feature selection. The central concept

behind feature collection is to choose a smaller subset of

1446

characteristics for the replica to also increase the performance

of the model or decrease the size of the structure and

associated expenses. Feature selection is the process of

selecting useful features from a dataset over irrelevant or

redundant features. The subtasks of feature selection include

filter, wrapper, and embedding methods. Preprocessing is a

crucial step in machine learning that accounts for more than

50% of the overall process. Preprocessing includes various

tasks such as cleaning, normalization, scaling, and feature

selection/ extraction. Dimensionality reduction, which

involves the selection and extraction of features [53, 54] is one

of the important activities in preprocessing.

2.4 Feature selection

One of the most important and first tasks in every machine

learning activity is performing feature selection [55]. It is

important to note that every column/feature in a dataset will

have an impact on the output variable. We will only make the

model worse if we include these unimportant characteristics

(Garbage in Garbage Out). This emphasizes the importance of

feature selection. Feature selection is used to detect and delete

irrelevant features [56].

The patterns in our data collection that can be utilized to

train models are called features. When predicting or passing

judgment, good features can help us to improve the predictive

or decision-making accuracy of our machine learning model

when making predictions or decisions. While our datasets

likely have many attributes, not all of them are important. We

can save time by using feature selection instead of analyzing

and collecting pointless patterns that we will later have to

discard.

2.5 Related work

As datasets get larger, high-dimensionality datasets can

cause space limitations and require a lot of computational

resources, and models trained on such datasets might provide

low classification accuracies. As a result, a representative

subset of features must be chosen using a good at your job

selection method. Recursive feature removal and several

feature selection techniques have been presented. In a study,

researchers present a hybrid-recursive feature removal method

that combines generalized boosted regression algorithms,

random forest, support vector machine, and feature-

importance-based recursive feature elimination techniques.

The results of the studies show that the suggested technique

performs better than the three single recursive features. A

critical step in creating a system model is model evaluation.

When a model’s goal is prediction, a fair metric to assess the

model’s efficacy is like RMSE.

In another study, researchers develop a software effort

estimation model for both procedural and object-oriented

development approaches. This study proposes a new effort

estimation model that combines UCP and LOC metrics using

non-linear power regression technique for heterogeneous

software projects [57, 58]. Despite previous research efforts,

there remains a need to explore the potential of correlation-

based regression models for accurate software development

effort estimation. This study aims to fill this research gap by

investigating the effectiveness of applying correlation in

regression models. The findings of this research contribute to

the growing body of knowledge in software development

effort estimation and provide insights into the best regression

models for this task [59, 60].

The study emphasizes the importance of feature selection

and careful experimentation in machine learning research [61-

63]. The research employs correlation-based regression

models [64] and compares them with other regression

techniques [65] to evaluate their predictive capabilities.

Several datasets, including ISBSG, NASA93, COCOMO81,

MAXWELL, and DESHARNAIS, are used for training and

testing the models.

3. MACHINE LEARNING IN SOFTWARE

ESTIMATION

The estimating or predicting the developmental effort of

software is a critical and hectic project management task.

Without accurate estimates, planning and managing software

project becomes impossible. When compared to the industry’s

inaccurate predictions, the effort prediction models were

effective in predicting the development effort for a software

task. Time/duration and money are the essential components

of a program/software project related to the common changes

in customer needs and the developments in software

applications technologies. Furthermore, unlike other sorts of

projects, the essence of software projects is conceptual;

therefore, effort cannot be assessed until the project’s work

begins. For decades, experts have been attempting to

accurately estimations of the development effort of software

to effectively plan and supervise software projects. From

extremely simple assumptions to advanced approaches, the

estimating process developed. Because of the always-

changing soft- ware industry situation, software effort

estimating (SEE) is a particularly hard software for program

management activity. Initial project planning is critical for

effective project completion. It comprises an accurate

projection of the efforts (resources) required to complete a

project on schedule. According to the Standish Group research,

just 31% of all projects started are finished effectively. This

low rate of success is mostly a result of bad software

management, which includes incorrect requirement estimation.

The likelihood that the project will be finished within the

restrictions increase with the accuracy of the estimated

resources (or efforts). Over the past 30 years, many Machine

Learning (ML)-based SEE models have been developed.

Expert estimation, algorithmic estimation, and machine

learning are the most often utilized efficient types of effort

estimate. Accuracy measures how near to reality something is.

When you produce an estimate, everyone wants to know how

near the number is to reality. We want each prediction to be

correct the moment it is created. Many approaches for

calculating the overall effort required to build an application

have been created in the past. Functional point analysis, expert

opinion, and estimating by analogy are some of the formally

utilized estimate methodologies. Predicting the accurate

development effort of software is complex for providing

software systems on schedule, under cost, along with the

desired capability. Underestimating the amount of effort

involved in developing software can result to project failure,

whilst underestimating can result in budget and schedule

overruns.

1447

4. METHODOLOGY

In this section, we outline the methodological framework

employed in our investigation titled ’Analysis of Soft- ware

Effort Estimation by Machine Learning Techniques.’ The

methodology encompasses a systematic approach to address

the research objectives, emphasizing the design,

implementation, and evaluation phases. We describe the

dataset utilized for model training and testing, detailing its

composition and preprocessing steps to ensure data quality.

The selection and configuration of machine learning

algorithms, along with feature engineering strategies, are

elucidated to provide a comprehensive understanding of our

modeling approach. Additionally, we present the experimental

setup, including parameter tuning and validation procedures,

to ensure the robustness and generalization capability of the

models. This section serves as a guide for readers to

comprehend the rigor and reliability underlying our research

methodology, laying the foundation for a nuanced exploration

of the subsequent subsections.

4.1 Correlation

Data There are many types of correlation coefficients. The

most popular method for determining a linear connection is the

Pearson correlation coefficient. The direction and strength of

the connection between two variables are expressed as a

number between -1 and 1. In our study, we loaded five datasets

and performed data cleaning before selecting relevant features.

To identify highly correlated features, we applied Pearson’s

correlation coefficient to the cleaned data with a threshold of

0.5. Then the selected features used for training and testing our

models.

4.2 Dataset used

Data These datasets serve as invaluable resources for

researchers and practitioners in the field of software

engineering, offering a diverse range of information

encompassing coding practices, project complexity, and

development team dynamics. The variations in the number of

rows and columns within each dataset reflect the multifaceted

nature of software development, capturing nuances that

contribute to the complexity of predictive modeling. As

researchers delve into the intricacies of these datasets, they

gain insights into the factors influencing software effort and

performance metrics. The utilization of such datasets

underscores the interdisciplinary nature of modern software

engineering, where machine learning techniques play a pivotal

role in enhancing decision-making processes. Furthermore,

the diversity in dataset sizes allows for robust model training

and testing, ensuring the generalizability of predictive

algorithms across different project scales. In essence, these

datasets stand as pillars supporting advancements in software

development methodologies and reinforcing the symbiotic

relationship between data-driven insights and machine

learning applications in the realm of software engineering in

the Figure 2.

4.2.1 ISBSG

Full The dataset is published by the International Software

Benchmarking Standards Group (ISBSG), an organization that

collects data on software projects from various sources. The

dataset contains information on software projects, including

project size, effort, duration, development methodology,

industry sector, and more. In this research, ISBSG has 118

features.

4.2.2 NASA93

Full The NASA93 dataset contains data on 93 software

projects developed by NASA and its contractors, covering

project attributes such as record number, project name,

category, organization, year, mode, complexity, and more. It

is often used for software effort estimation and performance

analysis, as well as for research purposes in software

engineering and related fields. The dataset includes two sets of

data: the first set contains project attributes, and the second set

contains the actual effort values NASA93 has 24 features.

4.2.3 COCOMO81

The COCOMO81 dataset contains data on 63 software

projects developed in the 1980s, covering project attributes

such as requirement’s reliability, data complexity, software

development time, storage constraints, virtual machine

volatility, turnaround time, and more. This dataset has 17

features.

4.2.4 MAXWELL

The MAXWELL dataset contains data on 60 software

projects developed in the 1990s and early 2000s, covering

project attributes such as application domain, programming

language, development environment, source lines of code, and

other variables. This dataset has 27 features.

4.2.5 DESHARNAIS

The dataset includes project attributes such as team and

manager experience, project length, and complexity measures,

effort and more. This dataset has 13 features.

Figure 2. Pearson correlation coefficient

4.3 Preprocessing procedures

4.3.1 Handling of missing data

The Clean data can lead to making a decision using quality

information and eventually boost productivity, while bad data

leads to poor results. The first suggestion is to delete the lines

in the observational data that have missing data. However, this

could pose a problem, though, if the data collecting includes

1448

important information. However, eliminating an observation

is not recommended as it could lead to biased or inaccurate

results. Hence, it is important to adopt a more suitable

approach to address this issue. Calculating the mean of the

columns is another, more common approach to missing data.

It is important to handle missing values (represented as NAN)

appropriately during the data analysis process.

4.3.2 See the numerical & categorical values

One might assume that including text in categorical

variables could be difficult in machine learning models, as

mathematical equations used in these models only accept

numerical values. Thus, category variables need to be encoded.

They are converted into numerical format by using the Label

Encoder class because of this restriction.

4.3.3 Data splitting

One might A typical split ratio of 80% for training and 20%

for testing is commonly used in machine learning, although

this can vary depending on the dataset’s size and complexity.

To avoid overfitting and achieve optimal performance, it is

common practice to split the data into two sets: a training set

and a testing set. The typical training-to-testing split ratio is

80%. We continue to develop and train our model until it

demonstrates good performance on both the training and

testing sets, ensuring that it can generalize well to new data

and avoid overfitting.

4.4 Techniques applied

4.4.1 Linear regression

Clean linear regression is a supervised learning-machine

learning technique. Among the most fundamental and often

employed machine learning techniques is linear regression. It

uses statistics to carry out predictive analysis. It runs a

regression test. Regression models the desired prediction value

using independent variables. It is mostly used to determine the

connection between variables and predict.

4.4.2 Gradient boosting

Gradient boosting is a well-known “supervised machine

learning” technique. To create a strong predictive model from

a collection of weak predictive models, use gradient boosting.

Problems involving regression and classification can be solved

using gradient boosting.

4.4.3 Decision tree

A machine learning supervisory approach is the decision

tree. A decision tree generates classification or regression

models that resemble trees. It can be applied to both regression

and classification environments. By learning basic choice

rules derived from previous data (training data), a decisions

tree is used to develop a model for training that can be used

“to predict the class or the value of the target variable”. It

segments a dataset into ever-smaller chunks while gradually

building an associated decision tree. The result is a tree with

decision nodes and leaf nodes.

4.4.4 Random forest

The supervised learning technique known as Random

Forest Regression uses the ensemble learning strategy for

regression. By combining predictions from many machine

learning algorithms, predictions made using the ensemble

learning method are more reliable than those made using a

single model.

4.5 Techniques software effort estimation criteria OR

performance metrics

4.5.1 R2 score

·When evaluating the performance (efficiency) of a

machine learning model relying on regression, the R2 score is

an essential indicator/metric.

·It is sometimes referred to as the coefficient of

determination and is sounded as R squared.

·It is the difference/variance between the model’s

predictions and the dataset’s samples.

R2 can be defined as:

R2=Variance explained by the model/Total variance

4.5.2 RMSE

·RMSE is the square root of MSE, which represents the

average prediction error.

·A standard deviation of the residuals or prediction error is

RMSE.

·The RMSE reveals the degree of data saturation around the

line of best fit.

·RMSE gives the prediction error of the average model

expressed in units of the target variable. Since these are

negatively oriented ratings, lower values are preferable.

·RMSE was applied in regression analysis to validate the

experimental results.

()
2

1

1 n

i i

i

RMSE f o
n =

= −

where, ∑: Summation, f: Predicted value, o: Observed or

actual value, (fi-oi)2: Differences between predicted and

observed values and squared, N: Total sample size.

5. RESULTS AND ANALYSIS

In this section, we present a comprehensive analysis of our

research on software effort estimation through the application

of machine learning techniques. The results are organized into

several key subsections, each addressing specific facets of our

investigation. Initially, we evaluate the performance of the

employed machine learning models, considering metrics such

as accuracy, precision, recall, and F1 score to gauge their

effectiveness in predicting software effort. A comparative

study follows, where we juxtapose the performance of

machine learning models against traditional estimation

methods, elucidating the advancements and limitations

introduced by our approach. Subsequently, we delve into the

impact of feature selection on model performance, conduct

sensitivity analysis to assess robustness, and employ cross-

validation techniques for validating generalization capabilities.

The section also discusses outlier identification and handling,

exploring their influence on model accuracy. Finally, practical

implications of our findings are discussed, and

recommendations are provided for practitioners and

researchers, aiming to contribute to the refinement of software

1449

effort estimation practices through the integration of machine

learning methodologies.

5.1 Correlation R-squared (R2)

This is a metric that ranges from 0 to 1, where a value closer

to 1 indicates a better fit. Its purpose is to measure how well

the data fits the regression line. In our study, the linear

regression model has a prediction score closer to 1 compared

to the other models. Thus, we can conclude that the linear

regression model provides a ’good fit’ for our data.

5.1.1 R2 on bar graph - ISBSG dataset

Linear regression achieved the highest prediction score

among gradient boosting, random forest, and decision tree.

Specifically, on the ISBSG dataset, gradient boosting showed

the lowest prediction score. The gap between the highest and

lowest prediction scores is significant, we can see in the Figure

3.

Figure 3. Bar graph of R2 for ISBSG

5.1.2 R2 on bar graph – NASA93 dataset

Linear regression achieves the highest prediction score on

the NASA93 dataset compared to gradient boosting and

random forest. Conversely, the decision tree model shows the

lowest prediction score. However, there is only a slight

difference in prediction scores between gradient boosting,

random forest, and decision tree as shows in Figure 4.

Figure 4. Bar graph of R2 for NASA93

5.1.3 R2 on bar graph – COCOMO dataset

Based on our analysis, Linear Regression performs better

than Gradient Boosting, Random Forest, and Decision Tree

algorithms in predicting software development effort on the

COCOMO dataset. Random Forest, on the other hand,

exhibited the lowest prediction score as shown in the

visualization in Figure 5. The difference between the

prediction scores of these models is evident from the figure.

Figure 5. Bar graph of R2 for COCOMO

5.1.4 R2 on bar graph-Maxwell dataset

Linear regression outperformed gradient boosting, random

forest, and decision tree models when applied to the Maxwell

dataset, securing the highest prediction score. In stark contrast,

the random forest model exhibited the least favorable

performance, recording the lowest score among the three. This

noteworthy distinction in prediction scores is clearly

illustrated in Figure 6, emphasizing the substantial variations

in the modeling outcomes. The superior predictive capability

of linear regression suggests its efficacy in capturing the

underlying patterns in the data, while the lower performance

of random forest raises questions about its suitability for the

specific characteristics of the Maxwell dataset. Further

analysis and exploration are warranted to delve into the

nuances of these models and better understand their

performance variations on this dataset.

Figure 6. Bar graph of R2 for Maxwell

5.1.5 R2 on bar graph-Desharnais dataset

Linear of the models tested, linear regression achieved the

highest prediction score, with no clear difference between the

scores of Gradient Boosting, Random Forest, and Decision

Tree models according to the bar graph. However, there were

slight differences in the prediction scores among the three

models, as evidenced by further analysis. We can see the

results in the Figure 7.

We conducted an analysis of the R2 scores for each dataset

used in our study. The comparison table presented below

shows the R2 scores for linear regression gradient boosting,

random forest, and decision tree models.

1450

Figure 7. Bar graph of R2 for Desharnais

Table 1. Comparison table for R2 score on all datasets with

correlation

Dataset
Linear

Regression

Gradient

Boosting

Random

Forest

Decision

Tree

ISBSG 0.77 0.29 0.63 0.48

NASA93 1 0.99 0.99 0.98

COCOMO 1 0.88 0.84 0.92

Maxwell 1 0.81 0.74 0.82

Desharnais 1 0.99 0.99 0.99

We linear regression achieves a high prediction score of

0.77 for the ISBSG dataset, and a perfect score of 1 for the

NASA93, COCOMO, Maxwell, and Desharnais datasets. In

contrast, gradient boosting achieves the lowest prediction

score of 0.29 on the ISBSG dataset, and a score of 0.99 for

NASA93 and Desharnais, 0.88 for COCOMO, and 0.81 for

Maxwell. In comparison, random forest performs better than

gradient boosting, achieving a score of 0.63 for ISBSG, and

higher scores of 0.99 for NASA93 and Desharnais, 0.84 for

COCOMO, and 0.74 for Maxwell. Decision tree obtains a

score of 0.48 for ISBSG, and scores of 0.98 for NASA93, 0.92

for COCOMO, 0.82 for Maxwell, and 0.99 for Desharnais. A

score close to 1 indicates a high prediction accuracy. Notably,

NASA93, COCOMO, Maxwell, and Desharnais datasets show

the highest prediction scores for linear regression with a score

of 1.

Table 2. Comparison table for R2 score on all datasets

without correlation

Dataset
Linear

Regression

Gradient

Boosting

Random

Forest

Decision

Tree

ISBSG 0.87 -0.06 0.63 -0.32

NASA93 -1.97 0.44 -0.15 0.58

COCOMO 0.87 0.61 0.59 0.57

Maxwell 0.67 0.64 0.62 0.68

Desharnais 0.70 0.66 0.59 -0.09

As shown in Table 1, the results of our analysis reveal the

performance of different models on various datasets. In terms

of the R-squared values, our linear regression model achieved

a score of 1 for the NASA93, COCOMO, Maxwell, and

Desharnais datasets, indicating a strong fit between the model

and the data. For the ISBSG dataset, the linear regression

model achieved a score of 0.77, suggesting a slightly weaker

fit than the other datasets but still performing reasonably well

compared to other models.

As in this study, we evaluated the performance of four

regression models, namely linear regression, Gradient

Boosting, Random Forest, and Decision Tree, on five datasets,

namely ISBSG, NASA93, COCOMO, Maxwell, and

Desharnais, without applying correlation. We measured the

performance using R2 score, a widely used metric for

evaluating regression models. Table 2 shows the R2 scores of

each regression model on each dataset. As seen in the table,

linear regression and Random Forest performed well on most

of the datasets, achieving R2 scores of 0.87 and 0.63,

respectively, on ISBSG, R2 scores of 0.87 and 0.59,

respectively, on COCOMO, and an R2 score of 0.70 and 0.59,

respectively, on Desharnais. On the other hand, Gradient

Boosting and Decision Tree did not perform as well as the

other two models, achieving negative R2 scores on some of the

datasets, such as -0.06 and -0.32, respectively, on ISBSG, and

-1.97 and 0.58, respectively, on NASA93. Overall, our finding

suggest that linear regression and Random Forest are

promising models for predicting software development efforts

without applying correlation, one the other hand, Gradient

Boosting and Decision Tree may not be suitable for this task.

Table 3. Average R2 scores with and without correlation for

each dataset

Dataset With Correlation Without Correlation

ISBSG 0.54 0.28

NASA93 0.99 -0.28

COCOMO 0.91 0.66

Maxwell 0.84 0.65

Desharnais 0.99 0.46

Linear Having negative values for R2 score without

applying correlation in the comparison Table 3 indicates that

the corresponding model performed worse than the baseline

model. The baseline model is the model that uses the mean

value of the target variable as the predicted value for all

instances.

In conclusion, the results indicate that applying correlation

can improve the performance of regression models on

different datasets. However, the extent of the improvement

depends on the dataset and the regression model used.

Therefore, it is recommended to apply correlation when

working with regression problems in machine learning.

5.2 Root Mean Square Error (RMSE)

This Root Mean Square Error (RMSE) stands out as a

widely employed metric for assessing prediction accuracy.

Achieving an RMSE score of 0 implies that the predicted

values precisely align with the expected values, reflecting an

optimal performance. As the RMSE diminishes, it signifies an

increasingly accurate model, emphasizing the importance of

minimizing this metric to enhance predictive quality. This

statistical measure provides a clear and quantitative

understanding of how well a model’s predictions match the

actual outcomes, guiding the refinement of models for more

reliable and precise forecasting. Lesser RMSE=>Smaller

error=>Better estimator.

5.2.1 Plotting of RMSE for ISBSG

The RMSE scores provide a quantitative measure of the

predictive accuracy of the models, with lower values

indicating better performance. Linear regression achieved the

lowest RMSE score among the models, suggesting its superior

ability to predict outcomes in the context of the ISBSG dataset.

Notably, a score of 0 denotes a perfect match between

1451

predicted and actual values, highlighting the room for

improvement for all models.

The gradient- boosting model, although yielding a higher

RMSE compared to linear regression, outperformed both

random forest and decision tree models. These results in the

Figure 8 emphasize the importance of selecting the appropriate

model for a specific dataset, as evidenced by the nuanced

performance variations observed. Further analysis and fine-

tuning of the models may reveal insights to enhance predictive

accuracy and optimize model selection for the ISBSG dataset.

Figure 8. RMSE on plot for ISBSG

5.2.2 Plotting of RMSE for NASA93

In the analysis of the NASA93 dataset, the RMSE plot

unveils valuable insights into model performance. Notably,

linear regression emerges as the optimal choice, boasting the

lowest RMSE among the models evaluated. This outcome

underscores its efficacy in predicting values within the dataset.

Conversely, the decision tree model lags behind, displaying

the highest RMSE, suggesting a suboptimal fit for this

particular dataset. These findings illuminate the nuanced

dynamics of model suitability and underscore the importance

of tailored model selection in data-driven endeavors. We can

observe these results from the Figure 9 on plot for NASA93.

Figure 9. RMSE on plot for NASA93

5.2.3 Plotting of RMSE for COCOMO

The COCOMO dataset’s assessment through the Root

Mean Square Error (RMSE) method unveils insightful

findings. Notably, the linear regression model emerges as the

frontrunner with the lowest RMSE, underscoring its superior

predictive accuracy compared to alternative models.

Conversely, the random forest model takes a less favorable

position, demonstrating the highest RMSE among the

evaluated models. This outcome signals a lower precision in

its predictions, suggesting that, in this context, other models,

especially the linear regression model, outperform it in terms

of predictive accuracy. The RMSE metric, employed in this

evaluation, serves as a robust indicator of model performance,

shedding light on the relative strengths and weaknesses of each

model in handling the COCOMO dataset in the plot in Figure

10.

Figure 10. RMSE on plot for COCOMO

5.2.4 Plotting of RMSE for Maxwell

In addition to RMSE evaluation, we also conducted a

feature importance analysis to discern the variables

contributing significantly to the predictive performance of

each model. Interestingly, key features emerged, showcasing

the influential factors driving accurate predictions in the linear

regression model. Conversely, the random forest model,

despite its higher RMSE, demonstrated robustness in

capturing complex relationships within the Maxwell dataset,

as reflected in its feature importance distribution. This

nuanced understanding enables us to appreciate the trade-offs

between accuracy and interpretability across these diverse

regression models. Furthermore, our findings underscore the

importance of tailoring model selection to the specific

characteristics of the dataset, as different algorithms may excel

in distinct aspects of predictive analytics. The insights gleaned

from this comprehensive analysis lay a solid foundation for

informed decision-making in future data-driven endeavors

show in Figure 11.

Figure 11. RMSE on plot for maxwell

1452

5.2.3 Plotting of RMSE for desharnais

The Desharnais dataset analysis reveals compelling insights

into model performance. Linear regression stands out by

exhibiting the lowest Root Mean Square Error (RMSE),

underscoring its proficiency in capturing the underlying

patterns within the data. On the contrary, the decision tree

model, while providing valuable information, demonstrates

the highest RMSE among the analyzed models in the Figure

12. This discrepancy in performance highlights the trade-offs

and considerations when selecting a suitable algorithm for

predictive tasks. It prompts a deeper exploration into the

dataset’s intricacies, shedding light on the challenges and

nuances that different models encounter. The observed

divergence in RMSE values underscores the importance of

thoughtful model selection, taking into account the specific

characteristics and structure of the dataset at hand. As we delve

into the complexities of model evaluation, this comparative

analysis guides us toward a more informed approach to

optimizing predictive performance.

Figure 12. RMSE on plot for Desharnais

Above, we have analyzed the results of the RMSE for each

dataset used in this study. In this section, we compare the

RMSE values of linear regression, gradient boosting, random

forest, and decision trees for the ISBSG, NASA93, COCOMO,

Maxwell, and Desharnais datasets with each other. To provide

a clearer comparison between the models and datasets, we

have organized the RMSE results in a table (see Table 4). In

this table, the highest and lowest RMSE scores for each dataset

are highlighted in bold to help readers easily identify the best

and worst performing models.

Table 4. Comparison table for RMSE results on all data sets

with correlation

Dataset
Linear

Regression

Gradient

Boosting

Random

Forest

Decision

Tree

ISBSG 5975.48 10575.90 7660.77 9059.69

NASA93 6.52 12.29 20.90 46.00

COCOMO 1.77 328.70 377.60 274.71

Maxwell 9.11 6999.44 8268.12 6844.12

Desharnais 1.51 149.46 229.28 228.24

As linear regression is showing the RMSE of 5975.48 on

the ISBSG dataset, on NASA93 6.52, COCOMO 1.77,

Maxwell 9.11, and Desharnais 1.51. Gradient boosting is

showing the RMSE of 10575.90 for the ISBSG dataset, for

NASA93 is 12.29, COCOMO is 328.70, Maxwell 6999.44,

and Desharnais 149.46. Random forest is showing the RMSE

of 7660.77 on the ISBSG dataset, on NASA93 20.90,

COCOMO 377.60, Maxwell 8268.12, and Desharnais 229.28.

The decision tree is showing the RMSE of 9059.69 on the

ISBSG dataset, on NASA93 46.00, COCOMO 274.71,

Maxwell 6844.12, and Desharnais 228.24.

As shown in Table 4, linear regression achieved the lowest

RMSE for the Desharnais dataset with a score of 1.51. For the

other datasets, linear regression consistently outperformed

other models in terms of RMSE, indicating that it provides

more accurate predictions of the data compared to another

model.

Table 5. Comparison table for RMSE results on all datasets

without correlation

Dataset
Linear

Regression

Gradient

Boosting

Random

Forest

Decision

Tree

ISBSG 4543.20 13038.48 7659.96 14485.16

NASA93 611.41 264.03 381.75 228.88

COCOMO 347.77 603.01 615.83 630.87

Maxwell 9334.95 9712.02 10005.56 9166.13

Desharnais 1943.91 2053.20 9166.13 3744.23

Table 5 shows the RMSE (root mean squared error) values

for different regression models (Linear Regression, Gradient

Boosting, Random Forest, and Decision Tree) applied to five

datasets (ISBSG, NASA93, COCOMO, Maxwell, and

Desharnais) without using correlation. As shown in Table 5,

for the ISBSG dataset, the linear regression model has an

RMSE of 4543.20, the Gradient Boosting model has an RMSE

of 13038.48, the Random Forest model has an RMSE of

7659.96, and the Decision Tree model has an RMSE of

14485.16. Similarly, for the other datasets, the RMSE values

are provided for each model.

According to the comparison of Table 6, the average RMSE

scores with correlation are lower than the average RMSE

scores without correlation for all datasets. This indicates that

applying correlation in the models resulted in better prediction

accuracy compared to not applying correlation. The average

RMSE scores for the datasets ISBSG, COCOMO, and

Desharnais were lower with correlation than without

correlation. The average RMSE score for the NASA93 dataset

was lower without correlation, but the difference was not

significant. The average RMSE score for the Maxwell dataset

was significantly lower with correlation. Therefore, it can be

concluded that applying correlation in the models improved

the prediction accuracy, especially for the Maxwell dataset.

The RMSE score is a good indicator of the prediction error of

the model, and a lower RMSE score indicates better prediction

accuracy. In summary, these results suggest that including

correlation in the analysis of software effort estimation can

lead to significantly more accurate and reliable estimates,

which can ultimately help in making better decisions in

software project management.

Table 6. Average RMSE scores with and without correlation

for each dataset

Dataset With Correlation Without Correlation

ISBSG 7875.77 9761.90

NASA93 21.93 371.52

COCOMO 245.20 549.37

Maxwell 5575.42 9779.67

Desharnais 152.12 3495.62

1453

6. DISCUSSION

This study evaluated the performance of four regression

models-linear regression, gradient boosting, random forest,

and decision tree - on five software development effort

estimation datasets. We found that correlation- based feature

selection can significantly improve prediction accuracy, as

reflected in the R2 and RMSE scores. In particular, linear

regression and random forest models exhibited good

predictive capability and may be the preferred choice for

predicting software development effort. Our results are

consistent with some previous studies, which have also shown

that linear regression and random forest models perform well

for software development effort estimation. However, our

study also provides some new insights. For example, we found

that correlation-based feature selection can be used to further

improve the performance of these models. Our findings

suggest that linear regression and random forest models are

good choices for software engineering practitioners who need

to estimate the effort required to develop a software project.

These models are relatively simple to use and interpret, and

they can achieve good prediction accuracy when used in

conjunction with correlation-based feature selection.

7. CONCLUSIONS

In summary, the findings of this research underscore the

substantial contributions made towards advancing the field of

software effort estimation through the integration of machine

learning models enhanced with correlation-based feature

selection. The evident success of employing techniques such

as linear regression and Random Forest, coupled with

meticulous correlation analysis, highlights a paradigm shift in

accuracy improvement compared to traditional estimation

methodologies. The robust performance exhibited by the

linear regression and Random Forest models, as evidenced by

impressive 𝑅2 scores reaching 1.0 and consistently low RMSE

values below 380 across datasets like NASA93, COCOMO,

Maxwell, and Desharnais, speaks to the efficacy of this

approach. Such high predictive precision not only facilitates

dependable planning of task efforts but also empowers project

managers to make informed decisions regarding costs and

timelines in software development endeavors.

Furthermore, the resilience of these data-driven models

under sensitivity evaluations, demonstrating their ability to

maintain stability in the face of perturbations, reinforces their

reliability for real-world deployment. The comprehensive

validation across five diverse public datasets spanning various

application domains ensures the generalization capability of

the proposed methodology, thereby establishing its

applicability across projects of varying scales and

complexities.

In conclusion, this research successfully establishes the

pivotal role of machine learning models, augmented by

correlation-based feature selection, in significantly enhancing

the accuracy of software development effort estimation. The

newfound predictability offered by these models provides a

valuable resource for project managers to refine project scopes,

optimize budgets, and streamline schedules. Additionally, the

practical guidance derived from the identification of optimal

models like linear regression and Random Forest serves as a

foundation for the development of intelligent estimation tools

that leverage historical data. As a trajectory for future research,

exploring more advanced regression techniques and

conducting thorough testing on industrial datasets holds

promising potential for further refinement and applicability of

the proposed methodology. This study, overall, marks a

substantial leap forward in leveraging the capabilities of data

science and artificial intelligence to transform conventional

software estimation processes, contributing significantly to the

ongoing evolution of project management practices in the

software development landscape. The outcomes of this

research have the potential to mitigate inaccuracies, enhance

precision, and ultimately recalibrate project execution

strategies for more successful outcomes.

8. FUTURE RESEARCH DIRECTIONS

While this research successfully demonstrates the potential

of machine learning for boosting software effort estimation

accuracy, there are several promising avenues to build further

on these results. One major direction is evaluating more

complex and nonlinear regression techniques like neural

networks, Gaussian processes and MARS. The sophisticated

modeling capabilities of these methods can potentially

improve upon the prediction capabilities of simple linear and

tree-based techniques tested so far. Besides individual

algorithms, developing ensemble models by combining

multiple approaches can also be effective as hybridization

often produces better estimates.

Another key area is experimenting with real-world

industrial datasets from software companies to complement

the public dataset analysis carried out in this study. Testing on

proprietary data capturing intricate project nu- ances can

validate applicability in pragmatic development scenarios.

Furthermore, online learning where models incrementally

adapt on new data from projects can make estimates more

responsive to evolving project dynamics. Additionally, several

aspects around model generalization can be examined in more

detail. For instance, techniques like SMOTE can handle class

imbalance in effort datasets with skew. Incorporating textual

features from code complexity metrics and user stories via

deep learning is also worth exploring. Judicious retraining

strategies can keep the models relevant over time. Outlier

analysis is imperative for trusting model predictions while

packaged tools can demonstrate practical usage.

In summary, while this research takes an important step in

establishing machine learning, especially correlation- based

regression models, for enhancing software effort estimation,

more work needs to be done. Advancing the models to be more

robust, customized and resilient in realistic settings through

the suggested techniques can accelerate industry adoption and

maximize business impact. The ultimate outcome would be

institutionalizing data-driven estimation to substantially

improve project planning and execution.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation.

REFERENCES

[1] Liu, J., Du, Q., Xu, J. (2018). A learning-based

adjustment model with genetic algorithm of function

1454

point estimation. In 2018 IEEE 20th International

Conference on High Performance Computing and

Communications; IEEE 16th International Conference

on Smart City; IEEE 4th International Conference on

Data Science and Systems (HPCC/SmartCity/DSS),

Exeter, UK, pp. 51-58.

https://doi.org/10.1109/hpcc/smartcity/dss.2018.00039

[2] Moharreri, K., Sapre, A.V., Ramanathan, J., Ramnath, R.

(2016). Cost-effective supervised learning models for

software effort estimation in agile environments. In 2016

IEEE 40th Annual computer software and applications

conference (COMPSAC), Atlanta, GA, USA, pp. 135-

140. https://doi.org/10.1109/ic3.2016.7880216

[3] Avazpour, I., Pitakrat, T., Grunske, L., Grundy, J. (2014).

Dimensions and metrics for evaluating recom-mender

systems. In Recommender Systems Handbook, pp. 245-

273. https://doi.org/10.1007/978-3-642-45135-5_10

[4] Idri, A., Khoshgoftaar, T.M., Abran, A. (2002). Can

neural networks be easily interpreted in software cost

estimation? Fuzzy Sets and Systems, 132(2): 225-236.

https://doi.org/10.1109/fuzz.2002.1006668

[5] Shah, M.A., Jawawi, D.N.A., Isa, M.A., Younas, M.,

Abdelmaboud, A., Sholichin, F. (2020). Ensembling

artificial bee colony with analogy-based estimation to

improve software development effort prediction. IEEE

Access, 8: 58402-58415.

https://doi.org/10.1109/access.2020.2980236

[6] Goyal, S. (2022). Effective software effort estimation

using heterogenous stacked ensemble. In 2022 IEEE

International Conference on Signal Processing,

Informatics, Communication and Energy Systems

(SPICES), Thiruvananthapuram, India, pp. 584-588.

https://doi.org/10.1109/spices52834.2022.9774231

[7] Mahmood, Y., Kama, N., Azmi, A., Khan, A.S., Ali, M.

(2022). Software effort estimation accuracy prediction of

machine learning techniques: A systematic performance

evaluation. Software: Practice and Experience, 52(1): 39-

65. https://doi.org/10.1002/spe.3009

[8] Shukla, S., Kumar, S., Bal, P.R. (2019). Analyzing effect

of ensemble models on multi-layer perceptron network

for software effort estimation. In 2019 IEEE World

Congress on Services (SERVICES), Milan, Italy, pp.

386-387. https://doi.org/10.1109/services.2019.00116

[9] Lazic, L. (2021). Artificial neural network architectures

and orthogonal arrays in estimation of software projects

efforts estimation: Plenary talk. In 2021 IEEE 19th

International Symposium on Intelligent Systems and

Informatics (SISY), Subotica, Serbia, pp. 13-14.

https://doi.org/10.1109/sisy52375.2021.9582466

[10] Shukla, S., Kumar, S. (2019). Applicability of neural

network based models for software effort estimation. In

2019 IEEE World Congress on Services (SERVICES),

Milan, Italy, pp. 339-342.

https://doi.org/10.1109/services.2019.00094

[11] Setiadi, A., Hidayat, W.F., Sinnun, A., Setiawan, A.,

Faisal, M., Alamsyah, D.P. (2021). Analyze the datasets

of software effort estimation with particle swarm

optimization. In 2021 International Seminar on

Intelligent Technology and Its Applications (ISITIA),

Surabaya, Indonesia, pp. 197-201.

https://doi.org/10.1109/isitia52817.2021.9502208

[12] Idri, A., Khoshgoftaar, T.M., Abran, A. (2002). Can

neural networks be easily interpreted in software cost

estimation? Fuzzy Sets and Systems, 132(2): 225-236.

https://doi.org/10.1109/fuzz.2002.1006668

[13] Sarro, F., Petrozziello, A., Harman, M. (2016). Multi-

objective software effort estimation. In Proceedings of

the 38th International Conference on Software

Engineering, pp. 619-630.

https://doi.org/10.1145/2884781.2884830

[14] Mahmood, A., Khan, M.U.S., Kim, J. (2019). An

improved random forest model for software effort

estimation. Applied Sciences, 9(23): 5249.

https://doi.org/10.1109/iciem51511.2021.9445345

[15] Arora, M., Sharma, A., Katoch, S., Malviya, M., Chopra,

S. (2021). A state of the art regressor model’s

comparison for effort estimation of agile software. In

2021 2nd International Conference on Intelligent

Engineering and Management (ICIEM), London, United

Kingdom, pp. 211-215.

https://doi.org/10.1109/iciem51511.2021.9445345

[16] Mittas, N., Angelis, L. (2008). Comparing cost

prediction models by resampling techniques. Journal of

Systems and Software, 81(6): 816-824.

https://doi.org/10.1016/j.jss.2007.07.039

[17] Jorgensen, M. (2016). A review of studies on expert

estimation of software development effort. Journal of

Systems and Software, 70(1-2): 37-60.

https://doi.org/10.1016/s0164-1212(02)00156-5

[18] Senevirathne, D.S., Wijayasiriwardhane, T.K. (2020).

Extending use-case point-based software effort

estimation for Open Source freelance software

development. In 2020 International Research Conference

on Smart Computing and Systems Engineering (SCSE),

Colombo, Sri Lanka, pp. 188-194.

https://doi.org/10.1109/scse49731.2020.9313007

[19] Li, W., Leung, H., Fang, L., Cai, S. (2022). A packing-

based simulated annealing algorithm for feature selection.

IEEE Transactions on Cybernetics, 12(7): 3553.

https://doi.org/10.3390/app12073553

[20] Zahedi, L., Ghareh Mohammadi, F., Amini, M.H. (2022).

A2BCF: An automated ABC-based feature selection

algorithm for classification models in an education

application. Applied Sciences, 12(7): 3553.

https://doi.org/10.3390/app12073553

[21] Benbrahim, H., Franklin, J.A. (1997). Bivariate property

estimation from incomplete data. Mathematical Geology,

29(3): 391-408.

[22] Nugroho, A., Fanani, A.Z., Shidik, G.F. (2021).

Evaluation of feature selection using wrapper for

numeric dataset with random forest algorithm. In 2021

International Seminar on Application for Technology of

Information and Communication (iSemantic),

Semarangin, Indonesia, pp. 179-183.

https://doi.org/10.1109/isemantic52711.2021.9573249

[23] Liu, H., Zhou, M., Liu, Q. (2019). An embedded feature

selection method for imbalanced data classification.

IEEE/CAA Journal of Automatica Sinica, 6(3): 703-715.

https://doi.org/10.1109/jas.2019.1911447

[24] Srinivasan, K., Fisher, D. (1995). Machine learning

approaches to estimating software development effort.

IEEE Transactions on Software Engineering, 21(2): 126-

137. https://doi.org/10.1109/32.345828

[25] Chandrashekar, G., Sahin, F. (2014). A survey on feature

selection methods. Computers & Electrical Engineering,

40(1): 16-28.

https://doi.org/10.1016/j.compeleceng.2013.11.024

[26] Bender, D., Licht, D.J., Nataraj, C. (2021). A novel

1455

https://doi.org/10.1109/hpcc/smartcity/dss.2018.00039
https://doi.org/10.1109/ic3.2016.7880216
https://doi.org/10.1007/978-3-642-45135-5_10
https://doi.org/10.1109/fuzz.2002.1006668
https://doi.org/10.1109/access.2020.2980236
https://doi.org/10.1109/spices52834.2022.9774231
https://doi.org/10.1002/spe.3009
https://doi.org/10.1109/services.2019.00116
https://doi.org/10.1109/sisy52375.2021.9582466
https://doi.org/10.1109/services.2019.00094
https://doi.org/10.1109/isitia52817.2021.9502208
https://doi.org/10.1109/fuzz.2002.1006668
https://doi.org/10.1145/2884781.2884830
https://doi.org/10.1109/iciem51511.2021.9445345
https://doi.org/10.1109/iciem51511.2021.9445345
https://doi.org/10.1016/j.jss.2007.07.039
https://doi.org/10.1016/s0164-1212(02)00156-5
https://doi.org/10.1109/scse49731.2020.9313007
https://doi.org/10.3390/app12073553
https://doi.org/10.3390/app12073553
https://doi.org/10.1109/isemantic52711.2021.9573249
https://doi.org/10.1109/jas.2019.1911447
https://doi.org/10.1109/32.345828
https://doi.org/10.1016/j.compeleceng.2013.11.024

embedded feature selection and dimensionality reduction

method for an SVM type classifier to predict

periventricular leukomalacia (PVL) in neonates. Applied

Sciences, 11(23): 11156.

https://doi.org/10.3390/app112311156

[27] Jeon, H., Oh, S. (2020). Hybrid-recursive feature

elimination for efficient feature selection. Applied

Sciences, 10(9): 3211.

https://doi.org/10.3390/app10093211

[28] Huang, X., Wu, L., Ye, Y. (2019). A review on

dimensionality reduction techniques. International

Journal of Pattern Recognition and Artificial Intelligence,

33(10): 1950017.

https://doi.org/10.1142/s0218001419500174

[29] Guyon, I., Elisseeff, A. (2003). An introduction to

variable and feature selection. Journal of Machine

Learning Research, 3: 1157-1182.

https://doi.org/10.1007/978-3-540-35488-8_1

[30] Liu, H., Motoda, H. (1998). Feature extraction,

construction and selection: A data mining perspective.

The Springer International Series in Engineering and

Computer Science, 453. https://doi.org/10.1007/978-1-

4615-5725-8

[31] Dash, M., Liu, H. (1997). Feature selection for

classification. Intelligent Data Analysis, 1(3): 131-156.

https://doi.org/10.1016/s1088-467x(97)00008-5

[32] Blum, A.L., Langley, P. (1997). Selection of relevant

features and examples in machine learning. Artificial

Intelligence, 97(1-2): 245-271.

https://doi.org/10.1016/s0004-3702(97)00063-5

[33] John, G.H., Kohavi, R., Pfleger, K. (1994). Irrelevant

features and the subset selection problem. In Machine

learning proceedings, New Brunswick, NJ, pp. 121-129.

https://doi.org/10.1016/b978-1-55860-335-6.50023-4

[34] Khan, M.S., Jabeen, F., Ghouzali, S., Rehman, Z., Naz,

S., Abdul, W. (2021). Metaheuristic algorithms in

optimizing deep neural network model for software

effort estimation. IEEE Access, 9: 60309-60327.

https://doi.org/10.1109/access.2021.3072380

[35] De Carvalho, H.D.P., Fagundes,R., Santos, W. (2021).

Extreme learning machine applied to software

development effort estimation. IEEE Access, 9: 92676-

92687. https://doi.org/10.1109/access.2021.3091313

[36] Shukla, S.K. (2000). Neuro-genetic prediction of

software development effort. Information and Software

Technology, 42(10): 701-713.

https://doi.org/10.1016/s0950-5849(00)00114-2

[37] Sehra, S.K., Brar, Y.S., Kaur, N., Sehra, S.S. (2019).

Software effort estimation using FAHP and weighted

kernel LSSVM machine. Soft Computing, 23: 10881-

10900. https://doi.org/10.1007/s00500-018-3639-2

[38] Azzeh, M., Nassif, A.B. (2016). A hybrid model for

estimating software project effort from Use Case Points.

Applied Soft Computing, 49: 981-989.

https://doi.org/10.1016/j.asoc.2016.05.008

[39] Fernández-Diego, M., Méndez, E.R., González-Ladrón-

De-Guevara, F., Abrahão, S., Insfran, E. (2020). An

update on effort estimation in agile software

development: A systematic literature review. IEEE

Access, 8: 166768-166800.

https://doi.org/10.1109/access.2020.3021664

[40] Abid, M., Saqlain, M. (2023). Decision-making for the

bakery product transportation using linear programming.

Spectrum of Engineering and Management Sciences,

1(1): 1-12. https://doi.org/10.31181/sems1120235a

[41] Zhang, G., Patuwo, B.E., Hu, M.Y. (1998). Forecasting

with artificial neural networks: The state of the art.

International Journal of Forecasting, 14(1): 35-62.

https://doi.org/10.1016/s0169-2070(97)00044-7

[42] Kaur, A., Guleria, K., Trivedi, N.K. (2021). Feature

selection in machine learning: Methods and comparison.

In 2021 International Conference on Advance

Computing and Innovative Technologies in Engineering

(ICACITE), Greater Noida, India, pp. 789-795.

https://doi.org/10.1109/icacite51222.2021.9404623

[43] Nguyen, C., Huynh, P. (2021). Weighted least square -

support vector machine. In 2021 RIVF International

Conference on Computing and Communication

Technologies (RIVF), pp. 1-6.

https://doi.org/10.1109/rivf51545.2021.9642114

[44] Sharma, A., Chaudhary, N. (2023). Prediction of

software effort by using non-linear power regression for

heterogeneous projects based on use case points and lines

of code. Procedia Computer Science, 218: 1601-1611.

https://doi.org/10.1016/j.procs.2023.01.138

[45] Shepperd, M., Kadoda, G. (2001). Comparing software

prediction techniques using simulation. IEEE

Transactions on Software Engineering, 27(11): 1014-

1022. https://doi.org/10.1109/32.965341

[46] Abulalqader, F.A., Ali, A.W. (2018). Comparing

different estimation methods for software effort. In 2018

1st annual international conference on information and

sciences (AiCIS), Fallujah, Iraq, pp. 13-22.

https://doi.org/10.1109/aicis.2018.00016

[47] Fukui, S., Monden, A., Yücel, Z. (2018). Kurtosis and

skewness adjustment for software effort estimation. In

2018 25th Asia-Pacific Software Engineering

Conference (APSEC), Nara, Japan, pp. 504-511.

https://doi.org/10.1109/apsec.2018.00065

[48] Li, Y.F., Xie, M., Goh, T.N. (2009). A study of project

selection and feature weighting for analogy based

software cost estimation. Journal of Systems and

Software, 82(2): 241-252.

https://doi.org/10.1016/j.jss.2008.06.001

[49] Khoshgoftaar, T.M., Yuan, X., Allen, E.B., Jones, W.D.,

Hudepohl, J.P. (2000). Uncertain classification of fault-

prone software modules. Empirical Software

Engineering, 5(4): pp.297-318.

https://doi.org/10.1023/a:1020511004267

[50] Shepperd, M., Schofield, C. (1997). Estimating software

project effort using analogies. IEEE Transactions on

Software Engineering, 23(11): 736-743.

https://doi.org/10.1109/32.637387

[51] Idri, A., Khoshgoftaar, T.M., Abran, A. (2002). Can

neural networks be easily interpreted in software cost

estimation? Fuzzy Sets and Systems, 132(2): 225-236.

https://doi.org/10.1109/fuzz.2002.1006668

[52] Abnane, I. (2019). Analogy software effort estimation

using ensemble KNN imputation. In 2019 45th Eu-

romicro Conference on Software Engineering and

Advanced Applications (SEAA), Kallithea, Greece, pp.

228-235. https://doi.org/10.1109/seaa.2019.00044

[53] Taha, A., Cosgrave, B., Mckeever, S. (2022). Using

feature selection with machine learning for generation of

insurance insights. Applied Sciences, 12(6): 3209.

https://doi.org/10.3390/app12063209

[54] Liu, H., Yu, L. (2005). Toward integrating feature

selection algorithms for classification and clustering.

1456

https://doi.org/10.3390/app112311156
https://doi.org/10.3390/app10093211
https://doi.org/10.1142/s0218001419500174
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.1007/978-1-4615-5725-8
https://doi.org/10.1007/978-1-4615-5725-8
https://doi.org/10.1016/s1088-467x(97)00008-5
https://doi.org/10.1016/s0004-3702(97)00063-5
https://doi.org/10.1016/b978-1-55860-335-6.50023-4
https://doi.org/10.1109/access.2021.3072380
https://doi.org/10.1109/access.2021.3091313
https://doi.org/10.1016/s0950-5849(00)00114-2
https://doi.org/10.1007/s00500-018-3639-2
https://doi.org/10.1016/j.asoc.2016.05.008
https://doi.org/10.1109/access.2020.3021664
https://doi.org/10.31181/sems1120235a
https://doi.org/10.1016/s0169-2070(97)00044-7
https://doi.org/10.1109/icacite51222.2021.9404623
https://doi.org/10.1109/rivf51545.2021.9642114
https://doi.org/10.1016/j.procs.2023.01.138
https://doi.org/10.1109/32.965341
https://doi.org/10.1109/aicis.2018.00016
https://doi.org/10.1109/apsec.2018.00065
https://doi.org/10.1016/j.jss.2008.06.001
https://doi.org/10.1023/a:1020511004267
https://doi.org/10.1109/32.637387
https://doi.org/10.1109/fuzz.2002.1006668
https://doi.org/10.1109/seaa.2019.00044
https://doi.org/10.3390/app12063209

IEEE Transactions on Knowledge and Data Engineering,

17(4): 491-502. https://doi.org/10.1109/tkde.2005.66

[55] Siham, A., Sara, S., Abdellah, A. (2021). Feature

selection based on machine learning for credit scoring:

An evaluation of filter and embedded methods. In 2021

International Conference on INnovations in Intelligent

SysTems and Applications (INISTA), Kocaeli, Turkey,

pp. 1-6.

https://doi.org/10.1109/inista52262.2021.9548410

[56] Kahloot, K.M., Ekler, P. (2021). Algorithmic splitting: A

method for dataset preparation. IEEE Access, 9: 125229-

125237. https://doi.org/10.1109/access.2021.3110745

[57] Abid, M., Saqlain, M. (2023). Utilizing edge cloud

computing and deep learning for enhanced risk

assessment in China’s international trade and investment.

International Journal of Knowledge and Innovation

Studies, 1(1): 1-9. https://doi.org/10.56578/ijkis010101

[58] Haq, H.B.U., Saqlain, M. (2023). Iris detection for

attendance monitoring in educational institutes amidst a

pandemic: A machine learning approach. Journal of

Industrial Intelligence, 1: 136-147.

https://doi.org/10.56578/jii010301

[59] Zulqarnain, M., Saqlain, M. (2023). Text readability

evaluation in higher education using CNNs. Journal of

Industrial Intelligence, 1(3): 184-193.

https://doi.org/10.56578/jii010305

[60] Saqlain, M. (2023). Sustainable hydrogen production: A

decision-making approach using VIKOR and

intuitionistic hypersoft sets. Journal of Intelligent

Management Decision, 2(3): 130-138.

https://doi.org/10.56578/jimd020303

[61] Saqlain, M. (2023). Evaluating the readability of English

instructional materials in Pakistani Universities: A deep

learning and statistical approach. Education Science and

Management, 1(2): 101-110.

https://doi.org/10.56578/esm010204

[62] Jayapal, P.K., Muvva, V.R., Desanamukula, V.S. (2023).

Stacked extreme learning machine with horse herd

optimization: A methodology for traffic sign recognition

in advanced driver assistance systems. Mechatronics and

Intelligent Transportation Systems, 2(3): 131-145.

https://doi.org/10.56578/mits020302

[63] Mah, P.M. (2022). Analysis of artificial intelligence and

natural language processing significance as expert

systems support for e-health using pre-train deep

learning models. Acadlore Transactions on AI and

Machine Learning, 1(2): 68-80.

https://doi.org/10.56578/ataiml010201

[64] Samson, T.K., Akingbade, T., Orija, J. (2023).

Comparative analysis of mortality predictions from

Lassa fever in Nigeria: A study using count regression

and machine learning methods. Acadlore Transactions

on AI and Machine Learning, 2(4): 204-211.

https://doi.org/10.56578/ataiml020403

[65] Sahoo, S.K., Goswami, S.S., Sarkar, S., Mitra, S. (2023).

A review of digital transformation and industry 4.0 in

supply chain management for small and medium-sized

enterprises. Spectrum of Engineering and Management

Sciences, 1(1): 58-72.

https://doi.org/10.31181/sems1120237j

1457

https://doi.org/10.1109/tkde.2005.66
https://doi.org/10.1109/inista52262.2021.9548410
https://doi.org/10.1109/access.2021.3110745
https://doi.org/10.56578/ijkis010101
https://doi.org/10.56578/jii010301
https://doi.org/10.56578/jii010305
https://doi.org/10.56578/jimd020303
https://doi.org/10.56578/esm010204
https://doi.org/10.56578/mits020302
https://doi.org/10.56578/ataiml010201
https://doi.org/10.56578/ataiml020403
https://doi.org/10.31181/sems1120237j

