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The realms of Intuitionistic Fuzzy Sets (IFSs), Pythagorean Fuzzy Sets (PFS), and q-

rung Orthopair Fuzzy Sets (q-ROFSs) have found extensive applications across various 

disciplines, notably in resolving real-world problems. However, limitations concerning 

membership and non-membership grades pose challenges to these theories. Efforts to 

mitigate these constraints have led to the introduction of a new concept, the Linear 

Diophantine Fuzzy Set (LDFS), with reference parameters. This study advances the 

shortest path (SP) problem for Linear Diophantine Fuzzy graphs. An innovative method 

for constructing direct network graphs within a Linear Diophantine Fuzzy (LDF) 

context is proposed. Distances or costs between nodes are encapsulated by Linear 

Diophantine Fuzzy numbers. The principal contribution of this investigation lies in 

proposing a novel approach to solving the Linear Fuzzy Diophantine Fuzzy shortest 

path problem using the Bellman-Ford algorithm for optimal solution attainment. Usage 

of the score function enables the comparison and identification of the minimum arc 

value between nodes. The proposed algorithm's validity is demonstrated through a 

numerical example, and a comparison with existing methodologies underscores the 

benefits of the proposed algorithm. 
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1. INTRODUCTION

The shortest path problem, an intriguing subject in 

operational research and graph theory, has been the focus of 

much scholarly attention. Researchers have developed 

numerous innovative approaches, algorithms, and models, all 

striving to find the optimal values—be they cost, time, or other 

considerations—that define the shortest path. Real-world 

complexities, such as varied weather conditions and traffic 

congestion, add layers of difficulty to these problems. 

In 1965, Lotfi Zadeh introduced the concept of fuzzy set 

theory [1] to address these complexities. This theory expanded 

the traditional set theory to encapsulate fuzzy sets, which 

handle membership functions within a range of [0, 1]. Zadeh 

later proposed the concept of linguistic variables, whose 

values are expressed in natural language terms. When these 

words are articulated through fuzzy sets defined over a 

universal set, the variable is referred to as a fuzzy linguistic 

variable [2]. However, fuzzy sets only deal with membership 

functions. 

To counter this limitation, Atanassov introduced an 

intuitionistic fuzzy set (IFS) [3], an extension of the fuzzy set 

where the total value of membership and non-membership 

does not exceed one. Further developments in this field led to 

the creation of the interval-valued intuitionistic fuzzy set 

(IVIFS) [4, 5], a generalization of the IFS. Despite their 

versatility, IFSs show limitations when the combined values 

of their membership and non-membership exceed one. 

To address this, Yager proposed the Pythagorean fuzzy set 

(PyFS) [6-8], where the sum of the squared membership and 

non-membership values does not exceed one. Subsequently, 

Zhang and Xu [9, 10], Fei and Deng [11] and Peng and Ma [12] 

introduced ranking techniques for the order preference ideal 

solution and distance-based score methods for the Pythagorean 

fuzzy decision-making process. Garg and Rahman and 

Abdullah [13-17] proposed the interval-valued Pythagorean 

fuzzy set, a generalized form of PyFS, demonstrating its utility 

in decision-making processes through aggregation operators, 

Einstein operations, t-norms, and t-conorms. 

Despite these advancements, the theories of IFS, PyFS, and 

q-ROFS have limitations in their membership and non-

membership grades. To overcome this, several researchers

[18-21] introduced the Linear Diophantine Fuzzy set (LDFS).

Thanks to its unique ability to provide a broad characterization

area for permissible doublets, the LDFS theory surpasses the

IFS, PyFS, and q-ROFS theories in handling vague and

uncertain information via reference parameters.

A comprehensive range of membership and non-

membership grades in decision analysis is crucial for 

analyzing complex situations. The decision-maker has the 

flexibility to choose these degrees to incorporate reference 

factors. The LDFS, along with reference parameters, provides 

a reliable method for addressing modeling uncertainties, 

which encourages us to find the optimal path under LDFN. 

The fuzzy shortest path problem (SPP) on a network was 

first addressed by Dubois [22]. Although they analyzed the 

shortest path, the shortest path corresponding to the distance 

no longer existed. Okada and Soper [23] and colleagues then 

introduced an algorithm for solving the SPP using the multiple 

labeling method for the multicriteria shortest path. Chuang and 

Kung [24, 25] proposed a novel algorithm where each arc 

length is represented as a triangular fuzzy set to find the fuzzy 
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shortest path and fuzzy shortest path length. To address the 

shortcomings of existing algorithms, Deng et al. [26] 

employed the fuzzy Dijkstra algorithm to handle the SPP 

under uncertain environments. Numerous studies [27] have 

extended the Dijkstra algorithm to various fuzzy environments. 

Mukherjee [28] proposed a Dijkstra algorithm variation for the 

shortest path problem under intuitionistic fuzzy numbers. 

Kannan et al. [29] discussed the comparison between the fuzzy 

Floyd Warshall and fuzzy rectangular algorithms for the FSPP 

in their study. Kumar et al. [30] reviewed existing methods and 

proposed a fresh approach for the shortest path problem under 

a fuzzy environment. 

A procedure [31] was developed for the shortest path 

problem on a network with fuzzy arc length named interval-

valued fuzzy number matrices. Also, several approaches [32-

40] were developed to evaluate the optimality of a variety of 

fuzzy theories for the fuzzy, intuitionistic fuzzy, and 

Pythagorean fuzzy shortest path problem. Broumi et al. [41] 

and Biswas et al. [42] conducted a literature survey on SPP 

under different fuzzy environments for various algorithms and 

identified the best methods for suitable conditions. 

From the literature, it's evident that numerous algorithms 

exist for the study of the shortest path under various fuzzy 

environments. However, only limited work has incorporated 

reference parameters for SPP, motivating us to focus on the 

LDFN using the Bellman-Ford dynamic programming to find 

optimal solutions. 

The Bellman-Ford method can handle graphs better than 

existing algorithms, particularly when certain edge weights are 

negative. It computes the shortest path in a graph with negative 

edges, reports the existence of a negative cycle, and aborts the 

computation of the undefined shortest path. This algorithm 

aims to provide the optimal fuzzy shortest path and the least 

LDF cost/time in a network-directed graph with LDF arc 

weights. The existing score function is used to compare the 

LDFNs and choose the minimum among them. A numerical 

example is provided to illustrate and discuss the efficiency and 

capabilities of the proposed method. 

The contributions of this paper are: 

i. The structure, conditions, arithmetic operations, and 

ranking functions of the LDFN are discussed. 

ii. The Bellman-Ford algorithm has been extended to LDFN 

Edge values, and their mathematical formulation has been 

analyzed. 

iii. A numerical example is solved using the proposed 

method, and the optimal results are identified. 

iv. A comparison is validated for the fuzzy shortest path 

problem across different fuzzy theories. 

v. Finally, the paper concludes with a conclusion. 

 

 

2. PRELIMINARIES 

 

In this section, the definitions of IFS, PyFS and LDFN, as 

well as some of their arithmetic and ranking operations are 

discussed. 

 

Definition 

 

An IFS 𝔍  on the universe 𝔔  is defined by: 𝔍 =
{𝔵, 𝔪(𝔵), 𝔫(𝔵), |𝔵 ∈ 𝔔} where 𝔪: 𝔔→[0, 1] and 𝔶: 𝔔→[0, 1] 

represents the membership grade and non-membership grade 

of each 𝔵 ∈ 𝔔, respectively. A double set (𝔪, 𝔫) is said to be 

IFS. Such that 0≤𝔪(x)+𝔫(x)≤1 for all 𝔵 ∈ 𝔔. Hesitation or 

indeterminacy part can be calculated as π(𝔵)=1−(σ(𝔵)+ρ(𝔵)). In 

some of the real-life scenarios IFS can’t work when 

σ(𝔵)+ρ(𝔵)>1 [6] named as PFS, which is also known as IFS 

type 2 by the study [3]. 

 

Definition [6] 

 

A Pythagorean 𝔔𝔭  fuzzy set (PyFS) on 𝔔  is an object 

written as 𝔔𝔭 = {〈𝔵, 𝔪𝔭(𝔵), 𝔫𝔭(𝔵)〉 ∶  𝔵 ∈ 𝔔} where 𝔪𝔭(𝔵) ∈[0, 

1] is the membership grade and 𝔶𝔭(𝔵) ∈ [0, 1] is the non-

membership grade for each 𝔵∈𝔔 , respectively and the 

inequality 𝔪𝔭
2(𝔵)+𝔫𝔭

2(𝔵)≤1 holds for every 𝔵 ∈ 𝔔. A double set 

(𝔪, 𝔫) is said to be PyFS. The indeterminacy or hesitant part is 

calculated by 𝜋𝔭(𝔵)=√1 − 𝔪𝔭
2(𝔵) − 𝔫𝔭

2(𝔵). 

 

Definition [21] 

 

Let 𝔔 be the non-reference set. A LDFS L on 𝔔 is an object 

of the form 𝔏𝔇 = {(𝔵,〈𝔪𝔇( 𝔵), 𝔫𝔇(𝔵)〉 , 〈𝛼, 𝛽〉) ∶  𝔵 ∈ 𝔔} 𝔏𝔇2
 

where 𝔪𝔇(𝔵), 𝔫𝔇(𝔵)  are the membership grade and non-

membership grade respectively. Let 𝛼(𝔵) ∈ [0,1]  is the 

satisfaction grade reference parameter and 𝛽(𝔵) ∈ [0,1] is the 

dissatisfaction grade reference parameter. These grades satisfy 

the condition 0≤α𝔪𝔇(𝔵)+β𝔫𝔇(𝔵)≤1 ∀ 𝔵 ∈ 𝔔 with 0≤α+β≤1. 

These reference parameters can help in defining or classifying 

a particular system. By moving the physical meaning of these 

parameters, we can categorize the system. They expand the 

space used in LDFSs for grades and lift the limitation on them. 

The hesitation part can be evaluated as 

ξ𝜋𝔇=1−(α𝔪𝔇(𝔵)+β𝔫𝔇(𝔵)), where ξ is the reference parameter 

related to degree of indeterminacy. The Linear Diophantine 

Fuzzy Number (LDFN) is defined as 𝔏𝔇 =(⟨𝔪𝔇, 𝔫𝔇⟩,⟨α, β⟩) 
with 0≤α+β≤1 and 0≤α𝔪𝔇+β𝔫𝔇≤1. The space of IFS, PyFs, 

LDFS in shown in Figure 1. 

 

 
 

Figure 1. Space of IFS, PyFs, LDFS 

 

Definition [21] 

 

A Linear Diophantine Fuzzy number (LDFN) can be written 

in the form of 𝔏𝔇=(⟨𝔪𝔇, 𝔫𝔇⟩⟨𝛼𝔇, 𝛽𝔇⟩) satisfy the following 

condition. 

·𝔪𝔇, 𝔫𝔇, 𝛼𝔇𝛽𝔇∈[0, 1] 

·0≤𝛼𝔇+𝛽𝔇≤1 
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·0≤𝔪𝔇𝛼𝔇+𝔫𝔇𝛽𝔇≤1 

Example: If 𝔪𝔇 =0.9  and 𝔫𝔇 =0.3,, then 

0.9 +0.3,=1.62 ≰ 1 as well as (0.9 )2+(0.3,)2=1.,25 ≰ 1. 

However, with the arbitrary choice of parameter where α, β ∈
[0,1]  and 0≤α+β≤1 so that 0≤α𝔪𝔇(𝔵)+β𝔫𝔇(𝔵)≤1. Let (α, 
β)=(0.55,0.49), therefore (0.89) (0.55)+(0.73) (0.49)=0.8472 

<1. As a result, we were able to develop a more extensive 

space than the IFS and PyFS, and we now have additional 

alternatives for defining values to 𝔪𝔇  and 𝔫𝔇 , which is not 

possible in the IFS and PyFS. 

 

Definition [21] 

 

A LDFS on 𝔔 of the form 1𝔏𝔇={(𝔵,⟨1, 0⟩, ⟨1, 0⟩): 𝔵∈𝔔} is 

called absolute LDFS and  0𝔏𝔇 =(𝔵 ,⟨0, 1⟩,⟨0, 1⟩): 𝔵∈𝔔} is 

called null or empty LDFS. 

 

Definition [21] 

 

Let 𝔏𝔇𝑖
= (〈𝔪𝔇𝑖

, 𝔫𝔇𝑖
〉, 〈α𝔇𝑖

, β𝔇𝑖
〉)  for i ∈ ∆ be an 

assembling of LDFNs on 𝔔 and 𝔛 > 0, then 𝔏𝔇1
⊕ 𝔏𝔇2

=

(⟨𝔪𝔇1
+ 𝔪𝔇2

−𝔪𝔇1
𝔪𝔇2

, 𝔫𝔇1
𝔫𝔇2

⟩, ⟨α𝔇1
+ α𝔇2

−

 α𝔇1
α𝔇2

, β𝔇1
β𝔇2

⟩). 

 

Definition [21] 

 

Let  𝔏𝔇 =(⟨ 𝔪𝔇 , 𝔫𝔇 ⟩,⟨α, β⟩) be an LDFN, then the score 

function (SF) is denoted by 𝔖(𝔏𝔇) and the accuracy function 

(AF) by ℌ(𝔏𝔇)  on D and can be defined by mapping 

𝔖: 𝐿𝐷𝐹𝑁(𝔔) → [−1, −1] and given by: 

 

𝔖(𝔏𝔇)=
1

2
[(𝔪𝔇 − 𝔫𝔇) + (𝛼 − 𝛽)] (1) 

 

ℌ(𝔏𝔇 )=
1

2
[

(𝔪𝔇+ 𝔶𝔇)

2
+ (𝛼 + 𝛽)] (2) 

 

where, ℌ(𝔏𝔇)(𝔔) is the assembling of all LDFNs on 𝔔. 

 

Definition [21] 

 

If two LDFNs 𝔏𝔇1
 and 𝔏𝔇2

 can be comparable using the SF 

and the AF. This is defined as follows: 

• If 𝔏𝔇1
>𝔏𝔇2

 then 𝔖 (𝔏𝔇1
)≻𝔖 (𝔏𝔇2

) 

• If 𝔏𝔇1
<𝔏𝔇2

 then 𝔖 (𝔏𝔇1
)≺𝔖 (𝔏𝔇2

) 

• If 𝔏𝔇1
=𝔏𝔇2

 then 𝔖 (𝔏𝔇1
)∼𝔖 (𝔏𝔇2

) 

1. If 𝔏𝔇1
>𝔏𝔇2

 then ℌ (𝔏𝔇1
)≻ℌ (𝔏𝔇2

) 

2. If 𝔏𝔇1
<𝔏𝔇2

 then ℌ (𝔏𝔇1
)≺ℌ (𝔏𝔇2

) 

3. If𝔏𝔇1
=𝔏𝔇2

 then ℌ (𝔏𝔇1
)∼ℌ (𝔏𝔇2

) 

 

 

3. LINEAR DIOPHANTINE FUZZY SHORTEST PATH 

PROBLEM 

 

In this section, the mathematical formulation for Linear 

Diophantine Fuzzy shortest path is presented. Consider a 

graph 𝔊 = (𝔙, 𝔈) is an LDF-directed graph, where 𝔙={s=1, 

2, ..., e =m} and 𝔙×𝔙=𝔈={(i, j): i, j∈𝔙, i≠j} denotes the 

vertex and edge set, respectively. The ordered pairs (i, j) 

represent the two different vertices that are connected by an 

edge of the graph i, j∈𝔙. In a connected network, the arc 

source node s and destination node t. There is assumed to be 

only one path from node i to node j. The path 𝔭ij from node i 

to node j is a sequence of arcs 𝔭ij={(i, i1), (i1, i2), ......, (ik, j)} 

in which each arc’s initial node is same as the corresponding 

destination node. The problem is to identify the optimal path 

from node s to t for each arc-related parameter in terms of cost 

(or time, or distance, etc). In terms of LDFNs, this parameter 

is assumed to be 𝔠ij=⟨αℜ(𝔞𝔟) 𝔪ℜ(𝔞𝔟) 𝛽ℜ(𝔞𝔟) 𝔫ℜ(𝔞𝔟)⟩ where 

𝔪ℜ(𝔞𝔟)  is the membership grade and 𝔫ℜ ( 𝔞𝔟 ) is the non-

membership grade and αℜ ( 𝔞𝔟 ), 𝛽ℜ ( 𝔞𝔟 ) are the reference 

parameters. The arc i-j represents the distance of the path in 

the shortest path problem. The main objective of the shortest 

path is to find the optimal path and minimum 

cost/distance/time from source node 𝔰 to the destination node 

t. Due to ambiguous situations, LDFN arc values are 

considered in the SP problem. Therefore, the resulting 

problem is called a Linear Diophantine Fuzzy shortest path 

problem (LDFSPP). The mathematical model of the problem 

is formulated as: 

 

Min 𝑍= ∑ ∑ �̃�𝑝𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗  

s.t   ∑ 𝑥𝑖𝑗 − 𝑚
𝑗=1 ∑ 𝑥𝑘𝑖 = {

1  𝑖 = 1
0  𝑖 ≠ 1, 𝑚
−1  𝑖 = 𝑚

𝑚
𝑘=1  

𝑥𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1,2 … . 𝑚 

(3) 

 

If the arc (i, j) is in the path, then xij=1 else xij=0. Let Tst 

denote the set of all paths from node s to node t. Let ℭ̃𝑖𝑗
𝑝

be the 

Linear Diophantine Fuzzy cost of path from the node 𝔲 to node 

𝔳. 

 

3.1 The extended Bellman-Ford algorithm in Linear 

Diophantine Fuzzy environment 

 

Let us consider acyclic-directed graph 𝔊 = (𝔙, 𝔈)  from 

source node 𝔰  to the destination node 𝔱  with Linear 

Diophantine Fuzzy arc weights. The Bellman dynamic 

programming is used to determine the shortest path by the 

forward pass calculation. The Extended Bellman-Ford 

dynamic programming under Linear Diophantine Fuzzy 

environment is formulated as: 

 

Initialization Step: Set the Source node as 𝔤(1) =
〈0,1〉〈0,1〉 

Main Step: min
𝛼<𝛽

[𝔤(𝛼) + 𝔡𝛼𝛽] 
(4) 

 

here, 𝔡𝛼𝛽  is the directed LDFN edge weight, 𝔤(𝛼)  is the 

LDFN arc length of the shortest path from the source node to 

destination node. The diagram illustrating the proposed model 

is depicted in Figure 2. 

Theorem: If a LDF directed graph 𝔊 = (𝔙, 𝔈)contains no 

non-negative weight cycles then after Bellman-Ford 

completes execution 𝔡[𝔳]=𝛿(𝔰, 𝔳) for all 𝔳 ∈ 𝔙. 

Proof: Let 𝔳 ∈ 𝔙 . If there is a path 𝔭 =
〈𝔳0, 𝔳1 … … . . 𝔳𝑘〉 then 𝔳0=𝔰 to 𝔳𝑘=𝔙. Then a path 𝔭 is a simple 

path with minimum LDF number of edges. If there is no 

negative LDFN edge cycle then it implies 𝔭 is simple. 

⟹ 𝑘≤𝔡 [𝔳]. 

After one visit through all the LDFN edges E, we have 𝔡 

[𝔳1] =𝛿 (𝔰, 𝔳1) because the LDFN edge 𝔳0, 𝔳1 is relaxed. After 

the second visit through all the LDFN edges, we have 𝔡 [𝔳2]=𝛿 

(𝔰, 𝔳2)because the LDFN edge (𝔳1, 𝔳2). Similarly, after k visits, 

𝔡 [𝔳𝑘]=𝛿(𝔰, 𝔳𝑘) which implies |𝔙|−1⟹all reachable vertex has 
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δ values. Therefore, the Bellman-Ford executes d[v]=𝛿 (𝔰, 𝔳) 

for all 𝔳 ∈ 𝔙 when there are no non-negative weight cycles. 

Corollary: If a value 𝔡 [𝔳] fails to converge after |𝔙|−1 

visits there exists a negative LDFN weight cycle reachable 

from s because we will be able to relax the LDFN edge and 

reduce the LDFN weight after added vertex that form a cycle. 

Therefore, the cycle will be negative. 

Proof: After |𝔙|−1 visits. If there is an LDFN edge that can 

be relaxed. (i.e.) current shortest path from 𝔰 to some vertex 𝔳 

which is reachable is not simple. Having repeated vertex, 

⟹then there exists a negative weight cycle. 

 

 
 

Figure 2. Flow chart diagram representing the algorithm 

 

Pseudocode for the proposed Linear Diophantine Fuzzy 

Bellman-Ford Algorithm (LDFBFA) 

1. Function Linear Diophantine Fuzzy Bellman-Ford 

Algorithm (𝔊, 𝔰) 

2. For each vertex 𝔙 ∈𝔊 do 

3. 𝔡 [𝔳]← ∞ 

4. end for 

5. 𝔡 [𝔰]← 〈0,1〉〈0,1〉 
6. for i←1 to |𝔳| do 

7. relaxed ← false 

9. for each (αβ) ∈ 𝔈 do 

9. if 𝔤 [𝛼] > 𝔤[𝛽] + 𝔡 (𝛼, 𝛽) then 

10. 𝔖(𝔤 [𝛼] > 𝔖 (𝔤[𝛽] + 𝔡 (𝛼, 𝛽)) do 

11. 𝔤 [𝛼] ← 𝔤[𝛽] + 𝔡 (𝛼, 𝛽) 

12. relaxed ← true  

13. end if  

14. end for  

15. if relaxed=false then  

16. exit the loop  

17. end if  

18. end for 

1 . for each (αβ) ∈ 𝔈 do 

20. if 𝔖(𝔤 [𝛼] < 𝔖 (g[𝛽] + 𝔡 (𝛼, 𝛽)) 

21. return false  

22. end if  

23. end for 

24. return true 

 

3.2 Numerical illustration 

 

This section is based on adaptable numerical problem to 

illustrate the possible implementation of the proposed 

algorithm. 

Example 1: Let us consider a disaster road network Figure 

3, that occurred in Wenling City with Linear Diophantine 

Fuzzy distance discussed by the study [18]. The arc values for 

the network in terms of LDF Distance are shown in the Table 

1. 

 

 
 

Figure 3. The graph with Linear Diophantine Fuzzy distance 

 

Table 1. Arc value in term of Linear Diophantine Fuzzy 

distance for Example 1 

 
Edges LDFN Edges LDFN 

(1,2) 
(⟨0.81, 0.37⟩, 
⟨0.51, 0.18⟩) 

(3,6) 
(⟨0.91, 0.73⟩, 
⟨0.46, 0.18⟩) 

(1,3) 
(⟨0.93, 0.68⟩, 
⟨0.53, 0.12⟩) 

(4,5) 
(⟨0.64, 0.29⟩, 
⟨0.37, 0.28⟩) 

(2,4) 
(⟨0.74, 0.47⟩, 
⟨0.43, 0.32⟩) 

(4,6) 
(⟨0.87, 0.39⟩, 
⟨0.25, 0.22⟩) 

(2,5) 
(⟨0.93, 0.63⟩, 
⟨0.46, 0.29⟩) 

(4,7) 
(⟨0.78, 0.57⟩, 
⟨0.45, 0.21⟩) 

(3,2) 
(⟨0.94, 0.58⟩, 
⟨0.58, 0.13⟩) 

(5,7) 
(⟨0.73, 0.68⟩, 
⟨0.41, 0.37⟩) 

(3,4) 
(⟨0.64, 0.21⟩, 
⟨0.37, 0.28⟩) 

(6,7) 
(⟨0.83, 0.43⟩, 
⟨0.51, 0.15⟩) 

 

Iteration 1: Start from the source node. Let the 𝔤(1) =
〈0,1〉〈0,1〉 and label 𝔤(1)=[⟨0, 1⟩⟨0, 1⟩, 1]. 

Iteration 2: Consider the node 1 as α and node 2 as β. Now 

relax the edges using Eq. (4). Using the score function [1] to 

choose the minimum one and label it as temporary node. 

𝔤(2) = min
𝛼<2

[𝔤(𝛼) + 𝔡𝛼2] = 𝔤(1)  + 𝔡12 = ⟨0, 1⟩⟨0, 1⟩+ 

⟨0.81, 0.37⟩⟨0.51, 0.18⟩=⟨0.81, 0.37⟩⟨0.51, 0.18⟩ 𝔖 (⟨0.81, 

0.37⟩⟨0.51, 0.18⟩)=0.385 

Therefore, Label 𝔤(2)=[⟨0.81, 0.37⟩⟨0.51, 0.18⟩, 1→ 2] 

Iteration 3: Repeat the process with the node 3 and relax 

all edges using the Eq. (4). 

𝔤(3) = min
𝛼<3

[𝔤(𝛼) + 𝔡𝛼3] = 𝔤(1)  + 𝔡13 =⟨0, 1⟩⟨0, 1 ⟩ + 

⟨0.93, 0.68⟩⟨0.53, 0.12⟩=⟨0.93, 0.68⟩⟨0.53, 0.12⟩ 
The score function 1 is used to identify the minimum one 

and label it as temporary node, 𝔖 (⟨0.93, 0.68⟩⟨0.53, 

0.12⟩)=0.33 and Label 𝔤 (3)=[⟨0.93, 0.68⟩⟨0.53, 0.12⟩, 1 → ,] 

Iteration 4: Repeat the same process for the node 4 and 

relax all the edges using the equation and using score function 

pick the minimum value and label it as temporary node. 

𝔤(4) = min
𝛼<4

[𝔤(𝛼) + 𝔡𝛼4] =min {𝔤(2) + 𝔡24, 𝔤(3) +

𝔡34}=min {⟨0.81, 0.37⟩⟨0.51, 0.18⟩+⟨0.74, 0.47⟩⟨0.43, 0.32⟩, 
⟨0.93, 0.68⟩⟨0.53, 0.12⟩+⟨0.64, 0.21⟩⟨0.37, 0.28⟩}=min 

{⟨0.9506, 0.1739⟩⟨0.7207, 0.057⟩, ⟨0.9748, 0.1428⟩⟨0.7039, 

0.33⟩} 

Using Score Function 1, 𝔖 (⟨0.9506, 0.1739⟩⟨0.7207, 

0.057⟩)=0.7202 𝔖(⟨0.9748, 0.1428⟩⟨0.7039, 0.33⟩)=0.7514  

Therefore, min {0.7202, 0.7514}= 0.7202. 
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Hence label 𝔤(4) =[⟨0.9506, 0.1739⟩⟨0.7207, 0.057⟩, 
1→2→4] 

Iteration 5: Visit each edge that reaches the vertex 5 from 

the source node using the Eq. (4). Using the score function 1 

pick the minimum one and label it as temporary vertex. Repeat 

this process for |𝔙|−1 times. 

𝔤(5) = min
𝛼<5

[𝔤(𝛼) + 𝔡𝛼5] = {𝔤(2) + 𝔡25, 𝔤(4) + 𝔡45} =min 

{⟨0.81, 0.37⟩⟨0.51, 0.18⟩ + ⟨0.93, 0.63⟩⟨0.46, 0.29⟩, ⟨0.9506, 

0.1739⟩ ⟨0.7207, 0.057⟩ + ⟨0.64, 0.29⟩⟨0.37, 0.28⟩} =min 

{⟨0.9867, 0.2233⟩⟨0.7354, 0.0522⟩, ⟨0.982, 0.0493⟩⟨0.8236, 

0.0168⟩} 

Hence 𝔖 (⟨0.9867, 0.2233⟩⟨0.7354, 0.0522⟩)=0.7233 

𝔖(⟨0.982, 0.0493⟩⟨0.8236, 0.0168⟩)=0.8695. Therefore, min 

{0.7233, 0.8695}=0.7233  

The minimum node is chosen and labeled 𝔤(5)=[⟨0.9867, 

0.2233⟩⟨0.7354, 0.0522⟩, 1→2→5]. 

Iteration 6: Relax all edges that are reachable from the 

vertex 6 using the Eq. (4) and to fix the temporary node use 

the 1 score function. 

𝔤(6) = min
𝛼<6

[𝔤(𝛼) + 𝔡𝛼6] = min{𝔤(3) + 𝔡36, 𝔤(4) +

𝔡46}=min{⟨0.93, 0.68⟩⟨0.53, 0.12⟩+⟨0.91, 0.73⟩⟨0.46, 0.18⟩, 
⟨0.9506, 0.1739⟩ ⟨0.7207, 0.057⟩+⟨0.97, 0.39⟩⟨0.25, 

0.22⟩}=min {⟨0.9937, 0.4964⟩⟨0.7462, 0.0216⟩, ⟨0.9935, 

0.0663⟩⟨0.79, 0.011⟩} 

Hence 𝔖 (⟨0.9937, 0.4964⟩⟨0.7462, 0.0216⟩)=0.61095 

𝔖(⟨0.9935, 0.0663⟩⟨0.79, 0.011⟩)=0.8536 

Therefore, min {0.61095, 0.8536}=0.61095. 

Hence, Label 𝔤(6) =[⟨0.9937, 0.4964⟩⟨0.7462, 0.0216⟩, 
1→,→6] 

Iteration 7: Visit all the edges that are reachable to the 

vertex 7(destination node) using 4 and use the score function 

to find the minimum value. 

𝔤(7) = min
𝛼<7

[𝔤(𝛼) + 𝔡𝛼7] =min {𝔤(4) + 𝔡47, 𝔤(5) +

𝔡57, 𝔤(6) + 𝔡67} 

=min {⟨0.9056, 0.1739⟩⟨0.7207, 0.057⟩+⟨0.78, 0.57⟩⟨0.45, 

0.21⟩,⟨0.986, 0.223⟩⟨0.74, 0.052⟩+⟨0.73, 0.68⟩⟨0.41, 

0.37⟩,⟨0.99, 0.49⟩⟨0.74, 0.22⟩+⟨0.83, 0.43⟩⟨0.51, 0.15⟩}=min 

{⟨0.989, 0.096⟩⟨0.846, 0.012⟩,⟨0.99, 0.149⟩ ⟨0.846, 

0.018⟩,⟨0.998, 0.2107⟩⟨0.8726, 0.0003⟩} 

Hence, 𝔖 (⟨0.989, 0.096⟩⟨0.846, 0.012⟩)=0.8635 𝔖 (⟨0.99, 

0.149⟩⟨0.846, 0.018⟩)=0.834 

𝔖(⟨0.998, 0.2107⟩⟨0.8726, 0.0003⟩)=0.8301 

Therefore, min {0.8635, 0.834, 0.8301}=0.8301 

Therefore, choose the minimum node and Label 

𝔤(7) =[⟨0.998, 0.2107⟩⟨0.8726, 0.0003⟩, 1→,→6→3]. The 

shortest path and the shortest distance using the proposed 

algorithm for the (Figure 1) are 1→,→6→3 and 0.9,01 

respectively. Figure 4 represents the optimal path using the 

proposed method. Table 2 represents the LDFN optimal values 

at each node using the proposed method. 
 

 
 

Figure 4. The Shortest path of the network with Linear 

Diophantine Fuzzy distance using the proposed algorithm 

Example 2: An example problem has been considered a 

wireless charging approach method for sensor networks as 

shown in Figure 5 from the study [40] for the proposed method. 

Table 3 presents the values of arcs expressed in terms of Linear 

Diophantine Fuzzy numbers for the network. 

 

Table 2. The optimal value of LDFN at every node utilizing 

the proposed method in Example 1 

 
Node 

α 

Shortest LDFN Path 

from Node 1 to α 
𝖌(𝜶) 

2 1→2 ⟨0.81, 0.37⟩⟨0.51, 0.18⟩ 
3 1→, ⟨0.93, 0.68⟩⟨0.53, 0.12⟩ 

4 1→2→4 
⟨0.9506, 0.1739⟩⟨0.7207, 

0.057⟩ 

5 1→2→5 
⟨0.9867, 0.2233⟩⟨0.7354, 

0.0522⟩ 

6 1→,→6 
⟨0.9937, 0.4964⟩⟨0.7462, 

0.0216⟩ 

7 1→,→6→3 
⟨0.998, 0.2107⟩⟨0.8726, 

0.0003⟩ 

 

 
 

Figure 5. The graph with Linear Diophantine Fuzzy distance 

 

Table 3. Arc value in term of Linear Diophantine Fuzzy 

distance for Example 2 

 

Edges LDFN 

(1,2) (⟨0.7, 0.6⟩, ⟨0.5, 0.3⟩) 
(1,4) (⟨0.4, 0.4⟩, ⟨0.6, 0.4⟩) 
(1,5) (⟨0.7, 0.8⟩, ⟨0.5, 0.3⟩) 
(2,3) (⟨0.9, 0.7⟩,⟨0.6, 0.2⟩) 
(2,4) (⟨0.6, 0.9⟩,⟨0.8, 0.2⟩) 
(3,4) (⟨0.8, 0.7⟩,⟨0.4, 0.3⟩) 
(3,6) (⟨0.8, 0.2⟩,⟨0.3, 0.2⟩) 
(4,5) (⟨0.9, 0.8⟩,⟨0.5, 0.3⟩) 
(4,6) (⟨0.6, 0.5⟩,⟨0.4, 0.1⟩) 
(4,7) (⟨0.8, 0.7⟩,⟨0.4, 0.3⟩) 
(5,7) (⟨0.8, 0.7⟩,⟨0.4, 0.3⟩) 
(5,8) (⟨0.9, 0.2⟩,⟨0.3, 0.1⟩) 
(6,7) (⟨0.4, 0.3⟩,⟨0.5, 0.3⟩) 
(7,8) (⟨0.9, 0.4⟩,⟨0.6, 0.4⟩) 
(6,10) (⟨0.7, 0.5⟩,⟨0.2, 0.1⟩) 
(8,9) (⟨0.3, 0.2⟩,⟨0.6, 0.4⟩) 

 

Iteration 1: Start from the source node. 

Let the 𝔤(1) = 〈0,1〉〈0,1〉 and label 𝔤(1)=[⟨0, 1⟩⟨0, 1⟩, 1] 

Iteration 2: Consider the node 1 as α and node 2 as β. Now 

relax the edges which reaches the node 2 using Eq. (4). Using 

the score function [1] to choose the minimum one and label it 

as temporary node. 

𝔤(2) = min
𝛼<2

[𝔤(𝛼) + 𝔡𝛼2] = 𝔤(1) + 𝔡12 =⟨0, 1⟩⟨0, 1⟩+⟨0.7, 

0.6⟩⟨0.5, 0.3⟩=⟨0.7, 0.6⟩⟨0.5, 0.3⟩𝔖(⟨0.7, 0.6⟩⟨0.5, 0.3⟩)=0.15. 
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Therefore, Label 𝔤(2)=[⟨0.7, 0.6⟩⟨0.5, 0.3⟩, 1→2] 

Iteration 3: Repeat the above process with the node 3 and 

relax all edges using the Eq. (4). 

𝔤(3) = min
𝛼<3

[𝔤(𝛼) + 𝔡𝛼3] = 𝔤(2) + 𝔡13 =⟨0.7, 0.6⟩⟨0.5, 

0.3⟩+⟨0.9, 0.7⟩⟨0.6, 0.2⟩=⟨0.97, 0.42⟩⟨0.8, 0.06⟩ 
The score function [1] is used to identify the minimum one 

and label it as temporary node, Therefore, 𝔖(⟨0.97, 0.42⟩⟨0.8, 

0.06⟩)=0.65. 

Hence, Label 𝔤(3)=[⟨0.97, 0.42⟩⟨0.8, 0.06⟩, 1→,] 

Iteration 4: Repeat the same process for the node 4 and 

relax all the edges using the equation and using score function 

pick the minimum value and label it as temporary node. 

𝔤(4) = min
𝛼<4

[𝔤(𝛼) + 𝔡𝛼4] = min {𝔤(1) + 𝔡14, 𝔤(2) +

𝔡24 , 𝔤(3) + 𝔡34}=min {⟨0, 1⟩⟨0, 1⟩+⟨0.4, 0.2⟩⟨0.6, 0.4⟩, ⟨0.7, 

0.6⟩⟨0.5, 0.3⟩+⟨0.6, 0.9⟩⟨0.8, 0.2⟩, ⟨0.97, 0.42⟩, ⟨0.8, 

0.06⟩+⟨0.8, 0.7⟩⟨0.4, 0.3⟩}=min {⟨0.4, 0.2⟩⟨0.6, 0.4⟩,⟨0.88, 

0.54⟩⟨0.9, 0.06⟩, ⟨0.99, 0.29⟩⟨0.88, 0.02⟩} 

Hence, 𝔖 (⟨0.4, 0.2⟩⟨0.6, 0.4⟩)=0.2 𝔖 (⟨0.88, 0.54⟩⟨0.9, 

0.06⟩)=0.59𝔖 (⟨0.99, 0.29⟩⟨0.88, 0.02⟩)=0.78 

Therefore, min {0.2, 0.59, 0.78}=0.2 

Hence label 𝔤(4)=[⟨0.4, 0.2⟩⟨0.6, 0.4⟩, 1→4] 

Iteration 5: Visit each edge that reaches the vertex 5 from 

the source node using the Eq. (4). Using the score function 1 

pick the minimum one and label it as temporary vertex. Repeat 

this process for |𝔙|−1 times. 

𝔤(5) = min
𝛼<5

[𝔤(𝛼) + 𝔡𝛼5] = min {𝔤(1) + 𝔡15, 𝔤(4) +

𝔡45}=min {⟨0, 1⟩⟨0, 1⟩+⟨0.7, 0.8⟩⟨0.5, 0.3⟩, ⟨0.4, 0.2⟩⟨0.6, 

0.4⟩+⟨0.9, 0.8⟩⟨0.5, 0.3⟩}=min {⟨0.7, 0.8⟩⟨0.5, 0.3⟩,⟨0.94, 

0.16⟩⟨0.8, 0.24⟩} 

Hence, 𝔖(⟨0.7, 0.8⟩⟨0.5, 0.3⟩) =

0.05𝔖(⟨0.94, 0.16⟩ ⟨0.8, 0.24⟩) = 0.67 
Therefore, min{0.05, 0.67} = 0.05  

Hence, the minimum value is chosen and Labeled 𝔤(5) =
[⟨0.7, 0.8⟩⟨0.5, 0.3⟩, 1 → 5]. 

Iteration 6: Relax all edges that are reachable from the 

vertex 6 using the Eq. (4) and to fix the temporary node use 

the 1 score function. 

𝔤(6) = min
𝛼<6

[𝔤(𝛼) + 𝔡𝛼6] = min {𝔤(3) + 𝔡36, 𝔤(4) +

𝔡46}=min {⟨0.97, 0.42⟩⟨0.8, 0.06⟩+⟨0.8, 0.2⟩⟨0.3, 0.2⟩, ⟨0.4, 

0.2⟩⟨0.6, 0.4⟩+⟨0.6, 0.5⟩⟨0., 0.1⟩}=min {⟨0.99, 0.08⟩⟨0.86, 

0.01⟩,⟨0.76, 0.1⟩⟨0.76, 0.04⟩} 

Hence, 𝔖(⟨0.99, 0.08⟩⟨0.86, 0.01⟩)=0.88𝔖(⟨0.76, 0.1⟩⟨0.76, 

0.04⟩)=0.69 

Therefore, min {0.88, 0.69}=0.695 

Hence, Label 𝔤(6)=[⟨0.76, 0.1⟩⟨0.76, 0.04⟩, 1→4→6]. 

Iteration 7: Visit all the edges that are reachable to the 

vertex 7(destination node) using 4 and use the score function 

to find the minimum value. 

𝔤(7) = min
𝛼<7

[𝔤(𝛼) + 𝔡𝛼7] = min {𝔤(4) + 𝔡47, 𝔤(5) +

𝔡57, 𝔤(6) + 𝔡67} =min {⟨0.4, 0.2⟩⟨0.6, 0.4⟩+⟨0.9, 0.5⟩⟨0.6, 0.3⟩, 
⟨0.7, 0.8⟩⟨0.5, 0.3⟩+⟨0.8, 0.7⟩⟨0.4, 0.3⟩, ⟨0.76, 0.01⟩⟨0.76, 

0.04⟩+⟨0.4, 0.3⟩⟨0.5, 0.3⟩}=min {⟨0.94, 0.1⟩⟨0.84, 0.12⟩,⟨0.94, 

0.56⟩⟨0.7, 0.09⟩, ⟨0.86, 0.0003⟩⟨0.88, 0.01⟩} 

Hence, 𝔖 (⟨0.94, 0.1⟩⟨0.84, 0.12⟩)=0.78 

𝔖 (⟨0.94, 056⟩⟨0.7, 0.09⟩)=0.49 

𝔖 (⟨0.86, 0.0003⟩⟨0.88, 0.01⟩)=0.86  

Therefore, min {0.78, 0.49, 0.86}=0.49  

Hence label 𝔤(7)= [⟨0.94, 056⟩⟨0.7, 0.09⟩, 1→5→3] 

Iteration 8: Repeat the process for the vertex 8 and relax 

the edges that reaches the vertex 8 using the Eq. (1) and to fix 

the temporary node use the Eq. (1). 

𝔤(8) = min
𝛼<8

[𝔤(𝛼) + 𝔡𝛼8] = min {𝔤(5) + 𝔡58, 𝔤(7) +

𝔡78} =min {⟨0.7, 0.8⟩⟨0.5, 0.3⟩+⟨0.9, 0.2⟩⟨0.3, 0.1⟩, ⟨0.94, 

0.56⟩⟨0.7, 0.09⟩+⟨0.9, 0.4⟩⟨0.6, 0.4⟩}=min {⟨0.97, 0.16⟩⟨0.65, 

0.03⟩, ⟨0.99, 0.22⟩⟨0.88, 0.04⟩} 

Hence 𝔖 (⟨0.97, 0.16⟩⟨0.65, 0.03⟩)=0.72 

𝔖 (⟨0.99, 0.22⟩⟨0.88, 0.04⟩)=0.81.  

Therefore, min {0.72, 0.81}=0.72  

Hence, the minimum node is chosen and labeled 

𝔤(8)=[⟨0.97, 0.16⟩⟨0.65, 0.03⟩, 1→5→9]. 

Iteration 9: Repeat the same process for the vertex 9. 

𝔤(9) = min
𝛼<9

[𝔤(𝛼) + 𝔡𝛼9] = min {𝔤(7) + 𝔡79, 𝔤(8) + 𝔡89} = 

min {⟨0.94, 0.56⟩⟨0.7, 0.09⟩+⟨0.5, 0.2⟩⟨0.4, 0.3⟩,⟨0.97, 

0.16⟩⟨0.65, 0.03⟩ + ⟨0.3, 0.2⟩⟨0.6, 0.4⟩}=min {⟨0.97, 

0.11⟩⟨0.82, 0.02⟩,⟨0.98, 0.3⟩⟨0.86, 0.01⟩} 

Hence 𝔖 (⟨0.97, 0.11⟩⟨0.82, 0.02⟩)=0.83 

𝔖 (⟨0.98, 0.3⟩⟨0.86, 0.01⟩)=0.9 

Therefore, min {0.83, 0.9}=0.83 

Hence, the minimum node is chosen and labeled 

𝔤(9)=[⟨0.97, 0.11⟩⟨0.82, 0.02⟩, 1 → 5 → 3 →  ] 

Iteration 10: Repeat the above process for the vertex 10 

𝔤(10) = min
𝛼<10

[𝔤(𝛼) + 𝔡𝛼10] = min {𝔤(6) + 𝔡610, 𝔤(9) +

𝔡910}=min {⟨0.76, 0.01⟩⟨0.76, 0.04⟩+⟨0.7, 0.5⟩⟨0.2, 0.1⟩,⟨0.97, 

0.11⟩⟨0.82, 0.02⟩+⟨0.7, 0.3⟩⟨0.5, 0.4⟩}=min {⟨0.93, 

0.0005⟩⟨0.81, 0.0004⟩, ⟨0.99, 0.03⟩⟨0.91, 0.0008⟩} 

Hence 𝔖 (⟨0.93, 0.0005⟩⟨0.81, 0.0004⟩)=0.87 

𝔖 (⟨0.99, 0.03⟩⟨0.91, 0.0008⟩)=0.93  

Therefore, min {0.87, 0.93}=0.87  

Hence, Label 𝔤(10) =[⟨0.93, 0.0005⟩⟨0.81, 0.0004⟩, 
1→4→6→10].  

The LDFN optimal value at each node using the proposed 

method is shown in Table 4. 

Hence the shortest path is 1→4→6→10 (is shown in Figure 

6) and the shortest distance is ⟨0.93, 0.0005⟩⟨0.81, 0.0004⟩ 
 

Table 4. LDFN optimal value at each node using the 

proposed algorithm for Example 2 

 
Node 

α 

Shortest LDFN Path 

from Node 1 to α 
𝖌 (α) 

2 1 → 2 ⟨0.7, 0.6⟩⟨0.5, 0.3⟩ 
3 1 → 2 → , ⟨0.97, 0.42⟩⟨0.8, 0.06⟩ 
4 1 → 4 ⟨0.4, 0.2⟩⟨0.6, 0.4⟩ 
5 1 → 5 ⟨0.7, 0.8⟩⟨0.5, 0.3⟩ 
6 1 → 4 → 6 ⟨0.76, 0.01⟩⟨0.76, 0.04⟩ 
7 1 → 5 → 3 ⟨0.94, 0.56⟩⟨0.7, 0.09⟩ 
8 1 → 5 → 9 ⟨0.97, 0.16⟩⟨0.65, 0.03⟩ 
9 1 → 5 → 3 →   ⟨0.97, 0.11⟩⟨0.82, 0.03⟩ 

10 1 → 4 → 6 → 10 
⟨0.93, 0.0005⟩⟨0.81, 

0.0004⟩ 

 

 
 

Figure 6. The shortest path for the given network with Linear 

Diophantine Fuzzy distance using the proposed algorithm 
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3.3 Result analysis  

 

The shortest path 1→,→6→3 and the optimal distance 

⟨0.998, 0.2107⟩⟨0.8726, 0.0003⟩ obtained from the proposed 

algorithm give the same shortest path and the minimal distance 

when compared with the study [18]. Consequently, the 

LDFSPP employing the proposed approach benefited a rescue 

crew quickly arriving at their location within the shortest 

distance. Compared with the study [39], it is observed that the 

proposed work provides the most convincing results, 

1→4→6→10 and ⟨0.93, 0.0005⟩⟨0.81, 0.0004⟩ which helps to 

increase the network's lifetime. Hence our proposed technique 

is better suited for any network with reference parameters and 

satisfaction and dissatisfaction grades. Figure 7 illustrates the 

comparison between the Proposed method and the results from 

previous approaches. Computational development has to be 

implemented as the suggested method for extensive networks. 

This solution approach can apply to more extensive networks 

with various fuzzy environments. 

 

 
 

Figure 7. Result analysis 

 

Table 5. Advantages and restrictions for different FSPP 

 
Types of 

Environments 
Advantages Restrictions 

Fuzzy 

Environment 

When the edge weight is 

uncertain this can be 

employed. It can be used 

in vagueness and unclear 

situations. 

only the membership 

degree with the edge 

values can be 

applied. It is 

impotent for non-

membership grades. 

IFS 

It can be applied with 

imprecise edge weight 

having both membership 

and non-membership 

values 

It is ineffective when 

the sum of 

membership and non-

membership is more 

than one. 

Eg:0.53+0.49=1.02≰
1 

PyFS 

When the total edge 

weight of the 

membership and non-

membership degrees 

exceeds one, this 

environment may cope 

with approximate edge 

weight and can evaluate 

the optimal data. 

Eg:(0.53)2+(0.49)2=0.521 

When the sum of the 

square of the 

membership and non-

membership extends 

beyond one, it is 

inadequate to apply. 

Eg: 

(0.89)2+(0.75)2=1.35

46 ≰ 1 

LDFS 

This approach can be 

used when the reference 

parameter is provided in 

the problem. 

Eg: (0.89) (0.32)+(0.75) 

(0.32)=0.5248<1 

It cannot be executed 

if the arc weight has 

indeterminacy grade 

The above Table 5 describes the Advantages and 

Restrictions of different fuzzy environment for the Fuzzy 

Shortest path problem. 

 

 

4. CONCLUSIONS 

 

The shortest path problem is a crucial area of study with 

applications spanning a broad range of real-world scenarios. 

Classical, fuzzy, IFS, and PyFS theories each offer unique 

potential in addressing the shortest path problem, but they 

require further exploration, particularly regarding the 

integration of reference parameters vital to the situation at 

hand. 

In this paper, we have considered the Linear Diophantine 

Fuzzy arc cost and formulated its application to the shortest 

path problem. We have extended the Bellman-Ford algorithm 

to the Linear Diophantine Fuzzy shortest path and LDF 

distance/time/cost. Our focus was to establish LDF optimality 

constraints in directed network graphs and to develop a 

method to address them effectively. This involves applying the 

score function to calculate the weights of various paths, with 

edge weights represented by LDFNs. 

One of the significant advantages of our approach is its 

efficiency in identifying the existence of a negative cycle. We 

have demonstrated our proposed work through a numerical 

example, identifying optimal results. We also compared our 

results with those found using existing methods. 

Our proposed approach pays additional attention to 

reference parameters in unpredictable, critical situations. It 

enables the determination of the LDFN Shortest path of all 

vertices from a single source vertex with a time complexity of 

O(VE). 

As a future direction, we aim to apply our proposed method 

to large-scale, pragmatic, and varied fuzzy SPPs. 
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NOMENCLATURE 

 

q-ROFS q-rung orthopair fuzzy set 

PyFS Pythagorean fuzzy set 

LDFS Linear Diophantine Fuzzy set 

LDFNs Linear Diophantine Fuzzy Numbers 

SPP Shortest Path Problem 
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