
An Energy-Efficient Routing Protocol for a Modified Fat-Tree Topology in System-on-Chip 

Design 

Akash Yadav1* , Mushtaq Ahmed1 , Bhavna Ambudkar2 , Deepak Kumar1 

1 Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India 
2 Symbiosis Institute of Technology Pune, Maharashtra 412115, India  

Corresponding Author Email: 2019rcp9150@mnit.ac.in 

Special issue: Emerging Trends in Computational Intelligence, Networks Technologies, and Wireless Communication Systems 

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.100627 ABSTRACT 

Received: 4 September 2023 

Revised: 8 November 2023 

Accepted: 20 November 2023 

Available online: 21 December 2023 

The rapid evolution of integration technology has significantly influenced System-on-

Chip (SoC) design, characterized by the unprecedented integration of numerous 

functional modules onto ever-shrinking chips. Consequently, facilitating robust 

communication between these burgeoning modules has become critical to optimizing 

system functionality and performance. Traditional Bus architecture, however, proves 

inadequate in realizing this goal. To circumvent these communication impediments, 

mesh and torus interconnected architectures have been proposed, with cores 

interconnected within a single chip using diverse routing strategies for seamless 

operation. This study investigates a deterministic, deadlock-free routing protocol for a 

modified Fat-Tree topology that incorporates a core module at the intermediate level. 

Utilizing the Sniper simulator environment for evaluation, it is demonstrated that the 

proposed protocol surpasses the X-Y routing method used in both mesh and torus 

topologies in terms of power efficiency and throughput. The results show a 4%-8% 

reduction in power consumption compared to other approaches, indicating the superior 

efficacy of the proposed method. 
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1. INTRODUCTION

First proposed by Gordon Moore in 1965, Moore's Law 

accurately predicted an approximate biennial doubling of 

transistors integrated onto a single chip (Figure 1), leading to 

continuous advancements in chip design. The emergence of 

System-on-a-Chip (SoC) technology in the 1980s was 

facilitated by the advent of very large scale integration (VLSI) 

technology, which enabled the integration of thousands of 

transistors onto a single silicon chip. 

This innovative approach has been primarily characterized 

by its emphasis on miniaturization, transitioning from a system 

involving multiple circuits to the integration of these 

functionalities onto a compact silicon chip. Over the years, a 

consistent trend toward smaller IP chips has been observed, 

shrinking from 180 nanometers in the early 2000s to a mere 10 

nanometers currently, as technology has progressively 

advanced [2]. Such a reduction in size has made it possible for 

designers to incorporate a greater number of transistors into 

the SoC. 

The term "SoC" encapsulates the integration of the 

processor, memory, bus, hardware device drivers, among other 

components, onto a single platform. This technology has 

revolutionized design methods without altering the underlying 

functionality of systems. A wide range of systems, most 

notably in the realm of embedded computing, have harnessed 

this technology to consolidate their components, thereby 

achieving greater power and energy efficiency. 

Communication between IPs is facilitated through the memory 

and buses of a SoC, with bus arbiters ensuring real-time 

interaction and shared resource utilization among IPs as 

required [3]. 

Cutting-edge system-on-chip (SoC) architectures are 

currently anchored in the implementation of symmetric and 

asymmetric multicore designs within a Globally 

Asynchronous and Locally Synchronous (GALS) framework. 

This architectural strategy employs a growing number of 

functional modules, thereby enhancing overall system 

functionality and performance. These modules collaborate 

seamlessly, efficiently executing tasks, and communicating 

via a shared bus to distribute workloads and meet performance 

benchmarks [4, 5]. 

However, traditional bus architectures exhibit limitations 

when tasked with the escalating demands of intensive parallel 

communication within these intricate systems. The 

deficiencies of bus architectures are prominently exposed in 

situations demanding robust concurrent data exchange [2]. 

Additionally, the continual incorporation of modules into 

SoCs amplifies the need for enhanced bandwidth, precipitating 

a corresponding surge in power consumption associated with 

bus arbitration. 

Meeting the imposed requirements and constraints of the 
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applications operational within the system is a fundamental 

consideration in SoC design. The demand for greater 

bandwidth, necessitated by increased data transfer rates 

between expanding functional modules, ensures optimal 

performance while mitigating bottlenecks. However, a 

significant hurdle is the escalating energy consumption during 

module communication, which imposes limitations on both 

application performance and architectural design. This 

escalating power consumption is emerging as a formidable 

challenge in contemporary SoC design [6]. 

The selection of suitable routing protocols and the 

configuration of traffic patterns significantly influence the 

overall performance within interconnected architectures 

employing Mesh or Torus topologies. Making an informed 

selection in this regard can profoundly impact the system's 

efficiency and effectiveness. 

The Fat-Tree topology, an alternative to the Mesh and Torus 

topologies, presents several advantages. The tree structure 

minimizes communication distances, particularly beneficial 

for local communication patterns. It ensures minimal latency, 

facilitating the swift traversal of data across the network, and 

maximizes throughput, enabling optimal data flow through the 

system. The Fat-Tree topology exhibits superior scalability 

due to its higher bandwidth, unlike Mesh and Torus topologies 

where scalability is constrained by fixed bandwidth [7]. 

A range of parameters, including area, throughput, latency, 

and power consumption, can measure the SoC's performance, 

which directly impacts the system's performance [8, 9]. The 

modified Fat-Tree topology proposed in this paper reduces 

memory requirements in intermediate nodes, thus lowering 

power consumption [10, 11]. 

In contrast to the conventional Fat-Tree topology, where 

cores exist only at the leaf level, the proposed modification 

incorporates nodes or cores at every level. A routing protocol 

encompassing all Fat-Tree leaf nodes and intermediate nodes 

is utilized in this adaptation. When compared to Mesh and 

Torus topologies using different benchmarks, the Fat-Tree 

topology demonstrates enhanced performance in terms of 

lower power dissipation and improved throughput. 

The paper is structured as follows: Section 2 delves into 

various routing algorithms. The importance of power 

estimation in SoC design, along with different tools for 

estimating power consumption, are explored in Section 3. 

Section 4 details the experimental design and the analysis of 

results, and finally, conclusions are drawn in Section 5. 

 

 
 

Figure 1. Moore’ Law showing the growth of number of 

transistors in IC [1] 

 

2. LITERATURE SURVEY 

 

The SoC epitomizes an advanced network architecture, 

characterized by the integration of diverse processing modules 

onto a singular chip, thus forming a sophisticated 

interconnected parallel network. These cores are 

interconnected through a complex network of wiring, utilizing 

a variety of topologies including Mesh, Torus, Spidergon, and 

Fat-Tree [12, 13]. A pictorial representation of this 

architecture is presented in Figure 2. 

A salient feature of the SoC architecture is the scalability it 

affords through an augmentation in the number of ports. This 

proliferation of potential pathways for packet routing serves to 

alleviate network congestion and enhance overall throughput. 

However, it is imperative to acknowledge that this scalability 

is not without its associated costs, and an increase in 

expenditure is inevitable. 

 

 
  

Figure 2. Typical on-chip structure where different 

processing nodes communicating via different associated 

routers 

 

The SoC is characterized by dynamic features, facilitating 

versatile bandwidth configurations within the interconnections 

among processing cores. The specific arrangement of these 

cores is dictated by the selected SoC topology. The complexity 

of the multi-core interconnection architecture extends beyond 

mere core arrangement, encompassing the pivotal role of 

connectivity via routers. The configuration of these routers is 

contingent both on the chosen network topology [14, 15], as 

well as the applied routing algorithms [16, 17]. 

In view of these factors, SoC topologies are primarily 

classified into two distinct categories: direct and indirect 

topologies. The selection between these two categories 

profoundly influences the mode of communication and data 

exchange among the processing cores within the architecture. 

This dichotomy underscores the inherent adaptability and 

configurability of the designs, rendering them apt for a diverse 

range of applications and performance demands in 

contemporary computing systems. 

● Direct Topology: In a direct network topology, each 

processing core is directly linked to a router. This layout 

simplifies the network architecture and encourages 

efficient communication. Grid-based layouts such as 
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2D-Mesh, 2D-Torus, and Folded Torus are commonly 

adopted configurations for direct topologies. The 

preference for these grid-like topologies is rooted in 

their cost-effectiveness and their potential to elevate the 

overall system performance. The regular, grid-like 

arrangement of cores and routers facilitates 

uncomplicated routing and streamlined data transfer, 

rendering them desirable choices for a variety of 

computing applications. 

● Indirect Topology: Conversely, an indirect network 

topology segregates processing cores from the routers. 

In this configuration, routers are situated at distinct 

levels within the topology, separate from the processing 

cores positioned at the lowest level. In the upper levels 

of the topology, routers assume the function of 

transmitting packets between various levels, forming a 

multi-staged, tree-like structure. Prominent examples of 

indirect topologies include the H-tree and Fat-Tree 

architectures. This topology configuration allows for 

more intricate and versatile communication pathways, 

rendering it apt for scenarios where complex data 

routing and scalability are crucial. The hierarchical 

structure of the indirect topology offers advantages in 

terms of adaptability and resource allocation, making it 

a fitting choice for demanding computing environments. 

 

2.1 2D-Mesh topology 

 

The 2D-Mesh network topology, a grid-based configuration, 

is distinguished by its two-dimensional framework. This 

topology manifests in a grid formation, termed as k-ary, n-

Mesh, where "k" denotes the count of nodes within the mesh, 

and "n" signifies the width or height of the network topology.  

 

 
 

Figure 3. 2D-Mesh topology connected with each other in 

the GRID fashion 

 

Figure 3 provides a visual depiction of the interconnectivity 

among nodes within the 2D-Mesh topology. Each node within 

this topology is capable of establishing connections with up to 

four neighbors, barring those located at the periphery of the 

network [18, 19]. 

A multitude of routing algorithms has been proposed for the 

Mesh topology to facilitate efficient data transfer. These 

algorithms comprise both minimal path deterministic routing 

options such as source routing and X-Y routing, as well as 

non-minimal non-deterministic routing alternatives like 

restricted turn-model routing and user-defined routing [20, 21]. 

This assortment of routing algorithms allows the Mesh 

topology to adapt to diverse communication needs, rendering 

it a flexible choice in network design. Despite its preference 

due to simplicity, the Mesh topology does possess a 

disadvantage. The primary issue lies in its large diameter, 

which impedes communication speed. 

 

2.2 Torus topology 

 

Figure 4 presents an illustrative representation of the torus 

network topology. This unique topology displays a 

characteristic feature of wraparound connectivity, where the 

top seamlessly links to the bottom, and the right edge smoothly 

transitions to the left edge. This wraparound connectivity 

attribute is consistently preserved at every edge node 

throughout the network topology. Furthermore, the torus 

topology adopts a grid-based structure comparable to the k-ary, 

n-Mesh configuration, wherein "k" represents the number of 

nodes within the mesh, and "n" indicates the width or height 

of the network topology [22]. 

 

 
 

Figure 4. Torus topology connected with each other in the 

GRID fashion 

 

Within this topology, each node sustains connections with 

its four immediate neighbors, reflecting the connectivity 

pattern seen in the 2D-Mesh. However, it is crucial to note that 

the torus topology introduces an asymmetry into the network, 

setting it apart from the symmetrical 2D-Mesh configuration. 

For instance, the route distance between the top-left and top-

right nodes (as depicted in Figure 4) is greater than that 

between the top-left and bottom-right nodes. This results in an 

asymmetry within the torus, where node distances may vary 

based on their positions. 

A variant of the torus network topology, known as the 

folded torus, employs two layers of nodes that are connected 

in a ring-like fashion. The uppermost node is linked to the 

bottom node to interconnect each layer of the topology. 

Generally, the torus topology is the preferred choice if 

reducing latency is a significant consideration. Conversely, 

when power consumption reduction is a priority, the mesh 

topology emerges as a more suitable option [23]. 

 

2.3 Fat-Tree topology 

 

The Fat-Tree topology serves as a striking example of a 

tree-based indirect network configuration. Within tree-based 

topologies, the bandwidth availability scales up with each 
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ascending level within the tree structure. A distinguishing 

feature of the Fat-Tree topology is its impressive ability to 

increase the number of connections as one ascends toward the 

tree's root [24]. This inherent scalability renders the Fat-Tree 

topology particularly beneficial in situations involving a large 

number of interconnected processing cores within the system. 

As illustrated in Figure 5, this topology demonstrates its 

capabilities by accommodating an extensive network of nodes 

and interconnections, thereby optimizing data flow and 

enhancing system performance. The architecture of the Fat-

Tree topology is adept at efficiently managing the demands of 

large-scale processing environments, making it a favored 

choice for modern, data-intensive applications and computing 

infrastructures. Its tree-based structure, with increased 

bandwidth towards the higher levels, equips it to manage and 

facilitate the robust communication needs of complex systems. 

 

 
 

Figure 5. Typical connection of the Fat-Tree topology for 

tree-height 3 

 

Securing deadlock-free routing within a SoC can be 

achieved through two primary strategies. The first tactic 

involves augmenting the number of ports or implementing 

virtual channels, while the second strategy entails adopting a 

restricted turn-model routing approach. In a fat-tree, it is 

possible to navigate from any leaf to any other node using 

either an upward or downward path. It mirrors a logical tree, 

and there are two types of turns: UP turns (from child to 

parent) and DOWN turns (from parent to child). 

Consequently, the application of restricted turn-based routing 

can effectively prevent deadlock without the necessity for 

virtual channels [25]. 

 

 

3. PROPOSED ALGORITHM 
 

The Fat-Tree topology stands out as a prevalent choice 

when it comes to optimizing parallelism within SoC 

architectures. It excels in offering a deterministic routing 

mechanism, whereby only a single, predefined path exists 

between any two nodes within the network. One remarkable 

feature of the Fat-Tree topology is its capacity for scalable 

bandwidth, which expands proportionally with the rise in 

network levels. 

In the context of this paper, a novel approach is introduced 

that uses a deterministic range-based algorithm to implement 

the Fat-Tree topology specifically for complete binary trees. A 

complete binary tree is one where each level, except the last, 

is completely filled, and all nodes in the last level are 

positioned as far left as they can be. 

Problem definition: In an given Fat-Tree based on-chip 

interconnection communication architecture ArchN(C,L), the 

routers at source node Csource and destination node Cdest, find a 

decision function at current node Ccurrent, for selecting an 

outport to forward the packet at right direction. ArchN(C,L) is 

a tree structure where, 

 

● N is the number of cores in the structure 

● Each node ci ϵ C represents a core with routers for 

0≤i<N, and 

● lj ϵ L represents the tree-level of core ci for 

0≤j≤⌊log2(N)⌋ 
 

The objective of the algorithm, detailed in Algorithm 1, is 

to use the destination node's level to make routing decisions. 

Algorithm 1 provides a step-by-step guide to implementing the 

Fat-Tree routing strategy. By introducing this deterministic 

range-based algorithm, the paper aims to enhance the 

efficiency and performance of the Fat-Tree topology. 

In a network comprising N processing cores, each 

individual node carries specific information. Every node 

actively records the range data of its child nodes. Through a 

recursive process, it also maintains knowledge of the ranges of 

its grandchildren, stemming from its own children. 

Consequently, each node, at the very least, possesses 

information concerning the positions of its immediate 

offspring.  

The first step is to find the level of the destination node. If 

the current node is the same as the destination node, it means 

the destination has been reached. In this case, set the direction 

to the destination and return the current core_id. If the 

destination falls within the range of the current node's children, 

proceed with the downward direction represented as DOWN. 

Calculate L and R, which represent the distances between the 

destination and the left and right children of the current node. 

If L is less than R, it means the left child is closer to the 

destination, so return the ID of the left child (core_id.childL), 

otherwise, return the ID of the right child (core_id.childR). If 

the destination is not within the range of the current node's 

children, set the direction to move upwards represented as UP 

and return the ID of the parent node (core_id.parentNode).  

 

Algorithm 1. Routing Protocol for Fat-Tree 

Result: core_id 

1. level=findLevel(destination) 

2. if destination == core_id then 

3.     direction=destination; 

4.     return(core_id); 

5. else if core_id.nodeRange[level][L] ≤ destination 

AND core_id.nodeRange[level][R] ≥ destination then 

6.     direction=DOWN; 

7.     L=destination - core_id.nodeRange[level][L] 

8.     R=core_id.nodeRange[level][R] - destination 

9.     if L < R then 

10.         return(core_id.childL); 

11.     else 

12.         return(core_id.childR); 

13.     end if 

14. else 

15.     direction=UP; 

16.     return(core_id.parentNode); 

17. end if 
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Figure 6. Hybrid Fat-Tree having connected nodes in the intermediate levels 

 

Figure 6 provides a visual representation of the Fat-Tree 

topology, featuring fifteen nodes labeled IPC-0 to IPC-14. 

Nodes situated at level 0 are leaf nodes, bereft of any children, 

hence their child range is defined as {-1 to -1}. For instance, 

Node IPC-8 at level 1 contains children IPC-0 and IPC-1, 

resulting in a child range of {0 - 1}. In a similar vein, Node 

IPC-9's child range is {2 - 3}, and so forth. At level 2, Node 

IPC-12 boasts both children and grandchildren, consequently 

housing two sets of range values—one encompassing its 

immediate grandchildren, denoted as {0 - 3}, and the other 

detailing the range of its own children, {8 - 9}. A parallel 

scenario is observed with Node IPC-13. The root node, 

positioned at three different levels (levels 0, 1, and 2), holds 

comprehensive information about all its descendants. The first 

range spans the farthest grandchildren, {0 - 7}, followed by 

the grandchildren at the next level with the range value {8 - 

11}, and lastly, the range value pertaining to its immediate 

children, which is {12 - 13}. 

In the packet transmission process, the router adopts a 

strategy that relies on evaluating the difference between its 

own designated range and the intended destination's position. 

If the destination node is not situated within its range, the 

router directs the packet upwards. 

This ingenious mechanism plays a pivotal role in reducing hop 

latency, leading to a substantial enhancement in the overall 

system's throughput. The Fat-Tree topology, with its inherent 

characteristics, manages to achieve remarkable efficiency, 

characterized by its computational complexity of O(log(N)). 

This complexity ensures that the system operates with 

remarkable efficiency, even as the number of processing cores, 

denoted as N, scales up. 

 

 

4. EXPERIMENTAL SETUP AND RESULT ANALYSIS 

 

The algorithm designed for the Fat-Tree topology is 

subjected to simulation using the Sniper simulator. This 

simulator, renowned for its high-performance capabilities, 

operates as a parallel and cycle-accurate tool specially crafted 

for the next-generation simulation needs [26, 27]. Within this 

simulation environment, a diverse array of computing 

scenarios can be explored, including both homogeneous and 

heterogeneous multicore architectures. The interval core 

model, a notable feature of this platform, empowers users to 

construct Cycle Per Instruction (CPI) stacks. These stacks 

provide invaluable insights into the number of cycles lost due 

to various system characteristics and behaviors. 

For a more comprehensive understanding, Figure 7 offers a 

concise overview of the program execution environment 

facilitated by this simulator. This environment proves 

indispensable in assessing and fine-tuning algorithms within 

the Fat-Tree topology, paving the way for optimized 

performance and enhanced system efficiency. 

 

 
 

Figure 7. The program execution environment used for 

simulation in Sniper 

 

In a program, every thread possesses its distinct cycle stack, 

comprising several cycle components. This cycle stack, often 

referred to as Cycle per Instruction (CPI), offers a 

comprehensive breakdown of the total number of cycles, 

delineating its constituent parts. These cycle components are 

graphically represented as bars in a histogram, where they are 
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stacked on top of each other, with the component at the base 

of the histogram serving as the foundation.  

To provide a visual representation of this concept, Figure 8 

shows the original CPI stack as visualized within the Sniper 

simulator, specifically for a Mesh topology employing four 

cores. This depiction aids in understanding how the various 

cycle components contribute to the overall cycle count, 

offering insights into the performance characteristics of the 

program in question. 

 

 
 

Figure 8. Visualization example of CPI stacks in Sniper for 

mesh topology with four cores 

 

In our experimental setup, we employ two well-established 

benchmarks, namely SPLASH-2 (Barnes) and PARSEC 

(Bodytrack). These benchmarks hold a prominent position in 

the field of performance evaluation and are integrated into 

various multi-threaded application environments, ensuring 

compatibility with a range of simulation platforms [28]. 

 Barnes: The Barnes benchmark simulates the dynamics of 

a system of bodies in three dimensions through the 

utilization of the Barnes-Hut hierarchical N-body method. 

It serves as a valuable tool for modeling and analyzing 

complex interactions among objects [29]. 

 Bodytrack: The Bodytrack benchmark is centered around 

computer vision applications within the Intel RMS 

workload. This particular benchmark is dedicated to 

tracking the movements and positions of the human body 

through the processing of multiple camera images. Its 

relevance lies in its ability to assess and optimize the 

performance of systems handling real-time visual data 

[30]. 

The Fat-Tree topology is compared to 2D-Mesh and Torus 

topologies with an equal number of cores using power 

consumption and throughput as the performance parameter. 

● Throughput: Throughput can be defined as the 

maximum amount of information delivered per unit of time. It 

can be measured as the messages per second or messages per 

clock cycle. In other terms, it is the maximum number of 

packets received out of the packed transmitted from the source 

over the channel. Eq. (1) shows the formula for calculating the 

throughput in the experiments. 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑇𝑃) =
∏ (𝑃𝑖(1 − 𝐷𝑖))
𝑛
𝑖=1

𝐿
 (1) 

 

where, 

− n is the number of nodes from source to destination. 

− Pi represents the probability of successful 

transmission from node i to node i+1. 

− Di represents the probability of packet drop at node i. 

− L represents the latency. 

 

● Power Consumption: The power consumption is 

calculated as the total of power consumed by cores and 

various memories in wattage, as shown in Eq. (2). 

 

𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑃𝐶)

=∑(𝑃𝑐𝑜𝑟𝑒𝑖 + 𝑃𝑐𝑜𝑟𝑒𝑚𝑒𝑚𝑖

𝑛

𝑖=1

+ 𝑃𝑖𝑐𝑎𝑐ℎ𝑒𝑖 + 𝑃𝑑𝑐𝑎𝑐ℎ𝑒𝑖 + 𝑃𝑑𝑟𝑎𝑚𝑖

+ 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖) 

(2) 

 

where, 

− Pcorei is the power consumed by core i, 

− Pcore_memi is the power consumed by memory of core 

i, 

− Picachei is the power consumed by icache memory of 

core i, 

− Pdcachei is the power consumed by dcache memory of 

core i, 

− Pdrami is the power consumed by dram memory of core 

i, 

− Ptransmissioni is the power consumed by transmission 

link of core i. 

In our experimental setup, we explore various 

configurations by altering both the frequencies and the number 

of symmetric cores within each topology. We systematically 

evaluate the performance parameters for these diverse 

combinations. For instance, we examine scenarios involving 8 

and 16 cores, with frequency settings ranging from 2.66 GHz 

to 5 GHz, across Mesh, Torus, and Fat-Tree topologies. It's 

worth noting that we maintain a homogeneous configuration 

across all processing cores to ensure consistency. 

 

Table 1. Values for possible test combinations used in the 

experiments by the simulator 

 
S. No. Name Specifications 

1 Topology Fat-Tree, 2D-Mesh, Torus 

2 Frequency 2.66 GHz, 3 GHz, 4 GHz, 5 GHz 

3 
No. of 

Cores 
8, 16 

4 
Cache 

Memory 

icache=32Kb, associativity=4 

dcache=32Kb, associativity=4 

L2 cache=512 Kb, associativity=8 

5 Global Freq 1 GHz 

6 Benchmarks SPLASH2, PARSEC 

 

A summary of the values utilized in these experiments is 

presented in Table 1. To enhance the accuracy and reliability 

of our findings, we compute the averages from five 

independent runs for each potential combination. Our 

assessment of throughput follows the equation (Eq. (1)), which 

calculates it as the ratio of the total number of packets 

successfully received at the destination to the total time 

elapsed in milliseconds. This methodology guarantees robust 

and trustworthy results, which are essential for a 

comprehensive evaluation of system performance. 
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4.1 Result analysis 

 

Table 2 provides an insightful overview of the system's 

throughput performance when utilizing eight cores. Notably, 

for lower frequency settings, we observe relatively consistent 

throughput values across all the employed topologies. 

However, as the frequency of individual processing cores 

escalates, an interesting trend emerges. The Fat-Tree topology 

notably outperforms its grid-based counterparts in terms of 

throughput. This suggests that the Fat-Tree configuration 

exhibits a favorable response to the increased processing 

power, harnessing higher frequencies effectively to enhance 

system performance. 

 

Table 2. Throughput comparison between the topologies 

 

Processing  

Cores 
Topology 

Throughput (# of Packets/ms) 

f=2.66 

GHz 

f=3  

GHz 

f=4  

GHz 

f=5  

GHz 

8-Cores 

2D-Mesh 44 45 51 101 

Torus 45 50 82 103 

Fat-Tree 51 56 87 108 

16-Cores 

2D-Mesh 30 32 53 56 

Torus 31 34 55 59 

Fat-Tree 34 38 59 63 

 

Furthermore, in Table 2, we extend our analysis to include 

the throughput results for configurations involving sixteen 

cores. As anticipated, with the augmentation in the number of 

cores, the Fat-Tree topology consistently showcases superior 

throughput performance when compared to both the 2D-Mesh 

and Torus topologies. This observation aligns with the 

expected behavior, as the Fat-Tree topology's inherent 

scalability and interconnectivity prove advantageous in 

scenarios where a greater number of cores are engaged. 

Consequently, it serves as a preferable choice to meet the 

heightened processing demands associated with larger core 

counts, ensuring optimized system performance. 

The data presented in Table 2 demonstrates a clear trend. 

The Fat-Tree topology consistently outperforms other grid-

based configurations, such as the 2D-Mesh and 2D-Torus, in 

terms of throughput. This notable advantage can be primarily 

attributed to the Fat-Tree's tree-based structure, which 

effectively reduces packet hop latency, subsequently leading 

to enhanced throughput. The reduction in hop latency is a 

pivotal factor that propels the system's overall performance, as 

it facilitates faster data transfer and more efficient 

communication between processing cores. 

It is important to observe that the difference in hop latency 

between grid-based and tree-based topologies is not very large 

for systems with fewer processing cores. This is due to the fact 

that grid-based topologies, even with their O(n) complexity, 

function rather effectively for small core counts. However, as 

the number of processing cores increases, tree-based 

topologies provide a more effective complexity of O(log(n)), 

yielding a performance improvement that becomes more and 

more obvious. As a result, the proposed topology performs 

best in situations when number of cores is more. 

A similar configuration is employed to compute the power 

consumption for all three topologies under examination. 

Figure 9 and Figure 10 provide graphical representations of 

the power consumption results for eight and sixteen cores, 

respectively. 

 

 
 

Figure 9. The comparison of power consumption for various 

topologies with eight processing cores 

 

 
 

Figure 10. The comparison of power consumption for 

various topologies with sixteen processing cores 

 

As anticipated, these figures unmistakably illustrate that 

power consumption escalates in direct correlation with the 

frequency increase of the processing cores, irrespective of the 

chosen topology. Furthermore, it's evident that power 

consumption exhibits a direct relationship with hop latency. 

As hop latency rises, so does power consumption, while 

conversely, lower hop latency is associated with reduced 

power consumption. 

Notably, the Fat-Tree topology demonstrates a significant 

advantage in hop latency compared to the other topologies, 

resulting in lower power consumption. This advantageous 

characteristic is clearly depicted in both Figure 9 and Figure 

10.  

The result shows that the differences between the GRID-

based and Fat-Tree topologies are not as apparent when 

working with fewer cores. This is in line with expectations, as 

the effects of topology become more prominent with a higher 

number of cores engaged in computation. 

However, as we scale up to configurations featuring a 

greater number of cores, we anticipate observing a more 

significant disparity in IPC performance between the two 

topologies. The inherent advantages of the Fat-Tree topology, 

including its efficient routing and reduced hop latency, are 

expected to become increasingly apparent as the 

computational workload intensifies. Therefore, these IPC 

results provide valuable insights into how the choice of 

topology can impact the efficiency and performance of multi-

core systems, particularly in scenarios involving a substantial 
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number of processing cores. On the other hand, the fat-tree 

topology also has same limitations. The main one is the root 

node that is the topology's bottleneck; if it malfunctions, whole 

network can collapse. In addition, network configuration and 

management are more difficult as the tree grows longer. 

The Fat-Tree's efficient routing and reduced hop latency 

contribute to its ability to operate with lower power 

consumption, making it an attractive choice in scenarios where 

power efficiency is a critical concern, such as in energy-

efficient computing environments or battery-powered devices. 

We also conducted an analysis of the Instruction-per-Cycle 

(IPC) results for both the SPLASH2-Barnes benchmark and 

the PARSEC-Bodytrack benchmark. Figure 11 and Figure 12 

visually represent the IPC outcomes for the Barnes and 

Bodytrack benchmarks, respectively.  

 

 
 

Figure 11. Comparison of Instruction-per-Cycle (IPC) for 

SPLASH-2 (Barnes) benchmark application in Mesh 

topology and Fat-Tree topology 

 

 
 

Figure 12. Comparison of Instruction-per-Cycle (IPC) for 

PARSEC (Bodytrack) benchmark application in Mesh 

topology and Fat-Tree topology 

 

 

5. CONCLUSION AND FUTURE WORK 

 

In this paper, a routing protocol for a modified Fat-Tree 

topology for system-on-chip was proposed. In modified Fat-

Tree, cores are also present at the intermediate level of the tree. 

We compared the proposed approach with GRID-based 

topologies like 2D-Mesh and 2D-Torus based on throughput 

and power consumption. The analysis showed that the 

proposed approach offers higher throughput than the GRID-

based topologies. Tree-based topology's reduction of packet 

hop latency is the primary factor contributing to an increase in 

throughput. As a result of the reduced hop latency, throughput 

is increased, and power consumption is decreased. In the 

future, an asymmetric core architecture with varying 

frequencies, a pipeline, and variance of cache memories with 

additional resources like Booth or Wallace multipliers shall be 

tested for the existing and new benchmarks. The performance 

shall also be measured for the channel bandwidth with the best 

efforts, guaranteed throughput, and some degree of fault 

tolerance. Also, other routing strategies may be compared for 

this modified structure of the Fat-Tree. 
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