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 In today's highly competitive environment, it might be difficult to keep sensitive data or 

information safe. Sharing sensitive information between parties in a cloud environment 

requires a high level of trust between them. There are numerous methods for achieving 

data and information security, including cryptography, steganography, etc. This research 

introduces a new approach to mutual authentication by using a pre-trained model of a 

convolutional neural network (CNN) to identify malicious activity on the internet. In this 

research paper, we present a novel approach for enhancing the security of data in cloud 

computing environments through the design of a mutual authentication method for deep 

learning-based hybrid cryptography. Our approach combines the strengths of hybrid 

cryptography and the power of deep learning to provide a robust and adaptable solution 

for securing data in the cloud. One of the key innovations of our approach is the integration 

of a pre-trained convolutional neural network (CNN) model. This CNN plays a pivotal 

role in identifying and mitigating malicious activities on the internet that could pose a 

threat to cloud-based data. By continuously monitoring network traffic and data patterns, 

the CNN contributes to the proactive defense mechanism of our system. Secure 

communication between the involved parties is ensured by combining cryptography with 

authentication for key agreements. However, no known security method has 

simultaneously provided a high level of security and a fast execution time. When 

compared to older encryption systems, hybrid encryption techniques are far superior in 

terms of providing peace of mind for users. In order to provide robust security, this paper 

presents hybrid encryption procedures (HEA) by combination of symmetric key (Message 

Authentication Code [MAC]) and asymmetric key cryptographic procedures (Modified 

and Enhanced Lattice-Based Cryptography [MELBC]). Results from experiments show 

that the suggested HEA algorithm offers more security than competing security 

algorithms. 
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1. INTRODUCTION 

 

Data and information security in the context of today's 

electronic communication system is a major obstacle. There 

are three objectives that must be met in order to keep the data 

safe. Data, information, and computer services need to have 

three things in place: privacy, security, and availability [1]. For 

this reason, information security aims to prevent data from 

falling into the wrong hands (through confidentiality), prevent 

data from being tampered with (through integrity), and make 

data accessible (through availability) to the appropriate parties 

[2]. Multimedia distribution is becoming a crucial technique 

for global service delivery because of the prevalence of the 

internet. The frontiers of commerce, science, and pleasure, as 

well as social possibilities, have been expanded. Strong 

copyright protection mechanisms [3] have been developed due 

to the ease with which digital content may be parallelized and 

transmitted. The internet is now widely used for the rapid 

dissemination of vast volumes of crucial information. As a 

result, it can be damaged by a wide range of threats. This data 

is therefore vulnerable to unauthorised access and other 

privacy and security breaches. When it comes to computer 

security, tried-and-true methods of data protection include 

cryptography and steganography [4]. Research has been done 

to enhance the aforementioned data security measures, but 

there are still certain caveats that show how important it is to 

find a solution to this problem. 

Cyberattacks, as seen in Figure 1, can damage the IoT cloud 

networks [5] or disrupt the channel connection between 

sensors and the gateway. When compared to other 

cryptographic solutions, the conventional methods (such as 

RSA, AES, and DES) are prohibitively resource-intensive. As 

a result, they can't be used with low-power sensors or 

technologies like the Internet of Things right away [6]. It is so 
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challenging to develop efficient, fast, compact, and secure 

cryptographic algorithms for the Internet of Things. In 

addition, IoT networks should have a basic cybersecurity 

system to prevent sensitive data from falling into the wrong 

hands and to verify that users have the proper authorization to 

make use of IoT services (through authentication and access 

control) [7-9]. 

 

 
 

Figure 1. Scenario of cyberattacks on the IoT network 

 

Protecting the Internet of Things (IoT) from cyberattacks 

requires three main solutions: cryptography, digital signatures, 

and authentication. IoT Cryptography can make use of either 

symmetric (using a private key) or asymmetric (using a public 

key) encryption [10]. In symmetric encryption, both the sender 

and the receiver use the same key to perform the cryptographic 

operation. The security of symmetric encryption relies on how 

well the private key is disseminated among IoT nodes. In 

contrast to symmetric encryptions, which only require one key 

[11], asymmetric encryptions require two keys. The private 

key remains secret and is never divulged to any unauthorised 

devices, while the public key can be transmitted through a safe 

channel. 

Device Authentication: In an IoT ecosystem, numerous 

devices communicate with each other and with central servers. 

Symmetric and asymmetric encryption can be used for device 

authentication. Symmetric keys can be used for initial 

authentication, ensuring that only trusted devices are allowed 

to join the network. Asymmetric encryption can be employed 

for more secure and ongoing authentication, enabling devices 

to verify each other's identities without sharing sensitive 

information. 

Secure Data Transfer: IoT devices collect and transmit 

data, which often includes sensitive information. Symmetric 

encryption is well-suited for securing data in transit. IoT 

devices can encrypt data using a shared symmetric key before 

sending it to the cloud or another device. Only authorised 

recipients with access to the key can decrypt and read the data. 

Public Key Infrastructure (PKI): Asymmetric encryption, 

specifically public-private key pairs, can be used to establish a 

public key infrastructure (PKI) in the IoT. IoT devices can 

have their own unique public keys, which are distributed 

widely, while the private keys are kept secure. This enables 

secure, end-to-end communication between devices without 

the need for shared secrets. 

Secure Firmware Updates: IoT devices often require 

firmware updates for security enhancements and bug fixes. 

Asymmetric encryption can be used to sign firmware updates 

with a private key. Devices can verify the authenticity of 

updates using the corresponding public key, ensuring that 

updates come from trusted sources and have not been 

tampered with during transit. 

Data Integrity: Both symmetric and asymmetric 

encryption methods can be used to ensure data integrity. 

Asymmetric signatures can confirm that data hasn't changed 

since the sender signed it, while symmetric encryption can 

prevent data tampering during transit. 

Key Management: Managing encryption keys in an IoT 

environment is crucial. Discussing how symmetric and 

asymmetric keys are generated, distributed, and managed 

within IoT networks would provide insight into the practical 

challenges of IoT security. 

In the same way that encryption may provide secrecy, 

message authentication can ensure that what was sent was 

indeed what was received. However, authentication and 

secrecy are essential for IoT systems. Although it's tempting 

to combine encryption and authentication into a single process, 

not all such schemes are secure [12]. Although it is possible to 

create a safe combination of cryptographic tools, doing so is 

notoriously challenging, and occasionally even excellent 

cryptographic tools are integrated in a way that creates an 

insecure combination [13]. To overcome these restrictions on 

online data exchange, our research integrates cryptography 

and deep learning methods at a trusted to provide a mutual 

authentication protocol with increased security and efficiency. 

For safe online communication, we suggest adequate 

registration, followed by correct session formation and 

password change phases, during which key agreement are 

implemented. The following is a brief summary of the main 

results of the planned effort. 

❖ To facilitate the safe transfer of information between users 

in a federated cloud server situation, a new deep learning 

approach is presented. 

❖ To protect against DDoS assaults and other security 

breaches, a reliable cloud server has created an online 

danger detector based on a pre-trained CNN model. 

❖ The effectiveness of the suggested protocol was 

confirmed by formal verification utilising the ProVerif 

security analysis tool and a comparison to state-of-the-art 

solutions. 

 

The remaining parts of the paper have the following layouts: 

In Section 2, we describe the relevant literature, and in Section 

3, we offer a brief summary of the suggested model. Section 4 

compares the suggested model's experimental analysis to the 

state-of-the-art methods. Finally, the study is summarised in 

Section 5. 

 

 

2. RELATED WORKS 

 

For the purpose of outlier identification in the IIoT, 

Sankaran et al. [14] suggested a technique for energy-efficient, 

protected data transfer. The primary goal of this method is to 

provide an industrial IoT data transfer technique that is both 

safe and private. Inputs include data from the industrial sector, 

such as electricity, loop sensors, and land sensors; a system 

network model is then developed and optimised using a multi-

scale grasshopper algorithm. The information is then securely 

transported to the cloud, where it is kept. In order to determine 

the nature of a network assault, a classification method called 

Robust Multi-cascaded CNN (RMC-CNN) is used. Next, a 

dynamic honey pot encryption technique is used to encrypt the 

data utilising the key generation process. As a result, sensitive 

data may be encrypted before transmission and kept in the 
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cloud until it is needed. The Throughput, latency, and 

detection rate are also compared and contrasted. Finally, 

estimates for encryption, decryption, and running time are 

provided and compared to current methods. According to the 

results, the suggested system outperforms the current 

approaches by a significant margin. 

Awasthi et al. [15] suggest a new approach to e-health data 

analysis using cloud-based device-to-device communication 

through feature selection and categorization. The goal of this 

study is to examine the potential of integrating cloud and 

distributed computing into e-healthcare by conducting a 

thorough requirement investigation and user survey. After 

contrasting the smart healthcare scheme with database-centric 

healthcare approaches, a prototype system will be developed 

and implemented. The acquired e-health data is analysed using 

convolutional adversarial neural networks trained using 

transfer perceptron on the cloud. The proposed method 

achieved the following results: 98% accuracy in training, 93% 

accuracy in validation, 66% PSNR, 68% MSE, 72% precision, 

63% quality of service, 58% latency. 

To fortify the safety of monitoring systems, Diao et al. [16] 

provide an approved joint security strategy (EJSS). Based on 

those steps, this system acknowledges the use of electronic 

health records. Different security measures are used for each 

procedure to ensure the longest possible protection. Relative 

security, implemented by mutual key sharing between the 

accessing user and the EHR database, is required for entree 

control and storage change. Learning in this scenario reveals 

the ways in which various procedures might mitigate hostile 

interference. This technique employs a federated learning 

model to locate adversaries across several simultaneous 

operations. To improve mutual authentication using individual 

qualities, it is helpful to classify adversaries differently for 

each procedure. Therefore, for diverse and extensive EHR 

datasets, the efficiency of individual monitoring is enhanced 

by log inspection and adversary identification. In the context 

of privacy manipulation in group training, Madni et al. [17] 

explore scenarios involving compromised and malevolent 

participants in the Secure Learning (SL) environment. To 

safeguard the confidentiality of model parameters prior to 

sharing them among participants, who have been validated and 

registered using blockchain technology, we propose a 

technique known as Swarm-FHE, which stands for Swarm 

Learning with Fully Homomorphic Encryption. In Swarm 

Learning training, all participants exchange ciphertexts, which 

are encrypted versions of their parameters, with each other. 

We evaluate the effectiveness of our approach by training 

convolutional neural networks on the CIFAR-10 and MNIST 

datasets. Through extensive experimentation using a variety of 

hyperparameter settings, we demonstrate that our technique 

surpasses existing state-of-the-art alternatives. 

A lightweight authentication approach, dubbed LAFED, is 

proposed by Ji et al. [18] for blockchain-enabled federated 

learning systems. LAFED introduces three new ideas to the 

field: an adaptive model aggregation algorithm based on the 

quality of the models and the contributions of the nodes to 

boost performance. Extensive experiments show that the 

proposed LAFED may accomplish lightweight authentication 

while guaranteeing a high model accuracy. 

A blockchain and garlic-routing based safe data exchange 

system, i.e., GRADE, was suggested by Jadav et al. [19], 

which removes the security restrictions and keeps the 

connection steady in MTC. When a data request from an MTC 

user is determined to be safe, the Long-Short-Term Memory 

(LSTM)-based Nadam optimizer sends it to the Garlic Routing 

(GR) network. Each computer taking part in MTC is given a 

one-of-a-kind ElGamal encrypted session tag by the GR 

network. Then, the requests for MTC data are encrypted using 

the Advanced Encryption Standard (AES). The proposed 

GRADE system is also more scalable since the machine's 

session tags are stored in a blockchain based on the Inter-

Planetary File System (IPFS). MTC network performance has 

also been improved according to the proposed framework's 

incorporation of the necessary advantages offered by the 6G 

network. Finally, the proposed GRADE framework is tested 

using a variety of performance measures, including scalability, 

packet loss, correctness, and the rate at which MTC data 

requests are compromised. In comparison to the baseline 

approaches, the results reveal that the GRADE framework 

achieves higher levels of accuracy (98.9%), a lower 

compromised rate (18.5%), more scalability (47.2%), and a 

lower packet loss ratio (24.3%). 

According to research by Anusuya et al. [20], healthcare 

providers, lab workers, data scientists, and proprietors of 

machine learning models used for illness analysis all need to 

treat patients' personal health information with the utmost 

confidentiality. Medical records and imaging studies must be 

encrypted before disease analysis may begin. Chest x-rays of 

children have been taken for pneumonia diagnosis. Before the 

X-ray pictures can be categorised, they are encrypted. In this 

study, we focus on three different encryption algorithms and 

compare them based on their runtime performance. After data 

is encrypted, a Convolutional Neural Network (CNN) deep 

learning model is constructed for picture categorization. The 

VGG16 transfer learning model is used to classify the same 

dataset experimentally, revealing improved performance in 

shown that running the same model in a federated distributed 

learning context improves accuracy even more. 

 

 

3. PROPOSED SYSTEM 

 

3.1 Phase 1: Modified and improved lattice-based 

cryptography 

 

Partitioning plaintext, creating encryption keys, encrypting 

data, re-encrypting data, and decrypting data are all 

components of the improved lattice-based cryptography. 

 

3.1.1 Plaintext partitioning procedure 

The following are the procedures of the projected Plaintext 

Partitioning Procedure (PPA): 

 

Plaintext Partitioning Procedure 

Input: Entire plain text 

Output: Partitioning plaintext into two parts PT1, PT2 

Step 1: In this phase the available plaintext is divided into 

two partitions. If “l” is the length of the message,then the 

first one-two part of the message goes to the encryption, Re-

encryption, decryption processes and it ranges from 0 to 

l/2–1 
 

𝑝−1 =
𝐼

2
− 1  (1) 

 

Step 2: “p1” is a first-half of plaint text partition. Then 

ciphertext of the first half of the plaintext partition is 

produced by the following Eq. (2) 
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𝑐1 =
(𝑀𝐸𝐿𝐵, 𝐶−𝑒𝑛𝑐(𝑀𝐸𝐿𝐵, 𝐶−𝑒𝑛(𝑝−1, 𝑘−1))𝑘𝑅𝑒)  

(2) 

 

Step 3: “MELBC” is modified enhanced lattice-based 

cryptography, “enc” encryption, and 1 is plaintext first half 

partition, k1 is a key, k_Re is a re-generation key. Next 

second half of the plaintext message is allotted to the second 

part, and its range is from 
𝑛

2
 to 

2𝑛

2
– 1, then the second part 

of the plaintext goes to encryption and decryption process 

only. The cipher text c2 is framed with the help of Eq. (4). 

 

𝑝2 =
𝐼

2
− 1  (3) 

 

𝑐2 = (𝑀𝐸𝐿𝐵𝐶−𝑒𝑛𝑐(𝑝−2…,𝑘−1))  (4) 
 

 

The use of plain text partitioning is crucial to the proposed 

approach. Part 1 of the plaintext (PT1) and Part 2 (PT2) make 

up the entirety of the plaintext. The first using the improved, 

then the cypher text format of PT1 is encrypted once again 

using the same technique and key-value, 𝑘𝑅𝑒. 

 

3.1.2 MELBC Encryption process (𝑀𝐸𝐿𝐵𝐶enc) 

The Multi-Element Lattice-Based Cryptosystem (MELBC) 

is a public-key cryptosystem. Providing efficiency is what 

drives MELBC, and compared to other public key 

cryptosystems, it offers a superior method to ward off quantum 

assaults. The quotient ring is used to communicate with 

MELBC. The projected MELBC-Key Generation Procedure 

(MELBC-KGA) may be broken down into the following 

phases: 

 

MELBC Key Generation Procedure 

Input: Systems and security parameters. 

Output: Public key and secret key 

Step 1: The list of input parameters are 
{(𝐼𝑚), (𝑎, 𝑏, 𝑝, 𝑞), (𝐸𝑛 , 𝐷𝑒 , 𝑀, 𝑆𝑣 , 𝑅𝑣 , 𝐹)}. 
The symbol m is the security parameter, a is a row wise 

dimension parameter, b is the column wise dimension, p is 

a prime modulus, q is the identity space dimension, 𝐸𝑛 

represents an encoding function to map public identities, De 

is the bitwise decomposition of Ids, M is the uniformly 

random matrix 𝑀 ∈  𝑍𝑝
𝑎×𝑏 , 𝑆𝑣  is the secret vector 𝑆𝑣 ∈

𝑍𝑝
𝑎 , 𝑅𝑣  is the random vector 𝑅𝑣 ∈ 𝑍𝑝

𝑎 , 𝐹  is the function 

𝐹: 𝑍𝑎 → 𝑍𝑏 .  Based on the public parameters, the public 

keys (𝐸𝑛 , 𝑅𝑣 , 𝑀) are generated as follows  
 

𝑀 ∈ 𝑍𝑝
𝑎×𝑏 , 𝐹: 𝑍𝑝

𝑎 → 𝑍𝑝
𝑏 , 𝑅𝑣 ∈ 𝑍𝑝

𝑎 , 𝐸𝑛 ∈ 𝑍𝑝
𝑎×1

= 𝑃𝑈 
(5) 

 

Step 2: private key is generated based on sample vector (𝑠𝑎) 

and error vector (𝑒𝑟) as shadows  

 

𝑠𝑎 ∈ 𝑍𝑝
𝑞
 (6) 

 

𝑒𝑟 ∈ 𝑍𝑝
𝑎 (7) 

 

𝑃𝑅 = 𝑠𝑎 + 𝑒𝑟 (8) 

 

Step 3: Public Key “PU′” and private key “PR” is generated 

 

System and security characteristics such as row and column 

dimensions, vector, and error vector are used to derive the 

corresponding public and private keys. Due to their large 

computational and communication costs, the conventional 

public key cryptography techniques are inadequate. Public key 

cryptosystems vulnerable to quantum computers are those 

based on the integer factorization problem or the discrete 

logarithm problematic. Secure constructions against attacks 

from classical and quantum computers are only possible using 

Adapted Enhanced Lattice-Based Cryptography (MELBC). 

 

3.1.3 Encryption phase 

Plaintext divider (p1), ID, public key (PU’) → Cipher text (c1) 

Cipher text (Cip1) = Encryption (c1) 

Plaintext (p1) → Cipher text (Cip1) 

Plaintext (p2) → Cipher text (c2) 

Cipher text (C) → combine (cip1, c2) 

Step1 Sender’s public key 

 

𝑀 ∈ 𝑍𝑝
𝑎×𝑏 , 𝐹: 𝑍𝑝

𝑎 → 𝑍𝑝
𝑏 , 𝑅𝑣 ∈ 𝑍𝑝

𝑎 , 𝐸𝑛 ∈ 𝑍𝑝
𝑎×1 = 𝑃𝑈′ (9) 

 

Phase 2 Plaintext partition 𝑝−1 = 𝑙/2– 1 (1) 

Phase 3 Encryption 

 

𝑐1 = 𝑝1 . 𝑃𝑈′ + 𝑒𝑟 (10) 

 

Phase 4 Re-key generation 

 

𝑅𝑘 = (𝑃𝑈′ + 𝑃𝑅) 𝑋𝑂𝑅 𝑃𝑈′ (11) 
 

Phase 5 Re-Encryption 
 

𝐶𝑖𝑝1 =  𝑅𝑒−𝐸𝑛𝑐(𝑅𝑘(𝐶1)) (12) 

 

Phase 6 Plaintext partition 𝑝2 = 𝑙/2– 1 (3) 

Phase 7 Encryption 
 

𝑐2 =  𝑝2. 𝑃𝑈 ′ +  𝑒𝑟 (13) 

 

Phase 8 Cipher Text C Combine (Cip1, c2) 

Using the public key PU′ and the error vector er, we encrypt 

the plaintext partition p_1 to create the ciphertext c_1. Input is 

the ciphertext c_1 and the regeneration key R_k, which is 

computed using Eq. (11). Ciphertext Cip1 is the result of the 

re-encryption procedure and may be written using the formula 

(12). In this case, the ciphertext c_2 is formed by the 

encryption using Eq. (13), with the inputs of public key. Send 

the ciphertext C to the recipient by combining Cip1 and c_2 

and then framing it. 

Plaintext Partition: 

Define what a "plaintext partition" is within the context of 

your research. Is it a data segmentation technique, and if so, 

how is it applied? 

Explain the purpose of plaintext partitioning in your system 

and its significance in achieving your research goals. 

Re-Encryption Key: 

Define the term "re-encryption key" and its role in your 

proposed system. Is it used for secure data transmission or 

other cryptographic operations? 

Clarify how re-encryption keys are generated or distributed 

in your system. 

Other Key Concepts: 

If there are additional terms or concepts unique to your 

research, provide clear and concise definitions for each of 

them. 

Illustrative Examples: 
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Whenever possible, consider including illustrative 

examples or diagrams to help readers visualize how these 

concepts are applied in your system. 

 

3.1.4 Decryption phase 

It accepts the cypher text C, the identifier ID, the private key 

PR, the public key PU′, and the Re-generation key R_k as 

inputs during decryption, and returns the plaintext message p 

as an output. 

Cipher text (C), ID, secluded key (PR), (PU′), Re-generation 

key 𝑅𝑘 → plain text (p) 

Step 1 Decryption process cipher text c2 

 

𝑝2 =  𝑑𝑒𝑐𝑟𝑝𝑡𝑃𝑅(𝑐2. 𝑃𝑈 ′ + 𝑒𝑟) (14) 

 

𝑝2 =  𝑑𝑒𝑐𝑟𝑝𝑡𝑃𝑅(𝑐2. 𝑃𝑈 ′ +  𝑒𝑟)𝑃𝑈′− 1 (15) 

 

Step 3 Where, U is a unimodular matrix 

 

𝑝2 =  𝑝2. 𝑃𝑈 ′ . 𝑃𝑈′−1  +  𝑒𝑟. 𝑃𝑈′−1 (16) 

 

Step 4 The Babai rounding procedure will be used to eliminate 

the term er. PU′ − 1 

 

𝑝2 =  𝑝2 +  𝑒𝑟. 𝑃𝑈′−1 (17) 

 

Step 5 Total the plaintext partition 𝑝1 𝑝2 

Step 6 Decryption procedure cipher text Cip1 

 

𝑝1 = 𝑑𝑒𝑐𝑟𝑝𝑡(𝑐𝑖𝑝1)𝑝1 = 𝑑𝑒𝑐𝑟𝑝𝑡(𝑅𝑒−𝑑𝑒𝑐𝑟𝑝𝑡𝑅𝑘(𝑐1)) (18) 

 

Step 7 Decryption process cipher text c1 

 

𝑝1 =  𝑑𝑒𝑐𝑟𝑝𝑡𝑃𝑅(𝑐1. 𝑃𝑈 ′ +  𝑒𝑟) (19) 

 

Step 8 

 

𝑝1 = 𝑑𝑒𝑐𝑟𝑝𝑡𝑃𝑅(𝑐1. 𝑃𝑈’ +  𝑒𝑟)𝑃𝑈′−1 (20) 

 

Step 9 

 

𝑝1 = 𝑝1. 𝑃𝑈′. 𝑃𝑈′ − 1 +  𝑒𝑟. 𝑃𝑈′−1 (21) 

 

Step 10 The Babai rounding procedure to remove the term  

 

𝑒𝑟. 𝑃𝑈′−1 𝑝1  = 𝑝1 + 𝑒𝑟. 𝑃𝑈′−1 (22) 

 

Step 11 Compute the plaintext partition p1 1 

Step 12 Finally combine the Plaintext (p) → syndicate (𝑝1, 𝑝2) 

Eqns. (18) and (22) represent the results of the decryption 

procedure. The plaintext p can be received by the receiver 

without a quantum attack if we merge the plaintext partitions 

p1 and p2. 

 

3.2 Phase 2: Mutual authentication protocol  

 

A Trusted Authentication (TA) scheme implemented at 

middleware linked to many cloud servers is used by a 

company that employs the services of numerous cloud servers. 

This middleware interface is hosted on a reliable, centralised 

server. The TA system combines encryption and deep learning 

to provide the safest possible session establishment between 

parties involved in the conversation. The mutual key 

agreement phase is demonstrated using a hybrid cryptography 

approach, and a deep learning based pre-trained model of 

CNN is used to identify and mitigate any threat or abnormality 

during the session setup phase. In the parts that follow, we'll 

go through each individual part in greater depth. 

 

3.2.1 Deep Learning classifier-based anomaly detector 

The TA server incorporates a deep learning classifier, in the 

form of a Capsule Network model (discussed in more detail in 

Section 3.2.3.) that learns to predict a target output (class) with 

high precision. P_final is the projected output and there are n 

characteristics, such as Cl_1, Cl_2, ..., Cl_n, that go into 

making this prediction. Classifiers are continually trained 

using both archived data and real-time information from the 

session setup phase (or key agreement). If an abnormality is 

found in the input, the anticipated output will read "malware," 

and otherwise, "benign". The TA server uses the key 

parameters and all the characteristics (received from the 

sender) to determine the likelihood of malicious intent behind 

session set-up when it gets a request from an entity (user/data 

owner). Only if the danger likelihood is 0% is the session setup 

allowed. 

One-time passwords, security questions, access restrictions, 

and even full access to the material may be implemented in 

response to a detected anomaly. 

In a federated cloud server setup, mutual key agreement 

demonstrates the recommended paradigm for mutual 

authentication and safe common session key (CSK) 

calculation. Here, we have two entities—the data owner (Ea) 

and the data receiver (Eb)—and a third, TA, which is a Trusted 

Authentication System implemented on middleware using 

cloud server federation. All of the company's personnel 

information is safely saved in TA's database. 

The full procedure for authentication and session key 

agreements looks like this: 

1. First, entity A (Ea) submits a login request to entity B 

(TA), including a secret identity parameter; TA 

checks this parameter against its record in its 

database of legitimate entities; TA then provides OTP 

back to Ea after successful authentication. 

2. After inputting the OTP start parameters (i.e., the 

secret identities of the sender and recipient), Ea will 

issue a session establishment request. 

3. Third, the criteria for establishing the session, such as 

the hidden identities of Ea and Eb and the nonce, are 

sent to TA. If an anomaly or danger is detected, TA 

will activate the voting classifier (described in the 

next section). If no danger is found, the session is set 

up by applying a Schnorr's signature and calculating 

masked IDs for both the sender and the recipient. 

4. The fourth receiver, Eb, logs on to TA in the same 

way. Masked identifiers and other security settings 

are sent to Eb from TA. 

5. Then, in a secure environment, Eb does certain 

computations to confirm that TA is a legitimate server 

and to generate common shared session keys (CSK). 

In response to TA, Eb generates a new nonce value 

but does not send the CSK. 

6. Six, after some computational effort, TA checks Eb 

and sends Ea, Eb's answer and other security settings. 

7. After some computational effort, Ea checks TA and 

Eb and accepts the reply in order to compute its 

mutual shared sitting key CSK.  

Successfully completing the authentication process and 

setting up a secure session among Ea and Eb through TA and 
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computing CSK without disclosing it on the public channel is 

achieved in this manner. 

 

3.2.2 Phases of mutual authentication 

The projected authentication arrangement works in three 

stages: 

1. Registration stage 

2. Login phase 

3. Password renewal stage 

 

Registration phase. To use the trusted authentication system 

TA, the entity selects a password (Pwd) and provides his 

unique employee (ID) details, including his official registered 

mail-ID, usb fingerprint as a usb-key, over a secure channel. 

Here, TA determines a secret numeral for each subscriber 

using the following formula: 

 

𝐶 = 𝐻(𝐼𝐷)‖𝑃𝑤𝑑‖𝑃ℎ𝑜𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟‖𝑝‖𝑈𝑠𝑏𝐿𝑜𝑔𝑖𝑛‖𝐸𝑚𝑎𝑖𝑙‖ 

 

where, 𝑝 is TA selects large prime sum 𝑝, and elliptic curve 𝐸 

over finite field 𝐹p as 𝑎, 𝑏: 𝑦2 = 𝑥2 + 𝑎𝑥 + 𝑏where 𝑎, 𝑏 ∈ 𝐹𝑝 

and 41
3 + 27𝑏2(𝑚𝑜𝑑𝑝) ≠ 0, 𝐸(𝐹𝑝)  is set of all points on 

curve 𝐸 . After that, TA sends Ea the public key y and the 

entity's secret number c, which it derives from the private key 

p using the formula y=H(cp). For further security, TA keeps a 

record of each user's p,c, and UsbLogin key in a central 

repository. 

 

Login and authentication phase. 1. Ea initiates a login with 

a password of c'. The TA gets it, checks to see whether c'=c in 

the repository, and then drops the session if the two don't 

match. If not, it will send a temporary OTP (good for only 5 

minutes) to Ea. 

2. Ea User provides one-time password and USB key; TA 

verifies successful mutual authentication. Encrypts the 

sender's ID (Ea) and the recipient's ID (Eb) using the following 

key exchange: 

3. 𝑎𝑎 = 𝐻𝑎𝑠ℎ1(𝐼𝐷𝑎 , 𝑡1, 𝑦) 

4. 𝑎𝑏 = 𝐻𝑎𝑠ℎ1(𝐼𝐷𝑏 , 𝑡1, 𝑦) 

5. Ea then directs aa, ab and nonce t1 (freshly shaped time 

stamp that can never be recurrent) to TA. 

6. TA then computes masked independences for Ea and Eb 

to setup current meeting, by smearing Schnorr’s signature as 

shadows: 

7. 𝑚𝑖𝑑_𝑎 = 𝑀𝑢𝑙𝑡(𝑎𝑎, 𝐻𝑎𝑠ℎ2(𝑦, 𝑥𝑡1) 

8. 𝑚𝑖𝑑_𝑏 = 𝑀𝑢𝑙𝑡(𝑎𝑏, 𝐻𝑎𝑠ℎ2(𝑦, 𝑡2) 

9. TA sends mid_a, mid_𝑏, 𝑡1, 𝑡2, 𝑎𝑎, 𝑎𝑏 𝑡𝑜 𝐸𝑏. Then, Eb 

applies adapted Schnorr’s signature verifying scheme to figure 

x1 and x2 as shadows: 

10. 𝑥1 = 𝑀𝑢𝑙𝑡(𝑎𝑏, 𝐻𝑎𝑠ℎ(𝑦, 𝑡2)) 

11. 𝑥2 = 𝑀𝑢𝑙𝑡(𝑎𝑎, 𝐻𝑎𝑠ℎ(𝑦, 𝑡1)) 

12. If (x1=mid_b and x2=mid_a) then dismiss the session, 

then, TA is confirmed as trusted server and Eb generates new 

common shared session key CSK. 

13. 𝑟 = 𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(𝑡1, 𝑡2), 𝑡3) 

14. 𝑐𝑠𝑘 = 𝐻𝑎𝑠ℎ(𝑟, 𝑚𝑖𝑑_𝑎, 𝑚𝑖𝑑_𝑏) 

15. Eb replies TA with security parameters rand t3 TA 

receives r and new nonce t3, TA calculates cc to verify Eb as 

follows: 

16. 𝑐𝑐 = 𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(𝑡1, 𝑡2), 𝑡3) 

17. Using its before known nonce value (i.e., t1 and t2) and 

newly conventional nonce t3. If cc= r then Eb by TA) to Eb. 

18. E a receives masked ID from TA and confirms TA and 

Eb as shadows: 

19. 𝑥𝑚𝑖𝑑 𝑎 = 𝑀𝑢𝑙𝑡(𝑎𝑎, 𝐻𝑎𝑠ℎ(𝑦, 𝑡1)) 

20. 𝑥𝑚𝑖𝑑 𝑏 = 𝑀𝑢𝑙𝑡(𝑎𝑏, 𝐻𝑎𝑠ℎ(𝑦, 𝑡2)) 

21. If xmid a≠mid a and xmid b ≠mid b then terminates the 

session, then, compute common key (CSK) as follows: 

22. 𝑐𝑠𝑘 = 𝐻𝑎𝑠ℎ(𝑐𝑐, 𝑚𝑖𝑑 𝑎, 𝑚𝑖𝑑 𝑏) 

 

Password renewal phase. Every customer is required to 

change his password at regular intervals (every week, every 

two weeks, every month, etc.). However, the user has the 

option to change their password at any moment. Since the 

secret number c, in addition to ID, mailID, etc., is dependent 

on the password Pwd, if the Pwd changes, c, mechanically 

vicissitudes; hence, the secret numeral is refreshed weekly or 

at the user's discretion. 

Anomaly detection model. Incorporating CAL and the 

Adagrad optimizer, the CapsNet model is put to use as a 

classifier. In the suggested study, entropy is utilised to rank 

uncertain data and expose the signal's unpredictability by 

visualising the chaos in the system. 

CapsNet construction. The CapsNet perfect is designed to 

model the hierarchical relationships and preserve the picture 

objects' locations and characteristics. In the CNN approach, 

the pooling layer receives the most relevant information first. 

It's possible that the network won't be able to learn fine-

grained information when the data is passed on to the next 

pooling layer. In addition, the CNN approach produces a 

numeric number for neural output. The CapsNets' multi-

neuron capsules create similarly sized vector output with 

different routing. The CNN uses activation functions on the 

input vector such as the Tangent, ReLU, and Sigmoid. The 

CapsNet, on the other hand, makes use of a vector activation 

function called squashing, which is described by Eq. (23). 

 

𝑣𝑗 =
‖𝑆𝑗‖

2

1+‖𝑆𝑗‖
2

𝑆𝑗

‖𝑆𝑗‖
  (23) 

 

where, v_j is the final output of capsule j. When an item is 

present in the image, the length of the vector v_j is reduced to 

one, and when none is present, the vector is truncated to zero. 

In CapsNet layers beyond the first, the predictive vector's 

weights are used to estimate capsule S_j's input values.  

(𝑈j|i) in the capsule as layer. The prognostic vector (𝑈j|i) is 

projected by the produce of a capsule layer with their output 

(𝑂i) and weight matrix (𝑊ij). 

 

𝑆𝑗 = ∑ 𝑏𝑖𝑗𝑢𝑗|𝑖𝑖   (24) 

 

𝑢𝑗|𝑖 = 𝑊𝑖𝑗𝑂𝑖 (25) 
 

where, 𝑏𝑖𝑗  signifies constant distinct by lively routing process 

and it is assumed by, 

 

𝑏𝑖𝑗 =
exp (𝑎𝑖𝑗)

∑ 𝑒𝑥𝑝𝑘 (𝑎𝑖𝑘)
  (26) 

 

where, 𝑎𝑖𝑗  represents a logarithmic probability. Log prior 

likelihood is specified by Softmax, and the number of 

correlation coefficients between capsules i in the top layer is 

one. Margin loss for estimating the number of objects in a 

given class is as follows in CapsNet. 
 

𝐿𝑘 = 𝑇𝑘𝑚𝑎𝑥(𝑂, 𝑚+ − ‖𝑣𝑘‖2 + 𝜆(1 −
𝑇𝑘𝑚𝑎𝑥(𝑂, ‖𝑣𝑘‖ − 𝑚)))2  

(27) 
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When element k of class k is present, Tk has a value of 1. In 

addition, the hyper variables are represented by m+ = 0.9 and 

the weight of the loss by m- = 0.1. CapsNet, which represents 

the probability in the picture region, provides an estimate of 

the vector length. 

Class attention layer apparatus. It is unable to learn the 

probabilistic dependence by recurrent eating with comparable 

features, even however the extracted features are at a higher 

level and are fed directly into FC layer to prediction. Therefore, 

defining class dependence and properly linking CapsNet for 

multi-label classification processes relies heavily on the 

extraction of discriminative class wise features. Feature 

discovery across all domains is thus conducted using CAL. 

First, a class attention map is generated using an 11 

convolution layer with a stride of 1, and then, in a second step, 

each class attention map is vectorized to extract characteristics 

unique to that class. In model, the size of a feature map X is 

defined as W W K, where 1v_l is the l-th filter in the CAL 

layer. Class l's care mapping Ml may be calculated using the 

formula: 

 

𝑀𝑙 = 𝑋 ∗ 𝑤𝑙  (28) 

 

where, l is an arbitrary number between one and several 

classes and is a convolution function. To illustrate, a class care 

mapping Ml is just a linear integration of the entire channel in 

X, given a convolution filter of size 1 1. The provided CAL 

may be implemented in this way to develop separate mapping 

[21]. In Eq. (28), for instance, feature mapping X is considered 

to be the output of the model's convolutional block after input 

data is processed. Therefore, vectorization is used to transform 

the class mapping M_l into a class wise feature vector vl with 

W2 dimensions. 

Adagrad optimizer The CapsNet model's hyperparameters 

are fine-tuned using the Adam optimizer. The Adagrad 

optimizer [22] is a gradient-oriented optimisation method that 

performs well on sparse gradients. Hyperparameter 

optimisation, also known as tuning, is the procedure of 

determining the optimal values for a learning algorithm's 

hyperparameters. A hyperparameter is a variable whose value 

is adjusted to affect training. Concurrently, we learn about 

other factors like the weight of nodes. The rate at which it 

learns would be automatically modified. Eq. (29) is the 

primary formula used in parameter updates. 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝑎

√𝜀+∑ 𝑔𝑡
2

⨀𝑔𝑡  
(29) 

 

where, 𝜃𝑡  signifies the mutable at time t, 𝛼  designates the 

learning rate, 𝑔𝑡  means gradient estimation and ⊙ signifies 

multiplication. 

 

 

4. RESULTS AND DISCUSSION 

 

A server computer built around two IntelVR XeonVR Silver 

4114 CPUs, each with 40 cores and 2.20 GHz clock speed, 

runs the simulation tests. This computing system has 128 GB 

of main RAM and runs Ubuntu 16.04 LTS on a 64-bit 

architecture. Python 3.7 is used for the suggested work. The 

conditions for assessing the presentation of the projected plan 

are exposed in Table 1. 

 

4.1 Modularity check 

 

Table 2 displays the suggested model's module-based 

processor utilisation. Additionally, the following is the 

module-based execution period of the proposed model. The 

elapsed time for the hybrid encryption scheme is estimated. 

The amount of time needed by a cryptographic method to 

change plaintext into an encrypted message. The throughput 

of an algorithm may be estimated by looking at how long it 

takes to encrypt data. It is the determining factor in encryption 

speed. If throughput could be increased, electricity 

consumption might be reduced. As will be shown below, the 

results varied depending on the magnitude of the inputs used. 

 

Table 1. Setup for experiments 

 
Setup Explanation 

Stage Visual C++ (Visual studio Community 2017) 

Scheme 64-bit OS, X-64 based Processor 

OS Windows-10 

Processor 
Intel (R) Core (TM)i7-7500U CPU @2.60 Ghz 

2.90GHz 

 

Table 2. Processor utilization rate 

 
 1st Trial 2nd Trial 3rd Trial 4th Trial 

Proposed 

hybrid model 
405 146 113 357 

AES 464 859 996 986 

Blowfish 488 980 988 1010 

DES 523 240 443 340 

RC5 530 650 708 980 

3DES 416 190 371 301 

 

Each round's CPU time was studied by altering the amount 

of the input data. In the suggested approach, the key 

transformation module often consumes the most processing 

time. The obtained results demonstrate the usefulness of the 

suggested paradigm. In this part, we examine the strengths and 

weaknesses of several of the most popular block cyphers in the 

context of HI security in the cloud. Understanding how much 

time a central processing unit (CPU) spends on a given task is 

called "processor usage". It indicates how much work is being 

done by the CPU. The more the use of central processing unit 

in the encipherment method, the greater the burden on the 

computer's CPU. The purpose of these tests is to examine the 

performance and impact of various input sizes and the 

influence of various stages on the estimation of processor time. 

Furthermore, it is clear from the aforementioned 

experiments that the proposed model outperforms other 

widely-used procedures in processor utilisation rate, less 

memory utilisation, the highest degree of key rate, and that its 

utilisation makes it a more attractive excellent for mobile 

devices. Table 3 demonstrates additional, separate qualitative 

security guaranteeing techniques that allow the planned 

strategy to produce satisfactory experimental findings. 
 

Table 3. Memory utilization 
 

Encryption 

Scheme 
MSE AES Blowfish DES RC5 3DES 

Memory 

utilization 

(KB) 

984 1357 1293 1785 1624 1896 
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Key varieties or sorts of these many systems (based on user-

specified needs for a certain level of security) A qualitative 

comparative method was used here. Single-type-key support 

is provided by DES and IDEA; three-type-key support is 

provided by AES; and five-type-key support is provided by the 

suggested model, indicating a very requirement-centric 

approach. It follows that the suggested model has the greatest 

number of significant deviations. Since the keys include 

measures, in most cases each key alters the data twice every 

round, for a total of eighteen times the key includes 

information rather than nine times. Table 4 details a 

comparison of RC5, RC6, Blowfish, 3DES, and the proposed 

model from the perspective of single-round key subsumption; 

the proposed model outperforms IDEA, DES, 3DES, and AES 

by transforming data twice in each round. 

 

 
 

Figure 2. Analysis of proposed classifier 

 

Table 5 represents the comparative analysis of a pre-trained 

classifier with existing models. In this analysis, the LeNet 

model reached an AUC score of 0.758, an accuracy level of 

80.72, a precision rate of 78.14, a recall value of 89.92, and 

finally, an F-measure value of 88.67, respectively. And 

another method of ResNet model reached the AUC score of 

0.854 and also the accuracy level of 75.17, the precision rate 

of 70.91, the recall value of 72.69, and finally the F1-score 

value of 72.33, respectively. And another method of VGGNet 

model reached an AUC score of 0.687, an accuracy level of 

68.28, a precision rate of 64.17, a recall value of 86.66, and 

finally, an F-measure value of 80.24, respectively. And 

another method of DenseNet model reached an AUC score of 

0.947, an accuracy level of 95.78, a precision rate of 91.94, a 

recall value of 95.61, and finally, an F-measure value of 76.86, 

respectively. And another method of AlexNet model reached 

the AUC score of 0.957 and also the accuracy level of 96.34, 

the precision rate of 92.45, the recall value of 93.78, and 

finally, the F-measure value of 94.36, respectively. And 

another method of CapsNet model reached an AUC score of 

0.987, an accuracy level of 98.97, a precision rate of 96.84, a 

recall value of 97.24, and finally, a F-measure value of 94.13, 

respectively. In this comparison analysis, the CapsNet model 

achieved better performance than the other compared models, 

as shown in Figures 2-4. 

 

 
 

Figure 3. Graphical comparison between different DL 

models 

 

 
 

Figure 4. AUC validation 

 

Table 4. Key-data colligation rate 

 
Encryption scheme Proposed Hybrid Model AES Blowfish DES RC5 3DES 

Single round key colligation 2.11 1.04 1.02 1.03 1.02 1.04 

 

Table 5. Comparative analysis of pre-trained classifier with existing models 

 
Classification AUC Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

LeNet 0.758 80.72 78.14 89.92 88.67 

ResNet 0.854 75.17 70.91 72.69 72.33 

VGGNet 0.687 68.28 64.17 86.66 80.24 

DenseNet 0.947 95.78 91.94 95.61 76.86 

AlexNet 0.957 96.34 92.45 93.78 94.36 

CapsNet 0.987 98.97 96.84 97.24 94.13 
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5. CONCLUSION 

 

For safe information exchange, we present a new mutual 

authentication system that utilises both encryption and deep 

learning. Applications benefit from robust security thanks to 

the deployment of a hybrid encryption model that encrypts 

communications with a combination of Modified and 

cryptography and a MAC procedure. Step one: amp up the 

force Methods of re-encryption are offered for use in MELBC 

in order to fortify the security of the ciphering procedure. 

Second, we offer plaintext segmentation approaches to reduce 

computational load, power consumption, and compromise 

while maintaining a high level of security. As a conclusion to 

the work provided, fresh formulae are developed for the 

processes of key creation, encryption, and decryption. This 

system allowed for highly authenticated data transport. Due to 

the fact that users' true identities directly shared on the network, 

this protocol is secure against a wide variety of security threats. 

Additionally, the mutual authentication scheme's security has 

been examined with the help of the ProVerif security analysis 

programme. The outcomes prove that the suggested protocol 

is computationally inexpensive and secure against several 

online data sharing security threats in a multi-cloud setting. 

More sophisticated mathematical and computational 

advancements in the future will require the incorporation of 

encryption algorithms with deep learning into our scheme. 
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