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In the realm of global manufacturing, the proliferation of Laser Powder Bed Fusion (LPBF) 

technologies has necessitated an in-depth understanding of the dynamics between thermal 

flow and stress fields during its operative procedures. Interactions between these fields 

have been observed to induce thermal distortions in components, potentially jeopardizing 

the structural integrity and operational efficiency of the end products. Insights have been 

garnered through conventional finite element methods and empirical models, yet these 

methodologies encounter evident constraints when deciphering highly nonlinear, multi-

scale systems. This research delves into the employment of deep learning techniques for 

the cooperative modelling of the aforementioned fields, suggesting an innovative approach 

to thermal distortion predictions. The outcomes derived from this inquiry are foreseen to 

unveil novel optimization strategies for laser melting manufacturing methodologies, 

propelling the evolution of this specialized field. 
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1. INTRODUCTION

In the global manufacturing landscape, the boundaries of 

production speed, accuracy, and potential are being 

continuously redefined by the advent of LPBF technologies 

[1-5]. This form of additive manufacturing facilitates the 

production of intricate components, which, owing to their high 

precision, customization, and geometric complexity, were 

previously unattainable with traditional manufacturing 

techniques [6, 7]. However, the evolution of this innovative 

approach has not been without its challenges. A significant 

hurdle has been identified in the interactions between thermal 

flow and stress fields during the laser melting process. Such 

interactions have been linked to the onset of thermal 

distortions in components, potentially diminishing the 

integrity and efficiency of the final product [8-10]. 

Addressing these challenges holds broader implications 

than merely refining component quality. A deeper 

comprehension of these field interactions, it is believed, could 

usher in expansive optimization opportunities for the 

overarching production cycle, leading towards more 

streamlined and cost-effective manufacturing [11, 12]. Among 

the tools to achieve this, deep learning, at the forefront of 

modern artificial intelligence techniques, has been heralded 

for its capabilities in encapsulating and simulating these 

multifaceted relations [13-15]. 

While valuable perspectives on the interaction dynamics 

between thermal flow and stress fields have been offered by 

finite element methods and empirical models, these techniques 

exhibit discernible limitations [16, 17]. Confronted with 

highly nonlinear, multi-scale systems, the aforementioned 

methods can sometimes underperform [18-20]. Thus, the call 

for a renewed methodology that aptly captures the interplay 

between thermal flow and stress fields has grown louder. 

In response to this, a thorough investigation into the 

construction of dual-field models within the LPBF domain 

was undertaken. Emphasis was laid on studying both laminar 

and turbulent flow models concerning fluid dynamics and heat 

transfer within the melt pool. Notably, a pioneering strategy 

for predicting product thermal distortions, underpinned by 

feature extraction from these fields, was introduced. By 

treating the combined features of the thermal flow and stress 

domains as cooperative inputs, a groundbreaking approach to 

predict product thermal distortion levels was formulated. The 

revelations from this inquiry are not merely poised to foster 

innovative solutions for challenges inherent to LPBF but also 

to set the groundwork for emergent breakthroughs in the 

broader additive manufacturing sphere. 

2. CONSTRUCTION OF DUAL-FIELD MODELS IN

LPBF PROCESS

2.1 Model establishment 

Laser Powder Bed Fusion (LPBF), also known as Direct 

Metal Laser Sintering (DMLS), represents a technique within 

additive manufacturing, encompassing several interconnected 

physical processes. When laser beams irradiate the surface of 

metal powders, the metal absorbs the laser energy and 

undergoes rapid heating, resulting in localized melting. This 

induces a prominent temperature gradient, culminating in the 

formation of a melt pool. Metals, under elevated temperatures, 

undergo a phase transition from solid to liquid, manifesting as 

this melt pool. Due to surface tension, variations in the depth 

and width of the melt pool, and uneven temperatures, 

pronounced flows are observed within the melt pool. Heat 

from the melt pool is conducted to the surrounding solid metal, 
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instigating movements at the solid-liquid interface and 

accompanying phase transitions such as solidification, 

undercooling, and recrystallisation. Figure 1 presents a 

schematic diagram of the melting manufacturing process. 

 

 
 

Figure 1. The LPBF process 

 

Owing to the high-energy density and brief thermal input of 

LPBF, metals undergo a rapid cooling process. Such swift 

cooling generates thermal stresses within the metal, especially 

at interfaces where the melt pool solidifies. As metals cool 

from a liquid to a solid state, volume changes occur, leading 

to the genesis of phase transformation stresses. If these thermal 

stresses surpass the material's yield strength, thermal cracking 

can ensue. Additionally, residual stresses arising from non-

uniform cooling and solidification may also result in thermal 

distortions of the components. 

In the LPBF process, constructing models for the thermal 

flow and stress fields becomes crucial for accurate prediction 

and optimization. For precise simulation of these fields, grid 

partitioning strategy emerges as pivotal. Given that the melt 

pool area is where thermal flow and stress variations are most 

intense, higher grid resolutions are necessitated. In this study, 

a dense tetrahedral or hexahedral grid was chosen in this 

region to capture the dynamic behaviour of the melt pool and 

the phase transition process. Figure 2 illustrates the grid 

partitioning strategy. 

 

 
 

Figure 2. Strategy of grid partitioning 

 

When constructing thermal and stress field models for the 

LPBF process, a set of assumptions typically must be 

established to simplify real-world problems, ensuring that 

mathematical models can be effectively applied under actual 

conditions. Core assumptions, grounded in the study's research 

content and objectives, include: 

(1) Steady state and unsteady state assumption 

Interaction between the laser and the material is 

instantaneous, and the formation and flow of the melt pool are 

dynamic. A steady-state (transient) assumption is often 

adopted, meaning that in the model, time is considered a 

variable. 

(2) Continuum medium assumption 

Although the material consists of tiny particles, at this scale, 

the material is assumed to be a continuous medium, meaning 

that the specific shape and size of the powder particles aren't 

taken into account, focusing only on their macroscopic 

behaviour. 

(3) Isotropic material assumption 

It is assumed that the properties of the material (such as 

thermal conductivity or elastic modulus) are consistent in all 

directions. This simplifies the model, yet relatively accurate 

results can still be obtained. 

(4) Temperature-independent parameters 

Some properties of the material (like thermal conductivity 

or viscosity) are considered constant and not dependent on 

temperature. However, more precise models may consider the 

temperature-dependence of these parameters. 

Characteristics of thermal and stress fields during the 

welding process are influenced by the solid phase, liquid phase, 

and solid-liquid mixture phase. The solid phase, typically 

distant from the centre of the melt pool, is in a relative thermal 

equilibrium. In this region, heat is mainly transmitted by 

conduction, resulting in smaller temperature gradients. 

Residual stress is produced due to thermal expansion and 

contraction caused by welding. As the distance from the melt 

pool increases, residual stresses gradually decrease. The liquid 

phase, being the central part of the melt pool, has the highest 

temperature. In this zone, in addition to conduction, 

convection also plays a significant role in heat transfer. The 

flow of molten metal carries heat, leading to complex 

temperature distributions. In the liquid phase, since the 

material is in a liquid state, stress generation is minimal. 

However, at the interface between liquid and solid, stress 

concentration may occur due to differing thermal expansion 

coefficients. The solid-liquid mixture phase is the transition 

zone between the solid and liquid phases and is the most 

complex area. Here, some materials are in the solid state while 

others are in the liquid state. Both conduction and convection 

are involved in heat transfer, and the solid-liquid interface 

dynamically changes, making the thermal field intricate. In the 

solid-liquid mixture zone, volume shrinkage due to the 

solidification of molten metal and thermal expansion of solid 

metal occur concurrently, potentially leading to stress 

concentration and thermal cracking. Additionally, rapid 

cooling and thermal expansion in localized areas due to the 

dynamic change of the solid-liquid interface may generate 

significant stresses. 

The solid-liquid interface during the welding process 

dynamically changes, and accurately tracking and simulating 

this interface demands substantial computational resources. In 

this study, the solid-liquid zone is regarded as a porous 

medium, and the degree of solid-liquid mixing is described by 

"porosity." An approach facilitating the handling of the 

complexity of the solid-liquid mixture zone during the welding 

process. An infinitesimally small number, represented by γ, is 

assumed to avoid a denominator of zero. The fuzzy zone 

constant is represented by SMU, and the volume fraction of the 

liquid is denoted by α. This method can be implemented by 

adding the following source terms to the momentum equation: 
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Assuming the solid phase line temperature and liquid phase 

line temperature are represented by Ya and Yy respectively, the 

liquid volume fraction α is determined by: 
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From the analysis, it is understood that buoyancy, vapour 

pressure produced by the evaporation of liquid metal, and 

surface tension play crucial roles in the dynamics of the melt 

pool and the welding outcome. Convection flows caused by 

buoyancy can alter the heat flow distribution, thereby affecting 

the cooling rate and temperature distribution in the welding 

area. Backpressure affects the surface of the melt pool and can 

lead to its unstable oscillations or splashing. Surface tension 

causes the melt pool to minimize its surface area, forming a 

specific melt pool shape. The combined effect of these factors 

influences the outcome of the welding process, such as the 

melt pool shape and the quality of the weld seam. 

Incorporating all these factors can enhance the accuracy of the 

model. 

 

2.2 Turbulence equations and boundary conditions 

 

During the LPBF process, the intense heat flux density 

generated by the laser on the workpiece results in vigorous 

motion within the melt pool, likely transforming into 

turbulence. Turbulence enhances fluid mixing, thereby 

amplifying heat transfer effects. For laser welding, this 

intensified heat transfer effect can lead to changes in the depth 

and shape of the melt pool, subsequently influencing the 

formation and quality of the weld seam. To address the impact 

of turbulence on flow and heat transfer in the melt pool, the 

RNGk-ε turbulence model is employed for simulation 

calculations. If turbulent energy is denoted by j and the 

turbulent diffusivity is represented by γ, then the expressions 

for turbulent energy are:  
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Due to the high power density and focused characteristics 

of lasers, significant temperature gradients arise in the melt 

pool during the laser welding process. Such pronounced 

temperature gradients on the melt pool surface lead to a 

marked surface tension gradient, resulting in Marangoni 

convection. It is observed that Marangoni convection alters the 

flow patterns within the melt pool, subsequently affecting the 

shape and size of the pool. Direct consequences of these 

alterations are witnessed in the width and depth of the weld 

bead. Moreover, an upward movement in the centre of the melt 

pool and a downward shift at its edges due to Marangoni 

convection can increase the depth of the melt pool, impacting 

the welding penetration depth. Assuming the reference 

temperature is represented by Y0 and the surface tension 

temperature gradient coefficient by Sa, the calculation formula 

for melt pool surface tension is given by: 

 

( )o a pS Y Y = + −  (7) 

 

It is assumed that the laser power is denoted by O, the radius 

of the laser heat source by s=n=e, and the depth of the heat 

source by f. When considering a welding heat source with a 

Gaussian distribution volumetric heat source, its expression is 

described by: 
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During the LPBF process, considerable heat is generated in 

the melt pool due to the interaction between the laser beam and 

the workpiece material. However, not all the heat contributes 

to melting the material. A portion of this heat is lost from the 

melt pool in the form of convection and radiation. To 

accurately describe and predict the outcomes of the laser 

melting process, these heat losses need to be taken into account. 

Convective heat losses primarily occur at the surface of the 

melt pool, involving interactions between the liquid metal and 

surrounding gases, such as protective gases. When an object's 

temperature exceeds that of its surrounding environment, heat 

is released in the form of radiation. In high-temperature melt 

pools, radiative heat loss can be notably significant. Assuming 

the Boltzmann constant is represented by δn, the emissivity by 

γn, and the ambient temperature by Ys, then the calculation 

formula for heat losses due to convection and radiation is: 
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3. PREDICTION OF PRODUCT THERMAL 

DISTORTION BASED ON DUAL FIELD FEATURE 

EXTRACTION 

 

During the LPBF process, thermal distortion emerges as a 

complex multifactorial procedure influenced by various 

parameters. To forecast thermal distortion, features related to 

this process must be clearly defined. Firstly, definitions are 

given for thermal field indicators, stress field indicators, laser 

melting manufacturing condition indicators, and product 

shape indicators. 

Indicators of thermal field characteristics include: (1) 

Maximum temperature, referring to the highest temperature 

within the melt pool; (2) Temperature gradient, indicating the 

difference between temperatures inside and outside the melt 

pool; (3) Cooling rate, which is the speed at which the material 

cools from a molten to a solidified state; (4) Melt pool depth-

to-width ratio, influencing the shape and flow characteristics 

of the melt pool. Theses parameters determine the heating and 

cooling characteristics of the material, subsequently 
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influencing the dynamics, solidification rate, and geometry of 

the melt pool. Indicators of stress field characteristics include: 

(1) Maximum stress, which is the highest stress value 

generated from thermal expansion and contraction; (2) Stress 

gradient, highlighting the difference in stress within and 

around the weld seam; (3) Residual stress, referring to the 

internal stress remaining after the material cools; (4) Degree 

of plastic deformation, defining the extent of material 

deformation at high temperatures. These parameters describe 

the stress state in and around the welding zone. Due to the 

uneven distribution of temperature, different parts of the melt 

pool undergo varying expansions and contractions, leading to 

the accumulation of stress and plastic deformation. The 

features from these two categories are represented 

byφ={φ1,φ2,...,φN} and ψ={ψ1,ψ2,...,ψB}, where the value of 

the u-th feature is indicated by ψu. ψu consists of Bu position 

points and can be described as ψu={ψu
1,ψu

2,...,ψu
Bu}, with the 

k-th point on the u-th feature denoted by ψu
k. 

Indicators of LPBF conditions include: (1) Laser power, or 

the power setting of the laser beam; (2) Laser scanning speed, 

or the speed at which the laser beam moves across the 

workpiece surface; (3) Focal length, the distance between the 

laser focal point and the workpiece surface; (4) Shielding gas 

velocity and type, namely the velocity and type of the gas used 

to protect against oxidation and other adverse chemical 

reactions. These conditions directly influence the formation of 

the melt pool, heat input, and heat distribution, thereby 

affecting material melting, solidification, and generation of 

thermal stresses. This category of features is denoted by 

ζ={ζ1,ζ2,...,ζB*L}, with the total number of conditions 

represented by B*L. 

Indicators of product shape include: (1) Product thickness, 

indicating the thickness of the workpiece, affecting heat 

transfer and cooling rate; (2) Welding length, referring to the 

total length of the weld seam; (3) Weld seam width, related to 

the diameter and shape of the laser beam; (4) Welding 

direction, such as sequential or alternating welding. The shape 

and dimensions of the workpiece influence the method and 

speed of heat transfer, consequently affecting temperature 

distribution and melt pool behaviour. Features of this category 

are expressed by ψ={ψ1,ψ2,...,ψL}, with the function on the m-

th direction denoted by Om and the shape image represented by 

ψomu. The process of obtaining the product shape coding from 

the autoencoder is given by equations below: 
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Local geometric features near a point on the product 

appearance are represented by ξ={ξmu
1,ξmu

2,...,ξmu
Bu}. The 

normal vector, maximum principal curvature, minimum 

principal curvature, average curvature, and Gaussian curvature 

on the shape point are denoted by b→k
u, J1k

u, J2k
u, LVk

u and 

HVk
u, respectively. The local geometric values are represented 

by ek
u, θk

u, αk
u, and fk

u. The local geometric features near a 

point on the product appearance can be characterized as: 
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When predicting the thermal distortion of the product, the 

objective function should take into account various feature 

indicators and their impact on thermal distortion. It is assumed 

that the parameters of the objective function to be learned are 

represented by ϕ, and the degree of product thermal distortion 

is denoted as Dpred. Based on the definitions above, the 

objective function of the predictive model in this study can be 

obtained as: 
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The degree of product thermal distortion is the collection of 

values at different measurement points, so the problem is 

transformed as: 
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For the prediction of thermal distortion in the LPBF process, 

a model consisting of two feature extraction networks, a LPBF 

condition feature extraction network, a product shape feature 

extraction network, and a Decoder network was designed. 

 

 

 
 

Figure 3. Structure and hyperparameters of the dual-field feature extraction network 
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Figure 4. The product shape feature extraction network 

fitting shape curves 

 

Figure 3 illustrates the structure and hyperparameters of the 

dual-field feature extraction network. The networks adopts a 

multi-layer convolutional neural network (CNN) structure, 

with each layer consisting of convolutional layer, pooling 

layer, and activation function, aiming to extract key features 

from the thermal flow field and stress field. Raw data from the 

thermal flow and stress fields serve as the input, and the output 

is the high-level feature vectors of the thermal flow and stress 

fields. The feature extraction network for LPBF conditions is 

a deep neural network (DNN) made up of densely connected 

layers, extracting and learning key features of LPBF 

conditions. The input to this network is the parameters of 

LPBF, and the output is the high-level feature vectors of these 

conditions. A CNN is employed for the product shape feature 

extraction network, targeting the extraction of key features of 

the product shape. The input here is the shape description of 

the product, while the output is its high-level feature vector. 

Figure 4 provides a schematic of the product shape feature 

extraction network fitting the shape curves. 

The Decoder network comprises multiple fully connected 

DNN layers, including a Dropout layer to prevent overfitting 

and a Batch Normalization layer for normalization. High-level 

feature vectors from the three network modules serve as the 

input, with the predicted product thermal distortion values or 

metrics being the output. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

A profound exploration was conducted into the construction 

of the dual-field models during the LPBF process, and an in-

depth study was undertaken regarding the analysis of flow and 

heat transfer in the melt pool using both laminar and turbulent 

models. Based on the figure above, the following analysis can 

be made. Figure 5 (1) (Turbulent Model) displays a more 

complex flow structure, which is consistent with the inherent 

characteristics of turbulence. In turbulent flow, irregular 

motion is observed, with numerous vortices and mixings 

present, leading to a more uniform temperature distribution 

within the melt pool. On the other hand, Figure 5 (2) (Laminar 

Model) showcases a more regular and smooth flow pattern, 

with isotherms appearing more concentrated and continuous. 

This suggests that, under laminar conditions, the heat in the 

melt pool primarily propagates along certain specific paths. In 

the turbulent model, a more uniform distribution of isotherms 

is observed, implying that the heat distribution in the melt pool 

is relatively even, aiding in reducing local overheating or 

cooling phenomena. In contrast, under the laminar model, the 

distribution of isotherms is more concentrated, indicating a 

noticeable temperature gradient within the melt pool, which 

can result in insufficient or excessive melting in specific 

regions of the workpiece. 

 

 
 

(1) Turbulent flow 

 

 
 

(2) Laminar flow 

 

Figure 5. Isotherms of the melt pool cross-section 

 

 
 

Figure 6. Relationship curve between thermal stress and 

temperature 

 

Based on Figure 6, the following analysis can be drawn. In 

the graph, the red line represents the variation in temperature, 

while the purple line denotes the change in thermal stress. 

Initially, an increase in temperature is accompanied by a rise 

in thermal stress, displaying a directly proportional 

relationship. However, beyond a certain point in time, even as 
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the temperature continues to ascend, a decline in thermal stress 

is observed, indicating an inversely proportional relationship 

with temperature. This trend can be attributed to internal 

structural changes in the material upon reaching a specific 

threshold temperature, leading to a reduction in thermal stress. 

From prior discussions, it is known that during the LPBF 

process, the formation and cooling rate of the melt pool have 

implications on the material's internal structure and stress. In 

the figure, even as the temperature keeps increasing upon 

reaching a peak, a drop in thermal stress is detected. This 

phenomenon suggests that at this particular temperature, the 

material undergoes a phase transition or some form of 

structural rearrangement, resulting in a decrease in thermal 

stress. Once the temperature peaks and begins its descent, a 

rapid drop in thermal stress is also observed, signifying stress 

relief within the material during the cooling process. Thus, it 

can be concluded that the relationship between temperature 

and thermal stress in the LPBF process is not simply linear. 

While they share a direct correlation in the initial stages, an 

inverse relationship emerges after a certain threshold 

temperature is attained. Such patterns are closely related to 

changes in the material's internal structure, phase transitions, 

or other thermodynamic processes. To ensure the quality and 

performance of the product, meticulous control over heating 

and cooling rates, as well as the corresponding temperature 

and stress distribution, during the LPBF process is deemed 

imperative. 

From Table 1, distinct differences in thermal stress, 

temperature, and overall deformation between low carbon 

steel and stainless steel can be observed under identical laser 

power and cooling water flow rates. A notably higher 

maximum equivalent stress and thermal stress in low carbon 

steel compared to stainless steel is noted, attributed to the 

intrinsic properties of the differing materials. Despite a slight 

difference in peak temperatures between low carbon steel and 

stainless steel, significant differences in thermal stress and 

total deformation are evident. This suggests that the intrinsic 

mechanical properties of materials play a vital role in the 

generation of thermal stress. In stainless steel samples, an 

increase in laser power from 400 to 500 led to rises in the 

maximum equivalent stress, peak temperature, total 

deformation, and thermal stress. This trend indicates that an 

increase in laser power augments the heating rate, 

subsequently affecting temperature, thereby influencing 

thermal stress and overall deformation. Moreover, when the 

cooling water flow rate was reduced from 2 to 1 (at consistent 

laser power) in stainless steel samples, both the peak 

temperature and thermal stress saw an increase. It can be 

deduced that a reduction in cooling speed results in elevated 

temperature and accumulated stress. Therefore, the type of 

material is determined to significantly influence thermal stress, 

overall deformation, and peak temperature. Different materials, 

under identical processing conditions, produce varying levels 

of stress and deformation. Increases in laser power lead to 

higher temperatures and thermal stress. Conversely, 

reductions in cooling speed also result in elevated 

temperatures and thermal stresses. 

From Figure 7, an analysis of these two equivalent thermal 

strain curves can be conducted. During the manufacturing 

process Figure 7 (1), a significant increase in equivalent 

thermal strain is observed as the temperature rises, particularly 

around 15℃ where a sharp ascent in equivalent thermal strain 

starts. Upon manufacturing completion Figure 7 (2), a decline 

in equivalent thermal strain is noted with decreasing 

temperature, with the declining trend becoming more 

pronounced below 30℃. At identical temperatures, the 

equivalent thermal strain values after manufacturing are 

significantly lower than those during the manufacturing 

process. This indicates that temperature fluctuations and other 

associated factors during manufacturing result in higher strain 

accumulation, but part of this strain is released upon cooling 

after completion. High-value zones of equivalent thermal 

strain are primarily found above 15℃ during manufacturing, 

while upon manufacturing completion, these high-value zones 

shift to between 25℃ and 30℃. This shift is attributed to the 

redistribution or elimination of strain during the cooling 

process. Thus, it can be concluded that equivalent thermal 

strain curves during and after manufacturing display different 

trends, especially under the influence of temperature. This 

highlights the significance of temperature in governing the 

generation and distribution of thermal strain during the laser 

melting manufacturing process. Greater accumulation of 

equivalent thermal strain in higher temperature zones is 

correlated with material melting, re-solidification, and other 

temperature-related processes. However, upon manufacturing 

completion and subsequent cooling, a certain degree of strain 

release occurs, leading to a decline in equivalent thermal strain. 

Proper management and control of equivalent thermal strain 

become paramount during LPBF, as excessive strain can result 

in cracks, warping, or other detrimental effects. To optimize 

the manufacturing process, appropriate cooling strategies and 

parameter settings should be implemented to minimize strain 

production and accumulation. 

A thermal distortion prediction scheme based on the 

extraction of these dual-field features has been further 

proposed. This approach, which uses the combination of 

thermal flow field and stress field features as synergistic inputs, 

offers a novel perspective for predicting the extent of product 

thermal distortion. Table 2 presents thermal strain values (a1, 

a2, a3) at various measurement points under different sample 

numbers, along with their corresponding target values (b). a1, 

a2, and a3 denote thermal strain values at distinct 

measurement points, while b represents a target response 

amalgamated from these thermal strain values. From the data, 

it can be observed that when values of a1, a2, or a3 increase, 

the target value b often shows a tendency to increase as well. 

This suggests a positive correlation between the thermal strain 

values and the target response. However, this relationship isn't 

always linear, as certain samples demonstrate that even with 

lower thermal strain values, a higher value of b is achieved. 

This implies the presence of other influencing factors or 

interactions between measurement points affecting the final 

target response. A conclusion can be drawn that data in Table 

2 showcases the relationship between thermal strain values at 

different measurement points and the target response, with a 

general positive correlation between them. The incorporation 

of features from both the thermal flow field and the stress field 

for predicting thermal distortion is believed to enhance the 

prediction accuracy. Such an approach is beneficial because it 

can take into account a wider range of factors influencing 

thermal distortion. To achieve a more precise prediction of 

thermal distortion, a machine learning model has been trained 

using this data, and efforts have been made to further optimize 

and validate the performance of the model. 
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Table 1. Influence of various parameters on thermal stress 

 

Sample Material 
Laser 

Power 

Cooling Water 

Flow Rate 

Maximum 

Equivalent Stress 

Peak 

Temperature 

Total 

Deformation,10-2mm 

Thermal Stress,10-

4mm/mm 

Low Carbon Steel 500 2 95.3 345.26 1.6235 6.8952 

Stainless Steel 500 2 18.9 321.47 0.9236 2.6548 

Stainless Steel 400 2 8.56 305.36 0.7245 1.4652 

Stainless Steel 500 1 22.31 325.89 1.1256 3.1258 

 

Table 2. Training sample data 

 

No. 
Thermal Stress Values of Different Measurement Points Target Value 

a1 a2 a3 b 

1 144.3 93.2 78.2 201.5 

2 226.3 204.3 182.3 245.8 

3 221.4 124.3 95.4 201.5 

4 169.3 102.5 82.4 187.3 

5 167.5 124.6 105.8 187.3 

6 172.3 132.4 121.8 187.3 

7 176.5 149.8 123.9 187.3 

8 123.5 78.2 67.2 187.3 

9 121.3 71.7 63.9 187.3 

10 105.8 65.3 62.4 187.3 

11 123 127 151 145 

2 185 159 168 205 

13 223 204 223 256 

14 256 231 227 287 

15 312 287 215 346 

 

Table 3. Comparison of prediction results from different product thermal distortion prediction models 

 
Model MSE MSE Model Runtime T 

LSTM 0.03825 0.03524 13.28s 

GRU 0.03326 0.03286 12.36s 

Highway 0.03145 0.03017 11.23s 

Atention-CNN-LSTM 0.02369 0.02218 23.58s 

Atention-CNN-GRU 0.01785 0.01578 20.47s 

The proposed model 0.01452 0.01369 21.39s 

 

                         
(1) During the manufacturing process                                        (2) Upon manufacturing completion 

 

Figure 7. Equivalent thermal strain curves 

 

From the Table 3, it is recognized that the Mean Square 

Error (MSE) is a commonly utilized metric for evaluating 

model prediction efficacy. A smaller MSE value indicates 

superior predictive performance. The model proposed in this 

research possesses the lowest MSE value, suggesting that it 

provides the best predictive outcome. Regarding model 

runtime, the Highway model is identified as having the 

shortest runtime, although its predictive accuracy is not the 

best. While the Attention-CNN-LSTM model displays 

relatively good prediction performance, its runtime is the 

longest. The runtime of the proposed model is found to be 

close to that of Attention-CNN-GRU, yet with a superior 

predictive outcome. 

 

 

5. CONCLUSION 

 

In-depth exploration into the thermal flow field and stress 

field model construction during the LPBF process has been 

conducted. Detailed analysis using laminar and turbulence 
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models for flow and heat transfer in the melt pool has been 

carried out. A thermal distortion prediction scheme based on 

feature extraction from dual fields has been proposed. This 

approach, taking the combination of thermal flow field and 

stress field features as synergistic inputs, offers a novel 

perspective for predicting the degree of product thermal 

distortion. Experimental results provide several sets of sample 

data, including thermal stress, temperature, and equivalent 

thermal strain, which are correlated with product thermal 

distortion. These datasets lay the foundation for model training 

and validation. A comparison of various deep learning models, 

including LSTM, GRU, Highway, Attention-CNN-LSTM, 

Attention-CNN-GRU, and the model introduced in this 

research, has been made. Metrics for this comparison 

encompass MSE and model runtime. Based on MSE outcomes, 

the proposed model is determined to exhibit optimal 

performance in predicting thermal distortion. 

A successful cooperative modelling of the thermal flow 

field and stress field using deep learning techniques has been 

achieved, and based on this, a new method of thermal 

distortion prediction has been introduced. Experimental 

results reveal that the introduced model surpasses other 

comparative models in predicting thermal distortion. 

Furthermore, this research provides a fresh perspective-

predicting product thermal distortion based on the combined 

features of thermal flow and stress fields, offering significant 

reference for subsequent studies. In summary, robust technical 

support and a new research direction for the domain of thermal 

distortion prediction have been provided by this research. 
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