
An Energy-Efficient Routing Protocol for a Modified Fat-Tree Topology in System-on-Chip

Design

Akash Yadav1* , Mushtaq Ahmed1 , Bhavna Ambudkar2 , Deepak Kumar1

1 Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India
2 Symbiosis Institute of Technology Pune, Maharashtra 412115, India

Corresponding Author Email: 2019rcp9150@mnit.ac.in

Special issue: Emerging Trends in Computational Intelligence, Networks Technologies, and Wireless Communication Systems

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.100627 ABSTRACT

Received: 4 September 2023

Revised: 8 November 2023

Accepted: 20 November 2023

Available online: 21 December 2023

The rapid evolution of integration technology has significantly influenced System-on-

Chip (SoC) design, characterized by the unprecedented integration of numerous

functional modules onto ever-shrinking chips. Consequently, facilitating robust

communication between these burgeoning modules has become critical to optimizing

system functionality and performance. Traditional Bus architecture, however, proves

inadequate in realizing this goal. To circumvent these communication impediments,

mesh and torus interconnected architectures have been proposed, with cores

interconnected within a single chip using diverse routing strategies for seamless

operation. This study investigates a deterministic, deadlock-free routing protocol for a

modified Fat-Tree topology that incorporates a core module at the intermediate level.

Utilizing the Sniper simulator environment for evaluation, it is demonstrated that the

proposed protocol surpasses the X-Y routing method used in both mesh and torus

topologies in terms of power efficiency and throughput. The results show a 4%-8%

reduction in power consumption compared to other approaches, indicating the superior

efficacy of the proposed method.

Keywords:

Fat-Tree topology, power consumption, power

efficiency, routing protocol, system-on-chip,

sniper simulator

1. INTRODUCTION

First proposed by Gordon Moore in 1965, Moore's Law

accurately predicted an approximate biennial doubling of

transistors integrated onto a single chip (Figure 1), leading to

continuous advancements in chip design. The emergence of

System-on-a-Chip (SoC) technology in the 1980s was

facilitated by the advent of very large scale integration (VLSI)

technology, which enabled the integration of thousands of

transistors onto a single silicon chip.

This innovative approach has been primarily characterized

by its emphasis on miniaturization, transitioning from a system

involving multiple circuits to the integration of these

functionalities onto a compact silicon chip. Over the years, a

consistent trend toward smaller IP chips has been observed,

shrinking from 180 nanometers in the early 2000s to a mere 10

nanometers currently, as technology has progressively

advanced [2]. Such a reduction in size has made it possible for

designers to incorporate a greater number of transistors into

the SoC.

The term "SoC" encapsulates the integration of the

processor, memory, bus, hardware device drivers, among other

components, onto a single platform. This technology has

revolutionized design methods without altering the underlying

functionality of systems. A wide range of systems, most

notably in the realm of embedded computing, have harnessed

this technology to consolidate their components, thereby

achieving greater power and energy efficiency.

Communication between IPs is facilitated through the memory

and buses of a SoC, with bus arbiters ensuring real-time

interaction and shared resource utilization among IPs as

required [3].

Cutting-edge system-on-chip (SoC) architectures are

currently anchored in the implementation of symmetric and

asymmetric multicore designs within a Globally

Asynchronous and Locally Synchronous (GALS) framework.

This architectural strategy employs a growing number of

functional modules, thereby enhancing overall system

functionality and performance. These modules collaborate

seamlessly, efficiently executing tasks, and communicating

via a shared bus to distribute workloads and meet performance

benchmarks [4, 5].

However, traditional bus architectures exhibit limitations

when tasked with the escalating demands of intensive parallel

communication within these intricate systems. The

deficiencies of bus architectures are prominently exposed in

situations demanding robust concurrent data exchange [2].

Additionally, the continual incorporation of modules into

SoCs amplifies the need for enhanced bandwidth, precipitating

a corresponding surge in power consumption associated with

bus arbitration.

Meeting the imposed requirements and constraints of the

Mathematical Modelling of Engineering Problems
Vol. 10, No. 6, December, 2023, pp. 2149-2157

Journal homepage: http://iieta.org/journals/mmep

2149

https://orcid.org/0000-0001-7593-9731
https://orcid.org/0000-0002-7576-2531
https://orcid.org/0000-0001-9744-836X
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100627&domain=pdf

applications operational within the system is a fundamental

consideration in SoC design. The demand for greater

bandwidth, necessitated by increased data transfer rates

between expanding functional modules, ensures optimal

performance while mitigating bottlenecks. However, a

significant hurdle is the escalating energy consumption during

module communication, which imposes limitations on both

application performance and architectural design. This

escalating power consumption is emerging as a formidable

challenge in contemporary SoC design [6].

The selection of suitable routing protocols and the

configuration of traffic patterns significantly influence the

overall performance within interconnected architectures

employing Mesh or Torus topologies. Making an informed

selection in this regard can profoundly impact the system's

efficiency and effectiveness.

The Fat-Tree topology, an alternative to the Mesh and Torus

topologies, presents several advantages. The tree structure

minimizes communication distances, particularly beneficial

for local communication patterns. It ensures minimal latency,

facilitating the swift traversal of data across the network, and

maximizes throughput, enabling optimal data flow through the

system. The Fat-Tree topology exhibits superior scalability

due to its higher bandwidth, unlike Mesh and Torus topologies

where scalability is constrained by fixed bandwidth [7].

A range of parameters, including area, throughput, latency,

and power consumption, can measure the SoC's performance,

which directly impacts the system's performance [8, 9]. The

modified Fat-Tree topology proposed in this paper reduces

memory requirements in intermediate nodes, thus lowering

power consumption [10, 11].

In contrast to the conventional Fat-Tree topology, where

cores exist only at the leaf level, the proposed modification

incorporates nodes or cores at every level. A routing protocol

encompassing all Fat-Tree leaf nodes and intermediate nodes

is utilized in this adaptation. When compared to Mesh and

Torus topologies using different benchmarks, the Fat-Tree

topology demonstrates enhanced performance in terms of

lower power dissipation and improved throughput.

The paper is structured as follows: Section 2 delves into

various routing algorithms. The importance of power

estimation in SoC design, along with different tools for

estimating power consumption, are explored in Section 3.

Section 4 details the experimental design and the analysis of

results, and finally, conclusions are drawn in Section 5.

Figure 1. Moore’ Law showing the growth of number of

transistors in IC [1]

2. LITERATURE SURVEY

The SoC epitomizes an advanced network architecture,

characterized by the integration of diverse processing modules

onto a singular chip, thus forming a sophisticated

interconnected parallel network. These cores are

interconnected through a complex network of wiring, utilizing

a variety of topologies including Mesh, Torus, Spidergon, and

Fat-Tree [12, 13]. A pictorial representation of this

architecture is presented in Figure 2.

A salient feature of the SoC architecture is the scalability it

affords through an augmentation in the number of ports. This

proliferation of potential pathways for packet routing serves to

alleviate network congestion and enhance overall throughput.

However, it is imperative to acknowledge that this scalability

is not without its associated costs, and an increase in

expenditure is inevitable.

Figure 2. Typical on-chip structure where different

processing nodes communicating via different associated

routers

The SoC is characterized by dynamic features, facilitating

versatile bandwidth configurations within the interconnections

among processing cores. The specific arrangement of these

cores is dictated by the selected SoC topology. The complexity

of the multi-core interconnection architecture extends beyond

mere core arrangement, encompassing the pivotal role of

connectivity via routers. The configuration of these routers is

contingent both on the chosen network topology [14, 15], as

well as the applied routing algorithms [16, 17].

In view of these factors, SoC topologies are primarily

classified into two distinct categories: direct and indirect

topologies. The selection between these two categories

profoundly influences the mode of communication and data

exchange among the processing cores within the architecture.

This dichotomy underscores the inherent adaptability and

configurability of the designs, rendering them apt for a diverse

range of applications and performance demands in

contemporary computing systems.

● Direct Topology: In a direct network topology, each

processing core is directly linked to a router. This layout

simplifies the network architecture and encourages

efficient communication. Grid-based layouts such as

2150

2D-Mesh, 2D-Torus, and Folded Torus are commonly

adopted configurations for direct topologies. The

preference for these grid-like topologies is rooted in

their cost-effectiveness and their potential to elevate the

overall system performance. The regular, grid-like

arrangement of cores and routers facilitates

uncomplicated routing and streamlined data transfer,

rendering them desirable choices for a variety of

computing applications.

● Indirect Topology: Conversely, an indirect network

topology segregates processing cores from the routers.

In this configuration, routers are situated at distinct

levels within the topology, separate from the processing

cores positioned at the lowest level. In the upper levels

of the topology, routers assume the function of

transmitting packets between various levels, forming a

multi-staged, tree-like structure. Prominent examples of

indirect topologies include the H-tree and Fat-Tree

architectures. This topology configuration allows for

more intricate and versatile communication pathways,

rendering it apt for scenarios where complex data

routing and scalability are crucial. The hierarchical

structure of the indirect topology offers advantages in

terms of adaptability and resource allocation, making it

a fitting choice for demanding computing environments.

2.1 2D-Mesh topology

The 2D-Mesh network topology, a grid-based configuration,

is distinguished by its two-dimensional framework. This

topology manifests in a grid formation, termed as k-ary, n-

Mesh, where "k" denotes the count of nodes within the mesh,

and "n" signifies the width or height of the network topology.

Figure 3. 2D-Mesh topology connected with each other in

the GRID fashion

Figure 3 provides a visual depiction of the interconnectivity

among nodes within the 2D-Mesh topology. Each node within

this topology is capable of establishing connections with up to

four neighbors, barring those located at the periphery of the

network [18, 19].

A multitude of routing algorithms has been proposed for the

Mesh topology to facilitate efficient data transfer. These

algorithms comprise both minimal path deterministic routing

options such as source routing and X-Y routing, as well as

non-minimal non-deterministic routing alternatives like

restricted turn-model routing and user-defined routing [20, 21].

This assortment of routing algorithms allows the Mesh

topology to adapt to diverse communication needs, rendering

it a flexible choice in network design. Despite its preference

due to simplicity, the Mesh topology does possess a

disadvantage. The primary issue lies in its large diameter,

which impedes communication speed.

2.2 Torus topology

Figure 4 presents an illustrative representation of the torus

network topology. This unique topology displays a

characteristic feature of wraparound connectivity, where the

top seamlessly links to the bottom, and the right edge smoothly

transitions to the left edge. This wraparound connectivity

attribute is consistently preserved at every edge node

throughout the network topology. Furthermore, the torus

topology adopts a grid-based structure comparable to the k-ary,

n-Mesh configuration, wherein "k" represents the number of

nodes within the mesh, and "n" indicates the width or height

of the network topology [22].

Figure 4. Torus topology connected with each other in the

GRID fashion

Within this topology, each node sustains connections with

its four immediate neighbors, reflecting the connectivity

pattern seen in the 2D-Mesh. However, it is crucial to note that

the torus topology introduces an asymmetry into the network,

setting it apart from the symmetrical 2D-Mesh configuration.

For instance, the route distance between the top-left and top-

right nodes (as depicted in Figure 4) is greater than that

between the top-left and bottom-right nodes. This results in an

asymmetry within the torus, where node distances may vary

based on their positions.

A variant of the torus network topology, known as the

folded torus, employs two layers of nodes that are connected

in a ring-like fashion. The uppermost node is linked to the

bottom node to interconnect each layer of the topology.

Generally, the torus topology is the preferred choice if

reducing latency is a significant consideration. Conversely,

when power consumption reduction is a priority, the mesh

topology emerges as a more suitable option [23].

2.3 Fat-Tree topology

The Fat-Tree topology serves as a striking example of a

tree-based indirect network configuration. Within tree-based

topologies, the bandwidth availability scales up with each

2151

ascending level within the tree structure. A distinguishing

feature of the Fat-Tree topology is its impressive ability to

increase the number of connections as one ascends toward the

tree's root [24]. This inherent scalability renders the Fat-Tree

topology particularly beneficial in situations involving a large

number of interconnected processing cores within the system.

As illustrated in Figure 5, this topology demonstrates its

capabilities by accommodating an extensive network of nodes

and interconnections, thereby optimizing data flow and

enhancing system performance. The architecture of the Fat-

Tree topology is adept at efficiently managing the demands of

large-scale processing environments, making it a favored

choice for modern, data-intensive applications and computing

infrastructures. Its tree-based structure, with increased

bandwidth towards the higher levels, equips it to manage and

facilitate the robust communication needs of complex systems.

Figure 5. Typical connection of the Fat-Tree topology for

tree-height 3

Securing deadlock-free routing within a SoC can be

achieved through two primary strategies. The first tactic

involves augmenting the number of ports or implementing

virtual channels, while the second strategy entails adopting a

restricted turn-model routing approach. In a fat-tree, it is

possible to navigate from any leaf to any other node using

either an upward or downward path. It mirrors a logical tree,

and there are two types of turns: UP turns (from child to

parent) and DOWN turns (from parent to child).

Consequently, the application of restricted turn-based routing

can effectively prevent deadlock without the necessity for

virtual channels [25].

3. PROPOSED ALGORITHM

The Fat-Tree topology stands out as a prevalent choice

when it comes to optimizing parallelism within SoC

architectures. It excels in offering a deterministic routing

mechanism, whereby only a single, predefined path exists

between any two nodes within the network. One remarkable

feature of the Fat-Tree topology is its capacity for scalable

bandwidth, which expands proportionally with the rise in

network levels.

In the context of this paper, a novel approach is introduced

that uses a deterministic range-based algorithm to implement

the Fat-Tree topology specifically for complete binary trees. A

complete binary tree is one where each level, except the last,

is completely filled, and all nodes in the last level are

positioned as far left as they can be.

Problem definition: In an given Fat-Tree based on-chip

interconnection communication architecture ArchN(C,L), the

routers at source node Csource and destination node Cdest, find a

decision function at current node Ccurrent, for selecting an

outport to forward the packet at right direction. ArchN(C,L) is

a tree structure where,

● N is the number of cores in the structure

● Each node ci ϵ C represents a core with routers for

0≤i<N, and

● lj ϵ L represents the tree-level of core ci for

0≤j≤⌊log2(N)⌋

The objective of the algorithm, detailed in Algorithm 1, is

to use the destination node's level to make routing decisions.

Algorithm 1 provides a step-by-step guide to implementing the

Fat-Tree routing strategy. By introducing this deterministic

range-based algorithm, the paper aims to enhance the

efficiency and performance of the Fat-Tree topology.

In a network comprising N processing cores, each

individual node carries specific information. Every node

actively records the range data of its child nodes. Through a

recursive process, it also maintains knowledge of the ranges of

its grandchildren, stemming from its own children.

Consequently, each node, at the very least, possesses

information concerning the positions of its immediate

offspring.

The first step is to find the level of the destination node. If

the current node is the same as the destination node, it means

the destination has been reached. In this case, set the direction

to the destination and return the current core_id. If the

destination falls within the range of the current node's children,

proceed with the downward direction represented as DOWN.

Calculate L and R, which represent the distances between the

destination and the left and right children of the current node.

If L is less than R, it means the left child is closer to the

destination, so return the ID of the left child (core_id.childL),

otherwise, return the ID of the right child (core_id.childR). If

the destination is not within the range of the current node's

children, set the direction to move upwards represented as UP

and return the ID of the parent node (core_id.parentNode).

Algorithm 1. Routing Protocol for Fat-Tree

Result: core_id

1. level=findLevel(destination)

2. if destination == core_id then

3. direction=destination;

4. return(core_id);

5. else if core_id.nodeRange[level][L] ≤ destination

AND core_id.nodeRange[level][R] ≥ destination then

6. direction=DOWN;

7. L=destination - core_id.nodeRange[level][L]

8. R=core_id.nodeRange[level][R] - destination

9. if L < R then

10. return(core_id.childL);

11. else

12. return(core_id.childR);

13. end if

14. else

15. direction=UP;

16. return(core_id.parentNode);

17. end if

2152

Figure 6. Hybrid Fat-Tree having connected nodes in the intermediate levels

Figure 6 provides a visual representation of the Fat-Tree

topology, featuring fifteen nodes labeled IPC-0 to IPC-14.

Nodes situated at level 0 are leaf nodes, bereft of any children,

hence their child range is defined as {-1 to -1}. For instance,

Node IPC-8 at level 1 contains children IPC-0 and IPC-1,

resulting in a child range of {0 - 1}. In a similar vein, Node

IPC-9's child range is {2 - 3}, and so forth. At level 2, Node

IPC-12 boasts both children and grandchildren, consequently

housing two sets of range values—one encompassing its

immediate grandchildren, denoted as {0 - 3}, and the other

detailing the range of its own children, {8 - 9}. A parallel

scenario is observed with Node IPC-13. The root node,

positioned at three different levels (levels 0, 1, and 2), holds

comprehensive information about all its descendants. The first

range spans the farthest grandchildren, {0 - 7}, followed by

the grandchildren at the next level with the range value {8 -

11}, and lastly, the range value pertaining to its immediate

children, which is {12 - 13}.

In the packet transmission process, the router adopts a

strategy that relies on evaluating the difference between its

own designated range and the intended destination's position.

If the destination node is not situated within its range, the

router directs the packet upwards.

This ingenious mechanism plays a pivotal role in reducing hop

latency, leading to a substantial enhancement in the overall

system's throughput. The Fat-Tree topology, with its inherent

characteristics, manages to achieve remarkable efficiency,

characterized by its computational complexity of O(log(N)).

This complexity ensures that the system operates with

remarkable efficiency, even as the number of processing cores,

denoted as N, scales up.

4. EXPERIMENTAL SETUP AND RESULT ANALYSIS

The algorithm designed for the Fat-Tree topology is

subjected to simulation using the Sniper simulator. This

simulator, renowned for its high-performance capabilities,

operates as a parallel and cycle-accurate tool specially crafted

for the next-generation simulation needs [26, 27]. Within this

simulation environment, a diverse array of computing

scenarios can be explored, including both homogeneous and

heterogeneous multicore architectures. The interval core

model, a notable feature of this platform, empowers users to

construct Cycle Per Instruction (CPI) stacks. These stacks

provide invaluable insights into the number of cycles lost due

to various system characteristics and behaviors.

For a more comprehensive understanding, Figure 7 offers a

concise overview of the program execution environment

facilitated by this simulator. This environment proves

indispensable in assessing and fine-tuning algorithms within

the Fat-Tree topology, paving the way for optimized

performance and enhanced system efficiency.

Figure 7. The program execution environment used for

simulation in Sniper

In a program, every thread possesses its distinct cycle stack,

comprising several cycle components. This cycle stack, often

referred to as Cycle per Instruction (CPI), offers a

comprehensive breakdown of the total number of cycles,

delineating its constituent parts. These cycle components are

graphically represented as bars in a histogram, where they are

2153

stacked on top of each other, with the component at the base

of the histogram serving as the foundation.

To provide a visual representation of this concept, Figure 8

shows the original CPI stack as visualized within the Sniper

simulator, specifically for a Mesh topology employing four

cores. This depiction aids in understanding how the various

cycle components contribute to the overall cycle count,

offering insights into the performance characteristics of the

program in question.

Figure 8. Visualization example of CPI stacks in Sniper for

mesh topology with four cores

In our experimental setup, we employ two well-established

benchmarks, namely SPLASH-2 (Barnes) and PARSEC

(Bodytrack). These benchmarks hold a prominent position in

the field of performance evaluation and are integrated into

various multi-threaded application environments, ensuring

compatibility with a range of simulation platforms [28].

 Barnes: The Barnes benchmark simulates the dynamics of

a system of bodies in three dimensions through the

utilization of the Barnes-Hut hierarchical N-body method.

It serves as a valuable tool for modeling and analyzing

complex interactions among objects [29].

 Bodytrack: The Bodytrack benchmark is centered around

computer vision applications within the Intel RMS

workload. This particular benchmark is dedicated to

tracking the movements and positions of the human body

through the processing of multiple camera images. Its

relevance lies in its ability to assess and optimize the

performance of systems handling real-time visual data

[30].

The Fat-Tree topology is compared to 2D-Mesh and Torus

topologies with an equal number of cores using power

consumption and throughput as the performance parameter.

● Throughput: Throughput can be defined as the

maximum amount of information delivered per unit of time. It

can be measured as the messages per second or messages per

clock cycle. In other terms, it is the maximum number of

packets received out of the packed transmitted from the source

over the channel. Eq. (1) shows the formula for calculating the

throughput in the experiments.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑇𝑃) =
∏ (𝑃𝑖(1 − 𝐷𝑖))
𝑛
𝑖=1

𝐿
 (1)

where,

− n is the number of nodes from source to destination.

− Pi represents the probability of successful

transmission from node i to node i+1.

− Di represents the probability of packet drop at node i.

− L represents the latency.

● Power Consumption: The power consumption is

calculated as the total of power consumed by cores and

various memories in wattage, as shown in Eq. (2).

𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑃𝐶)

=∑(𝑃𝑐𝑜𝑟𝑒𝑖 + 𝑃𝑐𝑜𝑟𝑒𝑚𝑒𝑚𝑖

𝑛

𝑖=1

+ 𝑃𝑖𝑐𝑎𝑐ℎ𝑒𝑖 + 𝑃𝑑𝑐𝑎𝑐ℎ𝑒𝑖 + 𝑃𝑑𝑟𝑎𝑚𝑖

+ 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖)

(2)

where,

− Pcorei is the power consumed by core i,

− Pcore_memi is the power consumed by memory of core

i,

− Picachei is the power consumed by icache memory of

core i,

− Pdcachei is the power consumed by dcache memory of

core i,

− Pdrami is the power consumed by dram memory of core

i,

− Ptransmissioni is the power consumed by transmission

link of core i.

In our experimental setup, we explore various

configurations by altering both the frequencies and the number

of symmetric cores within each topology. We systematically

evaluate the performance parameters for these diverse

combinations. For instance, we examine scenarios involving 8

and 16 cores, with frequency settings ranging from 2.66 GHz

to 5 GHz, across Mesh, Torus, and Fat-Tree topologies. It's

worth noting that we maintain a homogeneous configuration

across all processing cores to ensure consistency.

Table 1. Values for possible test combinations used in the

experiments by the simulator

S. No. Name Specifications

1 Topology Fat-Tree, 2D-Mesh, Torus

2 Frequency 2.66 GHz, 3 GHz, 4 GHz, 5 GHz

3
No. of

Cores
8, 16

4
Cache

Memory

icache=32Kb, associativity=4

dcache=32Kb, associativity=4

L2 cache=512 Kb, associativity=8

5 Global Freq 1 GHz

6 Benchmarks SPLASH2, PARSEC

A summary of the values utilized in these experiments is

presented in Table 1. To enhance the accuracy and reliability

of our findings, we compute the averages from five

independent runs for each potential combination. Our

assessment of throughput follows the equation (Eq. (1)), which

calculates it as the ratio of the total number of packets

successfully received at the destination to the total time

elapsed in milliseconds. This methodology guarantees robust

and trustworthy results, which are essential for a

comprehensive evaluation of system performance.

2154

4.1 Result analysis

Table 2 provides an insightful overview of the system's

throughput performance when utilizing eight cores. Notably,

for lower frequency settings, we observe relatively consistent

throughput values across all the employed topologies.

However, as the frequency of individual processing cores

escalates, an interesting trend emerges. The Fat-Tree topology

notably outperforms its grid-based counterparts in terms of

throughput. This suggests that the Fat-Tree configuration

exhibits a favorable response to the increased processing

power, harnessing higher frequencies effectively to enhance

system performance.

Table 2. Throughput comparison between the topologies

Processing

Cores
Topology

Throughput (# of Packets/ms)

f=2.66

GHz

f=3

GHz

f=4

GHz

f=5

GHz

8-Cores

2D-Mesh 44 45 51 101

Torus 45 50 82 103

Fat-Tree 51 56 87 108

16-Cores

2D-Mesh 30 32 53 56

Torus 31 34 55 59

Fat-Tree 34 38 59 63

Furthermore, in Table 2, we extend our analysis to include

the throughput results for configurations involving sixteen

cores. As anticipated, with the augmentation in the number of

cores, the Fat-Tree topology consistently showcases superior

throughput performance when compared to both the 2D-Mesh

and Torus topologies. This observation aligns with the

expected behavior, as the Fat-Tree topology's inherent

scalability and interconnectivity prove advantageous in

scenarios where a greater number of cores are engaged.

Consequently, it serves as a preferable choice to meet the

heightened processing demands associated with larger core

counts, ensuring optimized system performance.

The data presented in Table 2 demonstrates a clear trend.

The Fat-Tree topology consistently outperforms other grid-

based configurations, such as the 2D-Mesh and 2D-Torus, in

terms of throughput. This notable advantage can be primarily

attributed to the Fat-Tree's tree-based structure, which

effectively reduces packet hop latency, subsequently leading

to enhanced throughput. The reduction in hop latency is a

pivotal factor that propels the system's overall performance, as

it facilitates faster data transfer and more efficient

communication between processing cores.

It is important to observe that the difference in hop latency

between grid-based and tree-based topologies is not very large

for systems with fewer processing cores. This is due to the fact

that grid-based topologies, even with their O(n) complexity,

function rather effectively for small core counts. However, as

the number of processing cores increases, tree-based

topologies provide a more effective complexity of O(log(n)),

yielding a performance improvement that becomes more and

more obvious. As a result, the proposed topology performs

best in situations when number of cores is more.

A similar configuration is employed to compute the power

consumption for all three topologies under examination.

Figure 9 and Figure 10 provide graphical representations of

the power consumption results for eight and sixteen cores,

respectively.

Figure 9. The comparison of power consumption for various

topologies with eight processing cores

Figure 10. The comparison of power consumption for

various topologies with sixteen processing cores

As anticipated, these figures unmistakably illustrate that

power consumption escalates in direct correlation with the

frequency increase of the processing cores, irrespective of the

chosen topology. Furthermore, it's evident that power

consumption exhibits a direct relationship with hop latency.

As hop latency rises, so does power consumption, while

conversely, lower hop latency is associated with reduced

power consumption.

Notably, the Fat-Tree topology demonstrates a significant

advantage in hop latency compared to the other topologies,

resulting in lower power consumption. This advantageous

characteristic is clearly depicted in both Figure 9 and Figure

10.

The result shows that the differences between the GRID-

based and Fat-Tree topologies are not as apparent when

working with fewer cores. This is in line with expectations, as

the effects of topology become more prominent with a higher

number of cores engaged in computation.

However, as we scale up to configurations featuring a

greater number of cores, we anticipate observing a more

significant disparity in IPC performance between the two

topologies. The inherent advantages of the Fat-Tree topology,

including its efficient routing and reduced hop latency, are

expected to become increasingly apparent as the

computational workload intensifies. Therefore, these IPC

results provide valuable insights into how the choice of

topology can impact the efficiency and performance of multi-

core systems, particularly in scenarios involving a substantial

2155

number of processing cores. On the other hand, the fat-tree

topology also has same limitations. The main one is the root

node that is the topology's bottleneck; if it malfunctions, whole

network can collapse. In addition, network configuration and

management are more difficult as the tree grows longer.

The Fat-Tree's efficient routing and reduced hop latency

contribute to its ability to operate with lower power

consumption, making it an attractive choice in scenarios where

power efficiency is a critical concern, such as in energy-

efficient computing environments or battery-powered devices.

We also conducted an analysis of the Instruction-per-Cycle

(IPC) results for both the SPLASH2-Barnes benchmark and

the PARSEC-Bodytrack benchmark. Figure 11 and Figure 12

visually represent the IPC outcomes for the Barnes and

Bodytrack benchmarks, respectively.

Figure 11. Comparison of Instruction-per-Cycle (IPC) for

SPLASH-2 (Barnes) benchmark application in Mesh

topology and Fat-Tree topology

Figure 12. Comparison of Instruction-per-Cycle (IPC) for

PARSEC (Bodytrack) benchmark application in Mesh

topology and Fat-Tree topology

5. CONCLUSION AND FUTURE WORK

In this paper, a routing protocol for a modified Fat-Tree

topology for system-on-chip was proposed. In modified Fat-

Tree, cores are also present at the intermediate level of the tree.

We compared the proposed approach with GRID-based

topologies like 2D-Mesh and 2D-Torus based on throughput

and power consumption. The analysis showed that the

proposed approach offers higher throughput than the GRID-

based topologies. Tree-based topology's reduction of packet

hop latency is the primary factor contributing to an increase in

throughput. As a result of the reduced hop latency, throughput

is increased, and power consumption is decreased. In the

future, an asymmetric core architecture with varying

frequencies, a pipeline, and variance of cache memories with

additional resources like Booth or Wallace multipliers shall be

tested for the existing and new benchmarks. The performance

shall also be measured for the channel bandwidth with the best

efforts, guaranteed throughput, and some degree of fault

tolerance. Also, other routing strategies may be compared for

this modified structure of the Fat-Tree.

REFERENCES

[1] Shalf, J. (2020). The future of computing beyond

Moore's Law. Philosophical transactions. Series A,

Mathematical, Physical, and Engineering Sciences,

378(2166): 20190061.

https://doi.org/10.1098/rsta.2019.0061

[2] Martin, G. (2003). The history of the SOC revolution. In

Winning the SOC Revolution. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4615-0369-9_1

[3] Risset, T. (2011). SoC (System on Chip). In

Encyclopedia of Parallel Computing. Springer, Boston,

MA. https://doi.org/10.1007/978-0-387-09766-4_5

[4] Ray, K., Kalita, A., Biswas, A., Hussain, M.A. (2016). A

multipath network-on-chip topology. In 2016

International Conference on Information

Communication and Embedded Systems (ICICES),

Chennai, India, pp. 1-7.

https://doi.org/10.1109/ICICES.2016.7518839

[5] Manivannan, M., Pericàs, M., Papaefstathiou, V.,

Stenström, P. (2017). Runtime-assisted global cache

management for task-based parallel programs. IEEE

Computer Architecture Letters, 16(2): 145-148.

https://doi.org/10.1109/LCA.2016.2606593

[6] Ibarra-Delgado, S., Sandoval-Arechiga, R., Gómez-

Rodríguez, J.R., Ortíz-López, M., Brox, M. (2020). A

bandwidth control arbitration for SoC interconnections

performing applications with task dependencies.

Micromachines (Basel), 11(12): 1063.

https://doi.org/10.3390/mi11121063

[7] Sllame, A., Hasan, A. (2014). A comparative study

between fat tree and mesh network-on-chip

interconnection architectures. In the 14th Annual Middle

Eastern Simulation and Modelling Conference

(MESM'14).

[8] Bhaskar, A.V. (2022). A new method of power analysis

of Network-on-Chip using analytical modelling. In 2022

Seventh International Conference on Parallel,

Distributed and Grid Computing (PDGC), Himachal

Pradesh, India, pp. 222-227.

https://doi.org/10.1109/PDGC56933.2022.10053136

[9] Kalyan, T.V., Mutyam, M. (2008). Word-interleaved

cache: An energy efficient data cache architecture. In

Proceeding of the 13th International Symposium on Low

Power Electronics and Design (ISLPED’08), Bangalore,

India, pp. 265-270.

https://doi.org/10.1145/1393921.1393991

[10] Nain, Z., Ali, R., Anjum, S., Afzal, M.K., Kim, S.W.

(2020). A network adaptive fault-tolerant routing

algorithm for demanding latency and throughput

applications of network-on-a-chip designs. Electronics,

9(7): 1076.

[11] Zhou, W., Ouyang, Y.M., Li, J.H., Xu, D.Y. (2023). A

2156

transparent virtual channel power rating method for on-

chip network routers. Integration, 88: 286-297.

https://doi.org/10.1016/j.vlsi.2022.10.004

[12] Albughdar, M., Mahmood, A. (2015). Maximally

adaptive, deadlock-free routing in spidergon-donut

network for large multicore NOCs. In 2015 14th

International Symposium on Parallel and Distributed

Computing, Limassol, Cyprus, pp. 210-214.

https://doi.org/10.1109/ISPDC.2015.31

[13] Heirman, W., Carlson, T.E., Che, S., Skadron, K.,

Eeckhout, L. (2011). Using cycle stacks to understand

scaling bottlenecks in multi-threaded workloads. In 2011

IEEE International Symposium on Workload

Characterization (IISWC). Austin, TX, USA, pp. 38-49.

https://doi.org/10.1109/IISWC.2011.6114195

[14] Reddy, T.N.K., Swain, A.K., Singh, J.K., Mahapatra,

K.K. (2014). Performance assessment of different

network-on-chip topologies. In 2014 2nd International

Conference on Devices, Circuits and Systems (ICDCS),

Coimbatore, India, pp. 1-5.

https://doi.org/10.1109/ICDCSyst.2014.6926188

[15] Alimi, I.A., Patel, R.K., Aboderin, O., Abdalla, A.M.,

Gbadamosi, R.A., Muga, N.J., Pinto, A.N., Teixeira, A.L.

(2021). Network-on-chip topologies: Potentials,

technical challenges, recent advances and research

direction. In IntechOpen, Rijeka, Chapter 3.

https://doi.org/10.5772/intechopen.97262

[16] Monakhova, E.A., Monakhov, O.G., Romanov, A.Y.

(2023). Routing algorithms in optimal degree four

circulant networks based on relative addressing:

Comparative analysis for networks-on-chip. IEEE

Transactions on Network Science and Engineering 10(1):

413-425. https://doi.org/10.1109/TNSE.2022.3211985

[17] Wachter, E., Erichsen, A., Amory, A., Moraes, F. (2013).

Topology-agnostic fault-tolerant NoC routing method. In

2013 Design, Automation & Test in Europe Conference

& Exhibition (DATE), Grenoble, France, pp. 1595-1600.

https://doi.org/10.7873/DATE.2013.324

[18] Zhang, X. (2023). Power: Multi-capability adaptive

routing for network-an-chips. In 2023 3rd International

Conference on Neural Networks, Information and

Communication Engineering (NNICE), Guangzhou,

China, pp. 751-754.

https://doi.org/10.1109/NNICE58320.2023.10105691

[19] Gardea, J., Jin, Y., Badawy, A.-H., Cook, J. (2017).

Performance evaluation of mesh-based 3D NoCs. In

Proceedings of the 10th International Workshop on

Network on Chip Architectures (NoCArc’17).

Association for Computing Machinery, New York, NY,

USA, pp. 1-6. https://doi.org/10.1145/3139540.3139545

[20] Rao, G.V.V., Kavitha, A., Arthy, P.S. (2022). Review

and analysis on network on chip. In 2022 International

Conference on Computer, Power and Communications

(ICCPC), Chennai, India, pp. 166-170.

https://doi.org/10.1109/ICCPC55978.2022.10072109

[21] Fusella, E., Cilardo, A. (2018). Understanding turn

models for adaptive routing: The modular approach. In

2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE), Dresden, Germany, pp. 1477-

1480. https://doi.org/10.23919/DATE.2018.8342245

[22] Wu, K., Ye, Y.Y. (2022). Q-learning based bi-objective

deadlock-free routing optimization for optical NoCs. In

2022 15th IEEE/ACM International Workshop on

Network on Chip Architectures (NoCArc). IEEE

Computer Society, Los Alamitos, CA, USA, pp. 1-6.

https://doi.org/10.1109/NoCArc57472.2022.9911373

[23] Mirza-Aghatabar, M., Koohi, S., Hessabi, S., Pedram, M.

(2007). An empirical investigation of mesh and torus

NoC topologies under different routing algorithms and

traffic models. In 10th Euromicro Conference on Digital

System Design Architectures, Methods and Tools (DSD

2007), Lubeck, Germany, pp. 19-26.

https://doi.org/10.1109/DSD.2007.4341445

[24] Lin, B.-C., Lea, C.-T. (2022). Designing nonblocking

networks with a general topology. IEEE Access, 10:

8399-8408.

https://doi.org/10.1109/ACCESS.2021.3139732

[25] Bogdanski, B., Reinemo, S.-A., Sem-Jacobsen, F.O.,

Gran, E.G. (2012). sFtree: A fully connected and

deadlock-free switch-to-switch routing algorithm for fat-

trees. ACM Transactions on Architecture and Code

Optimization, 8(4): 1-20.

https://doi.org/10.1145/2086696.2086734

[26] Carlson, T.E., Heirman, W., Eeckhout, L. (2011). Sniper:

Exploring the level of abstraction for scalable and

accurate parallel multi-core simulation. In SC ’11:

Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and

Analysis, Seattle, Washington, pp. 1-12.

https://doi.org/10.1145/2063384.2063454

[27] Chis, R., Vintan, L. (2014). Multi-objective hardware-

software co-optimization for the SNIPER multi-core

simulator. In 2014 IEEE 10th International Conference

on Intelligent Computer Communication and Processing

(ICCP), Cluj-Napoca, Cluj, Romania, pp. 3-9.

https://doi.org/10.1109/ICCP.2014.6936772

[28] Barrow-Williams, N., Fensch, C., Moore, S. (2009). A

communication characterisation of Splash-2 and Parsec.

In 2009 IEEE International Symposium on Workload

Characterization (IISWC), TX, USA, pp. 86-97.

https://doi.org/10.1109/IISWC.2009.5306792

[29] Singh, J.P. (1993). Parallel hierarchical N-body methods

and their implications for multiprocessors. PhD Thesis,

Stanford University.

[30] Huỳnh, A., Helm, C., Iwasaki, S., Endo, W., Namsraijav,

B., Taura, K. (2019). TP-PARSEC: A task parallel

PARSEC benchmark suite. Journal of Information

Processing, 27: 211-220.

https://doi.org/10.2197/ipsjjip.27.211

2157

