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The aim of this paper is to present new properties of captive domination and determine 

the number of some graphs. The proper subset of the vertices of a graph G is a captive 

dominating set if it is a total dominating set and each vertex in this set dominates at least 

one vertex which does not belong to the dominating set. The domination number 𝛾(𝐺) 
is the minimum cardinality of a dominating set D of G. If V-D contains a dominating 

set, then this set is called an inverse set of D in G. The symbol 𝛾−1(𝐺) represents the

minimum cardinality over all inverse dominating set of G. Some graphs which 

determine the captive domination number such as a ladder graph, corona graph of two 

paths, lollipop graph, barbell graph, corona graph of a cycle of order n, and null graph 

of order p and helm graph. For all these graphs and complements the captive domination 

and inverse captive domination are calculated. 
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1. INTRODUCTION

Let G=(V, E) be a finite simple undirected graph. Let 

𝑁(𝑣) = {𝑢 ∈ 𝑉, 𝑢𝑣 ∈ 𝐸}  be the open neighborhood of a 

vertex v and 𝑁[𝑣] = 𝑁(𝑣)  ∪  {𝑣} is the closed neighborhood 

set. Also, let G[D] be the subgraph of 𝐺 induced by vertices in 

D [1]. A subset 𝐷 ⊆ 𝑉 (𝐺) is a dominating set of G if 𝑁(𝑣) ∩
𝐷 ≠ ∅; for all 𝑣 ∈ 𝑉 − 𝐷. 

A dominating set D is minimal dominating if it does not 

have a proper subset dominating set. The domination number 

𝛾(𝐺) is the minimum cardinality of a dominating set D of G. 

If V-D contains a dominating set, then this set is called an 

inverse set of D in G. The symbol 𝛾−1(𝐺)  represents the

minimum cardinality over all inverse dominating set of G [2]. 

The concept of domination is used to solve many problems in 

various fields of mathematics subjects such as topological 

graphs [2, 3], fuzzy graphs [4, 5], and [6, 7], number theory 

graph [8], general graphs [9-18], and others. The reader can be 

found all notions not mentioned [19-22]. The captive 

domination is initiated by Al-Harere et al. [1], and they get 

many properties and bounded. the main targeted applications 

are placing security cameras, or personnel on a site, 

minimizing the effect of losing a dominating vertex by keeping 

another vertex with the same capabilities and each dominating 

vertex is dominating other vertices outside the dominating set-

in addition to dominating a neighbouring vertex in the 

dominating set. In this work, the new properties are discussed, 

also for some graphs and it is complementing the captive 

domination and the inverse captive domination are determined 

for some graphs as a ladder graph, corona graph of two paths, 

lollipop graph, barbell graph, corona graph of a cycle of order 

n and null graph of order p, and helm graph. 

2. BASIC CONCEPT

Definition 2.1 [1] 

Let G=(V, E) be a graph without isolated vertices, a subset 

D ⊂ V(G) is a captive dominating set (CDS) in G if G[D] has 

no isolated vertex (D is a total dominating set), and each v in 

set D is adjacent to at least one vertex in V-D. The minimum 

cardinality of a captive dominating set (CDN) of G denoted 

by γca(G), is called captive domination number.

Observation 2.2  

If G is a graph has a CDS, then: 

1) Every pendant vertex not belong to each CDS.

2) Every graph has a CDS and pendant vertex has no inverse

CDS. 

3. CAPTIVE AND INVERSE CAPTIVE DOMINATION

IN SELECTED GRAPHS AND THEIR

COMPLEMENTS

3.1 Ladder graph 

Proposition 3.1.1 If G is ladder graph, then: 

γca(G) = {
2, if n = 2

2 ⌈
n

3
⌉ , if n ≥ 3

} and there is no CDN if n=1. 

Proof. In the ladder graph, there are two copies of Pn as an 

induced subgraph. The vertex set of the first path is 
{𝑣1, 𝑣2, …… , 𝑣𝑛}  and the vertex set of the second path is
{𝑣𝑛+1, 𝑣𝑛+2, …… , 𝑣2𝑛} such that for each vertex in the first

path 𝑣𝑖 ;  1 ≤ 𝑖 ≤ 𝑛 there is a corresponding vertex vi+n in the

second path and these corresponding vertices are adjacent as 

shown in the Figure 1. 
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Figure 1. P2×Pn 

 

Let 𝑣1, 𝑣2, …… , 𝑣𝑛, 𝑣𝑛+1, 𝑣𝑛+2, …… , 𝑣2𝑛  be the vertices of 

graph G and 𝐷 ⊂ 𝑉(𝐺) such that: 

 

D=

{
 
 

 
 
{𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖 , 𝑖 = 0,1,… . . ,

𝑛

3
− 1} 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 3)

{𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖 , 𝑖 = 0,1,… . . , ⌈
𝑛

3
⌉ − 2} ∪ {𝑣𝑛, 𝑣2𝑛} 𝑖𝑓 

𝑛 ≡ 1 (𝑚𝑜𝑑 3)
𝑛 ≡ 2 (𝑚𝑜𝑑 3)

 

 

For each copy of the path, each vertex can be dominated 

three vertices as a maximum, so each two corresponding 

vertices can be CDS at most six vertices. Thus, for every 

consecutive three vertices, the middle vertex can be chosen. 

Therefore, depending on n there are three classifications as 

below. 

Case 1. If 𝑛 = 1, then the graph 𝑃2 × 𝑃1 ≡ 𝑃2, so one can 

be concluded that there is no CDS in this case. 

Case 2. If 𝑛 = 2, then the graph 𝑃2 × 𝑃2 ≡ 𝐶4 , and it is 

obvious that 𝛾𝑐𝑎(𝑃2 × 𝑃2) = 2. 

Case 3. If n≥3, then two subcases that depend on 𝑛 are 

discussed as the following. 

Subcase 1. If 𝑛 ≡ 0 (𝑚𝑜𝑑 3) , then let 𝐷1 =

{𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖  , 𝑖 = 0,1, … . . ,
𝑛

3
− 1}, so it is obvious that the 

set D1 is CDS and it is the minimum, because each vertex 

dominates the maximum number as possible. Thus, 𝛾𝑐𝑎(𝐺) =
2𝑛

3
. 

Subcase 2. If 𝑛 ≢ 0 (𝑚𝑜𝑑 3) , then two subcases are 

discussed as the following. 

I) If 𝑛 ≡ 1 (𝑚𝑜𝑑 3), then 𝑛 − 1 ≡ 0 (𝑚𝑜𝑑 3). In the same 

manner in Subcaes 1, the set 𝐷2 = {𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖 , 𝑖 =

0,1, … , ⌈
𝑛

3
⌉ − 2} is minimum CDS for all the graph 𝐺 except 

the two vertices 𝑣𝑛  and 𝑣2𝑛, so the set 𝐷3 = 𝐷2 ∪ {𝑣𝑛 , 𝑣2𝑛} is 

the minimum CDS and 𝛾𝑐𝑎(𝐺) = 2 ⌈
𝑛

3
⌉. 

II) If 𝑛 ≡ 2 (𝑚𝑜𝑑 3), then 𝑛 − 2 ≡ 0 (𝑚𝑜𝑑 3).  
In the same manner in Subcase 1, the set 𝐷4 =

{𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖 , 𝑖 = 0,1, … , ⌈
𝑛

3
⌉ − 2} is minimum CDS for all 

the graph 𝐺 except the four vertices 𝑣𝑛−1, 𝑣𝑛 , 𝑣2𝑛−1, and 𝑣2𝑛, 

so the set 𝐷5 = 𝐷4 ∪ {𝑣𝑛, 𝑣2𝑛}  is the minimum CDS and 

𝛾𝑐𝑎(𝐺) = 2 ⌈
𝑛

3
⌉. 

From each case above, the required is done. 

 

Proposition 3.1.2 If G is ladder graph, then: 

 

𝛾−1
𝑐𝑎
(𝐺) =

{
 

 
2, 𝑖𝑓 𝑛 = 2

2𝑛

3
+ 2, 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 3)

2 ⌈
𝑛

3
⌉ , 𝑖𝑓 𝑛 ≡ 1,2 (𝑚𝑜𝑑 3)}

 

 
  

 

Proof. Depending on n there are three classification as 

below. 

Case 1. If 𝑛 = 2, then the graph 𝑃2 × 𝑃2 ≡ 𝐶4 , and it is 

obvious that 𝛾−1
𝑐𝑎
(𝑃2 × 𝑃2) = 2. 

Case 2. If 𝑛 ≡ 0 (𝑚𝑜𝑑 3), then let 𝐷 = {𝑣2+3𝑖, 𝑣(𝑛+2)+3𝑖,

𝑖 = 0,1, … . . ,
𝑛

3
− 1}, so it is obvious that the set 𝐷 is CDS and 

it is the minimum, and let 𝑆 = {𝑣1+3𝑖, 𝑣(𝑛+1)+3𝑖, 𝑖 =

0,1, … ,
𝑛

3
− 1} ∪ {𝑣𝑛, 𝑣2𝑛} is inverse CDS with respect to 𝐷 

then 𝛾−1
𝑐𝑎
(𝐺) =

2𝑛

3
+ 2. 

Case 3. If 𝑛 ≡ 1,2 (𝑚𝑜𝑑 3) , then let 𝐷1 =

{𝑣2+3𝑖 , 𝑣(𝑛+2)+3𝑖 , 𝑖 = 0,1, … , ⌈
𝑛

3
⌉ − 2} ∪ {𝑣𝑛, 𝑣2𝑛},  so it is 

CDS and it is the minimum, and let 𝑆1 = {𝑣1+3𝑖 , 𝑣(𝑛+1)+3𝑖 , 𝑖 =

0,1, … , ⌈
𝑛

3
⌉ − 2} ∪ {𝑣𝑛−1, 𝑣2𝑛−1} is inverse CDS with 

depending on the set 𝐷1 then 𝛾−1
𝑐𝑎
(𝐺) = 2 ⌈

𝑛

3
⌉. 

From each case above, the required is done. 

 

Proposition 3.1.3 If G  be a graph denoted by G ≡

P2 × Pn for n ≥ 3 then γca(P2 × Pn)=2 and there is no captive 

domination when n=1,2. 

Proof. Let G be a graph of order 2n, depending on 𝑛 there 

are three classifications as below. 

Case 1. If 𝑛 = 1, then the graph 𝑃2 × 𝑃1 ≡ 𝐾2̅̅ ̅,so one can be 

concluded that there is no CDS in this case. 

Case 2. If 𝑛 = 2, then the graph 𝑃2 × 𝑃2 ≡ 𝐶4̅̅ ̅, so there is 

no CDS in this case. 

Case 3. If n≥3, suppose that the vertices 𝑣1  and 𝑣2n ∈
𝑃2 × 𝑃𝑛  such that 𝑣1  is adjacent to two vertices 𝑣2, 𝑣𝑛+1 and 

the vertex 𝑣2n  is adjacent to two vertices 𝑣n, 𝑣2n−1  by 

proposition 3.1.1 (as shown in the Figure 1) since four vertices 

in 𝑃2 × 𝑃𝑛  has regular degree 2n-3 and 2n-4 vertices in 

𝑃2 × 𝑃𝑛 has regular degree 2n-4, (as shown in the Figure 2). 

therefore, the vertex 𝑣1 is adjacent to all vertices (except the 

two vertices 𝑣2, 𝑣𝑛+1 ) and the vertex 𝑣2𝑛  is adjacent to all 

vertices (except the two vertices 𝑣𝑛 , 𝑣2𝑛−1 ) in 𝑃2 × 𝑃𝑛  the 

CDN is 2. 

From each case above, the required is done. 

 

 
 

Figure 2. 𝑃2 × 𝑃𝑛 

 

Proposition 3.1.4 If G  be a graph denoted by G ≡

P2 × Pn for n ≥ 3  then γ−1ca(P2 × Pn)=γca(P2 × Pn)=2 and 

there is no inverse captive domination when n = 1,2. 

Proof. Depending on 𝑛  there are three classifications as 

below. 
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Case 1. If 𝑛 = 1, then the graph 𝑃2 × 𝑃1 ≡ 𝐾2̅̅ ̅, so one can 

be concluded that there is no inverse CDS in this case. 

Case 2. If 𝑛 = 2, then the graph 𝑃2 × 𝑃1 ≡ 𝐶4̅̅ ̅, so there is no 

inverse CDS in this case. 

Case 3. If 𝑛 ≥ 3, by Proposition 2.1 since four vertices in 

𝑃2 × 𝑃1 has (2n-3)-regular degree and 2n-4 vertices in 𝑃2 × 𝑃1 

has (2n-4 )-regular degree, then there exist CDS in V-D this 

set is inverse CDS respect with 𝐷 then 𝛾−1
𝑐𝑎
(𝑃2 × 𝑃1)=2. 

From each case above, the required is done. 

 

3.2 The corona graph of two paths 

 

Proposition 3.2.1 If G be a corona graph denoted by G ≡

Pn⊙Pm  then γca(G) = {
2 if n = 1,m ≥ 2
n if n > 1,m ≥ 1

}, the graph G has 

no CDS when n=1, m=1. 

Proof. Let G be a graph of order n+nm such that 𝑃𝑛 be a 

path of order n and 𝑃𝑚 be a path of order m then depending on 

n as shown in the Figure 3. There are three classifications as 

below. 

Case 1. If n=1, m=1 then the graph 𝑃𝑛⊙𝑃𝑚 ≡ 𝐾2, so one 

can be concluded that there is no CDS in this case. 

Case 2. If 𝑛 = 1,𝑚 ≥ 2 then the graph 𝑃𝑛⊙𝑃𝑚 ≡ 𝐹𝑛, then 

𝛾𝑐𝑎(𝐺) = 2. 

Case 3. 𝑛 > 1,𝑚 ≥ 1 , let 𝑣1, 𝑣2, …… , 𝑣𝑛  the vertices of 

path 𝑃𝑛 and let 𝑢1, 𝑢2, …… , 𝑢𝑚 the vertices of path 𝑃𝑚, since 

every vertex in 𝑃𝑛 join with vertices of copy path 𝑃𝑚 from 𝑢1 

to 𝑢𝑚  and 𝐷 − 𝑣 , 𝑣 ∈ 𝑝𝑛  not CDS then  the minimum 

dominating set D={𝑣1, 𝑣2, …… , 𝑣𝑛}, and 𝛾𝑐𝑎(𝐺) = 𝑛. 

From each case above, the required is done. 

 

 
 

Figure 3. 𝐺 ≡ 𝑃𝑛⊙𝑃𝑚 

 

Proposition 3.2.2 If G be a corona graph denoted by G ≡

Pn⊙Pm  then: γ−1ca(G) =

{
 
 

 
 2 ⌈

m

4
⌉  if n = 1,m ≠ 5,9

2 ⌈
m

4
⌉ − 1 if n = 1,m = 5,9

n(2 ⌈
m

4
⌉) if n ≥ 2,m ≥ 2 }

 
 

 
 

 

and the graph G has no inverse CDS when n = 1,m = 1,2 and 

when n=2, m=1. 

Proof. Let G be a graph of order 𝑛 + 𝑛𝑚 such that 𝑃𝑛 be a 

path of order 𝑛 and 𝑃𝑚 be a path of order 𝑚 then depending on 

𝑛 there are six classifications as below. 

Case 1. If n=1, m=1 then the graph 𝑃1⊙𝑃1 ≡ 𝐾2, so one 

can be concluded that there is no inverse CDS in this case. 

Case 2. If n=1, m=2 then the graph 𝑃1⊙𝑃2 ≡ 𝐾3, so one 

can be concluded that there is no inverse CDS in this case. 

Case 3. If n=2, m=1 then the graph 𝑃2⊙𝑃1 ≡ 𝐾3, so one 

can be concluded that there is no inverse CDS in this case. 

Case 4. If 𝑛 = 1,𝑚 ≠ 5,9  and since 𝑃1⊙𝑃𝑚 ≡ 𝐹𝑛 , the 

CDS 𝐷 contains one vertex say 𝑣 in 𝑃1of degree n-1 such that 

𝐷 = {𝑣, 𝑢1}, the vertex 𝑢1 be in 𝑃𝑚, so these vertices must be 

out of inverse CDS  𝐷−1 , then 𝛾𝑐𝑎
−1(𝑃1⊙𝑃𝑚) ≡ 𝛾𝑐𝑎(𝑃𝑛)  by 

theorem 2.12 [1]. 

Case 5. If n=1, m=5,9 then there exist two subcases as 

follows: 

i) If n=1,m=5 then let 𝐷 = {𝑣1, 𝑢1}, so it is obvious that the 

set 𝐷 is CDS and it is the minimum, so the 𝐷−1 = {𝑢2 , 𝑢3, 𝑢4} 

is inverse CDS with respect to 𝐷 then 𝛾−1
𝑐𝑎
(𝐺) = 2 ⌈

𝑚

4
⌉ − 1. 

ii) If n=1,m=9 then let 𝐷 = {𝑣1, 𝑢1}, so it is obvious that the 

set 𝐷 is CDS and it is the minimum, so the 𝐷−1 = {𝑢2 , 𝑢3} ∪
{𝑢𝑚−3, 𝑢𝑚−2, 𝑢𝑚−1} is inverse CDS depending on the set 𝐷 

then 𝛾−1
𝑐𝑎
(𝐺) = 2 ⌈

𝑚

4
⌉ − 1. 

Case 6. If n≥2, m≥2, now by Proposition 3.1, then the 

minimum dominating set D={𝑣1, 𝑣2, …… , 𝑣𝑛}, these vertices 

must be out of the minimum inverse dominating set 𝐷−1, so 

𝛾𝑐𝑎
−1(𝑃1⊙𝑃𝑚) ≡ 𝑛(𝛾𝑐𝑎(𝑃𝑛)). 
From each case above, the required is done. 

 

Proposition 3.2.3 If G be a graph denoted by G ≡ Pn⊙Pm 

then γca(G) = 2, is no captive domination when n = 1,m ≥
1. 

Proof. Let G be a graph of order n+nm such that 𝑃𝑛 be a 

path of order n and 𝑃𝑚 be a path of order 𝑚 then depending on 

n there are two classification as below. 

Case 1. If 𝑛 = 1,𝑚 ≥ 1  then the graph 𝑃1⊙𝑃𝑚  has 

isolated vertex, so one can be concluded that there is no CDS 

in this case. 

Case 2. If 𝑛 ≥ 2,𝑚 ≥ 1 let 𝑣1, 𝑣2, …… , 𝑣𝑛  the vertices of 

path 𝑃𝑛  and let 𝑢1, 𝑢2, …… , 𝑢𝑚  the vertices of path 𝑃𝑚  since 

the vertex 𝑢1 in copy path 𝑃𝑚 adjacent to every vertex in 𝑃𝑛 

and copy path 𝑃𝑚  in the graph 𝑃1⊙𝑃𝑚  except two vertices 

the vertex 𝑣1  and 𝑢2whose adjacent with it in 𝑃𝑛⊙𝑃𝑚  and 

since there exist another vertex in the graph 𝑃1⊙𝑃𝑚 adjacent 

with 𝑢1  and dominates on these vertices 𝑣1  and 𝑢2  then the 

CDN is 2 ( as shown in Figure 4). 

Depending to two cases above, the required is done. 

 

 
 

Figure 4. 𝐺 ≡ 𝑃𝑛⊙𝑃𝑚 

 

Proposition 3.2.4 If G be a graph denoted by G ≡ pn⊙pm 

then γca
−1(G) = 2, the graph 𝐺 has no inverse CDS when 𝑛 =

1,𝑚 ≥ 1 and n=2, m=1. 

Proof. Depending on n there are three classifications as 

below. 

Case 1. If n=1, m≥1 then the graph 𝑃1⊙𝑃𝑚  has isolate 

vertex, so one can be concluded that there is no CDS in this 

case and there is no inverse CDS. 

Case 2. If n=2, m=1 then the graph 𝑃2⊙𝑃1 ≡ 𝑃4, so one 

can be concluded that there is no inverse CDS in this case by 

Note 3.3 [1]. 
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Case 3. If n≥2, m>1 then by above proposition there exist 

another dominating set in V-D such that this set is inverse CDS 

and minimum, so 𝛾𝑐𝑎
−1(𝐺) = 2. 

From all cases above, the required is done. 

 

3.3 The lollipop graph 

 

Proposition 3.3.1 If 𝐺 is a lollipop graph denoted by G ≡
Lm,n then: 

 

γca(G) = {

2 ⌈
n

4
⌉ , if n ≡ 1,2 (mod 4)

2 ⌈
n

4
⌉ + 2, if n ≡ 0,3 (mod 4)

  

  

 

Proof. Let 𝑣1 = 𝑢0 , then depending on n there are three 

classifications as below. 

Case  1. If 𝑛 ≡ 2 (𝑚𝑜𝑑 4) , then let 𝐷1 = {𝑢4𝑖, 𝑢1+4𝑖, 𝑖 =

0, … , ⌈
𝑛

4
⌉ − 1}. The vertex 𝑢0 = 𝑣1, so this vertex dominates 

all vertices in the induced subgraph which is isomorphic to the 

complete graph and the vertex 𝑢1 is adjacent to the vertex 𝑢0 

and dominates the vertex 𝑢2 as shown in Figure 5. Thus, the 

two vertices 𝑢0 and 𝑢1 are taken in a CDS, after this leave two 

vertices (𝑢2 𝑎𝑛𝑑 𝑢3) and take two vertices (𝑢4 𝑎𝑛𝑑 𝑢5). The 

vertex 𝑢4 dominates the vertex 𝑢3 and in this way we keep the 

totality condition of CDS and so on. Thus, the set 𝐷1  is a 

minimum CDS. 

Case  2.  If 𝑛 ≡ 1 (𝑚𝑜𝑑 4), then depending on 𝑛 there are 

two classifications as below. 

I) If n=1, then 𝐷 = {𝑣1, 𝑣2}  it is clear that set D is the 

minimum CDS. 

II) Let 𝐷2 = {𝑣1, 𝑣2} ∪ {𝑢3+4𝑖 , 𝑢4+4𝑖, 𝑖 = 0, … , ⌈
𝑛

4
⌉ − 2} . 

two vertices 𝑣1, 𝑣2 so these vertices dominate all vertices in 

the induced subgraph which is isomorphic to the complete 

graph and vertex 𝑢0 = 𝑣1 is adjacent to the vertex 𝑢1. The two 

vertices 𝑣1  and 𝑣2  are taken in a CDS, after this leave two 

vertices (𝑢1 𝑎𝑛𝑑 𝑢2) and take two vertices (𝑢3 𝑎𝑛𝑑 𝑢4). The 

vertex 𝑢3 dominates the vertex 𝑢2 and in this way, we keep the 

totality condition of CDS and so on. Thus, the set 𝐷2  is a 

minimum CDS. 

Case 3.  If 𝑛 ≡ 0 (𝑚𝑜𝑑 4) , then let 𝐷3 = {𝑣1, 𝑣2} ∪

{𝑢2+4𝑖 , 𝑢3+4𝑖 , 𝑖 = 0, … , ⌈
𝑛

4
⌉ − 1} . As the same technique in 

Case 1, Subcase 2, the set 𝐷3 is a CDS of all vertices in the 

graph. 

Case  4.  If 𝑛 ≡ 3 (𝑚𝑜𝑑 4) , then let 𝐷4 = {𝑣2, 𝑣3} ∪

{𝑢1+4𝑖 , 𝑢2+4𝑖 , 𝑖 = 0, … , ⌈
𝑛

4
⌉ − 1} . As the same technique in 

Case 1, Subcase 2, the set 𝐷4 is a CDS of all vertices in the 

graph. 

From all cases above, the required is done. 
 

 
 

Figure 5. 𝐺 ≡ 𝐿𝑚,𝑛 

Proposition 3.3.2 If 𝐺 is a lollipop graph denoted by 𝐺 ≡
𝐿𝑚,𝑛 then G has no CDN 𝛾𝑐𝑎

−1. 

Proof: The graph G has path induced subgraph and 

according to Observation 2.2, the G has no inverse CDN𝛾𝑐𝑎
−1. 

Proposition 3.3.3 If 𝐺 ≡ 𝐿𝑚,𝑛 be a graph then 𝛾𝑐𝑎(𝐺) = 2, 

if n>1, and has no CDS if n=1. 

Proof: Depending on n there are three classifications as 

below. 

I) If n=1, then graph G has an isolated vertex, then there is 

no CDS. 

II) Since every vertex in the induced subgraph which is 

isomorphic to the complete graph dominates on all vertices in 

the induced subgraph which is isomorphic to the path graph 

except the vertex 𝑣1 this vertex is adjacent to n-1 vertices in 

induced subgraph which is isomorphic to the path graph, then 

𝛾𝑐𝑎(𝐺) = 2. 

From all cases above, the required is done. 

 

Proposition 3.3.4 If 𝐺 ≡ 𝐿𝑚,𝑛 , 𝑛 > 1  be a graph then 

𝛾𝑐𝑎
−1(𝐺) = 2. 

Proof: By the Proposition above since every vertex in the 

induced subgraph which is isomorphic to the complete graph 

dominates on all vertices in induced subgraph which is 

isomorphic to the path graph except the vertex 𝑣1 this vertex 

adjacent to n-1 vertices in the induced subgraph which is 

isomorphic to the path graph then there exist another set in V-

D such that this set is minimum and inverse CDN.  

 

3.4 The barbell graph 

 

Proposition 3.4.1 If G ≡ Bn,n be a barbell graph of order 2n 

then γca(G) = 2. 

Proof: The vertex set of 𝐵𝑛,𝑛 is {𝑣𝑖:1≤ 𝑖 ≤ 2𝑛}, the vertex 

set of the first complete graph 𝐾𝑛 is {𝑣1, 𝑣2, …… , 𝑣𝑛} and the 

vertex set of the second complete graph 𝐾𝑛  is 

{𝑣𝑛+1, 𝑣𝑛+2, …… , 𝑣2𝑛} as shown in Figure 6. 

From the definition of a barbell graph, there are two copies 

of a complete graph each of which can dominate by one vertex 

and to keep the totality of a dominating set, two adjacent 

vertices are taken. Thus, the set 𝐷 = {𝑣𝑛 , 𝑣𝑛+1} is a minimum 

CDS, and 𝛾𝑐𝑎(𝐺) = 2. 

 

 
 

Figure 6. 𝐺 ≡ 𝐵𝑛,𝑛 

 

Proposition 3.4.2 If 𝐺 ≡ 𝐵𝑛,𝑛, 𝑛 > 2 be barbell graph of 

order 2n then 𝛾𝑐𝑎
−1(𝐺) = 4. 

Proof: By proposition 3.4.1, above let= {𝑣𝑛 , 𝑣𝑛+1}, so it is 

obvious that the set 𝐷  is captive dominating and it is the 

minimum, and since there exists another dominating set in 𝑉 −
𝐷 and it is minimum, let 𝑆 = {𝑣1, 𝑣2} ∪ {𝑣𝑛+2, 𝑣𝑛+3} this set 

is inverse CDN then 𝛾𝑐𝑎
−1(𝐺) = 4. 

 

Proposition 3.4.3 If 𝐺 ≡ 𝐵𝑛,𝑛, 𝑛 > 1 be a graph of order 2n 

then 𝛾𝑐𝑎(𝐺) = 2. 
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Proof: From the definition of a barbell graph, there are two 

subgraphs that are isomorphic to a complete graph of order 

one 𝐾𝑛  is 𝐾1 = {𝑣1, 𝑣2, …… , 𝑣𝑛}  and 𝐾2 =

{𝑣𝑛+1, 𝑣𝑛+2, …… , 𝑣2𝑛}. In the graph 𝐵𝑛,𝑛  each vertex in the 

induced subgraph 𝐾1  except the vertex 𝑣𝑛  dominates all 

vertices in the induced subgraph 𝐾2. Also, each vertex in the 

induced subgraph 𝐾2  except the vertex 𝑣𝑛  dominates all 

vertices in the induced subgraph 𝐾1 . Therefore, let 𝐷1 =
{𝑣𝑛−1 , 𝑣2𝑛−1}  it is obvious that the set 𝐷1  is a captive 

dominating set and it is minimum. Thus, 𝛾𝑐𝑎(𝐺) = 2. 

 

Proposition 3.4.4 If 𝐺 ≡ 𝐵𝑛,𝑛, 𝑛 > 2 be a graph of order 2n 

then 𝛾𝑐𝑎
−1(𝐺) = 2. 

Proof: By Proposition 3.4.3, since the set 𝑆 = {𝑣1, 𝑣𝑛+2} is 

captive dominating and it is the minimum, then there exists 

another set in 𝑉 − 𝑆 say 𝑊 = {𝑣2, 𝑣𝑛+3}, so it is inverse CDN 

and minimum. 

 

3.5 Corona graph of a cycle of order n and null graph of 

order p 

 

Proposition 3.5.1 If G≡ Cn⨀Kp̅̅̅̅ , where Cn  be cycle of 

order n and Kp̅̅̅̅  is null graph of order p, then γca(G) = n. 

Proof: Each vertex belongs to the induced subgraph which 

isomorphic to 𝐾𝑝̅̅̅̅  not belong to each CDS according to 

Observation 2.2. Moreover, each vertex in the induced 

subgraph which isomorphic to 𝐶𝑛 belongs to each CDS. These 

vertices are totally dominating set and each vertex of them 

dominates p vertices that represent the set of vertices of a copy 

of 𝐾𝑝̅̅̅̅  as shown in the Figure 7. Thus, 𝛾𝑐𝑎(𝐺) = 𝑛.  

 

Proposition 3.5.2 If G ≡ Cn⨀Kp̅̅̅̅  then the graph G has no 

inverse captive domination number. 

Proof: The proof is straightforward according to 

Observation 1.2. 

 

Proposition 3.5.3 If G be a graph denoted by G ≡ Kp̅̅̅̅ ⊙ Cn 

then γca(G) = 2p, where p order of Kp̅̅̅̅ . 

Proof: Let 𝐾𝑝̅̅̅̅  of order 𝑝 corona with 𝐶𝑛 be a cycle of order 

𝑛, the graph 𝐺  denoted by 𝐺 ≡ 𝐾𝑝̅̅̅̅ ⊙ 𝐶𝑛  of order 𝑝(𝑛 + 1). 

The vertex set of 𝐾𝑝̅̅̅̅  is {𝑣1, 𝑣2, …… , 𝑣𝑝} and the vertex set of 

𝐶𝑛 is {𝑢1, 𝑢2, …… , 𝑢𝑛} as shown in Figure 8. 

Graph G consists of p components and each component is 

isomorphic to a complete graph of order n+1, then the 

CDS 𝐷 = {𝑣𝑝, 𝑢1}, and the CDN is 2. Thus, 𝛾𝑐𝑎(𝐺) = 2𝑝. 

 

Proposition 3.5.4 If G be a graph denoted by G ≡ Kp̅̅̅̅ ⊙ Cn 

then γca
−1(G) = {

2p 𝑖𝑓 𝑛 = 3

2𝑝 ⌈
𝑛

4
⌉  𝑖𝑓 𝑛 > 3

}, where p order of Kp̅̅̅̅ . 

Proof. Depending on the order of the cycle there are two 

cases as the following. 

Case 1. If n=3, then each component is isomorphic to a 

complete graph of order 4, so the order of each of these 

components is equal to four. Two of these vertices are chosen 

in the set D, so the other two vertices of each component can 

be chosen to create the other a CDS which is disjoint from the 

set D. This set is 𝐷−1  and it is obvious that is minimum 

cardinality since |𝐷−1| = |𝐷| = 2. Thus, 𝛾𝑐𝑎
−1(𝐺) = 2𝑝. 

Case 2. n>3, then each component is isomorphic to the 

wheel graph, the center of these components is used in the set 

D, so we cannot use in another dominating set. Thus, the 

vertices of the set 𝐷−1 lie in the induced subgrph isomorphic 

to the cycle graph. Thus, by using proposition 2.14 [1], 

𝛾𝑐𝑎
−1(𝐺) = 2𝑝 ⌈

𝑛

4
⌉. 

From the two cases above, the required is done. 

 

 
 

Figure 7. 𝐺 ≡ 𝐶𝑛⨀𝐾𝑝̅̅̅̅  

 

 
 

Figure 8. 𝐺 ≡ 𝐾𝑝̅̅̅̅ ⊙ 𝐶𝑛 

 

3.6 The helm graph 

 

Proposition 3.6.1 If 𝐺 ≡ 𝐻𝑛 be helm graph of order (2𝑛 −
1) vertices, then 𝛾𝑐𝑎(𝐺) = 𝑛 − 1. 

Proof. Let 𝐺  be helm graph of order (2𝑛 − 1) , then the 

number of vertices in induced subgraph isomorphic to cycle is 

𝑛 − 1 as shown in Figure 9. All these vertices are support 

vertices by definition must be in CDS D then 𝛾𝑐𝑎(𝐺) = 𝑛 − 1. 

 

 
 

Figure 9. 𝐺 ≡ 𝐻𝑛 
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Remark 3.6.2 If 𝐺 ≡ 𝐻𝑛  be helm graph of order (2n-1)

vertices, then 𝐺 has no inverse CDS according to Observation 

1.2. 

Proposition 3.6.3 If 𝐺 ≡ 𝐻𝑛  be a graph of order (2n-1)

vertices, then 𝛾𝑐𝑎(𝐺) = 2.

Proof. Each pendent vertex in the helm graph 𝐻𝑛  will

adjacent to every vertex in 𝐺 ≡ 𝐻𝑛  except the support vertex

in 𝐻𝑛. Thus, 𝛾𝑐𝑎(𝐺) ≥ 2, now let 𝐷 ⊆ 𝐻𝑛  be set contains two

pendants’ vertices of 𝐻𝑛 . It is obvious tht the set 𝐷  is

dominating and the two vertices are adjacent in 𝐻𝑛, moreover

each one of them is adjacent to at least one vertex of the set 

𝑉 − 𝐷 in 𝐻𝑛. Therefore, 𝛾𝑐𝑎(𝐺) = 2.

Proposition 3.6.4 If 𝐺 ≡ 𝐻𝑛  be a graph of order (2𝑛 − 1)
vertices, then 𝛾𝑐𝑎

−1(𝐺) = 2, if 𝑛 ≥ 5 and has no inverse if

𝑛 = 4. 

Proof. Depending on 𝑛  there are two classifications as 

below. 

Case 1. If n=4, then by the previous proposition two 

pendants in 𝐻𝑛 make a dominating set in the graph 𝐻𝑛 (D). In

the graph 𝐻𝑛, the remained pendant vertex in the graph 𝐻𝑛 not

dominates the support vertex which is adjacent to it in the 

graph 𝐻𝑛  and there is no any vertex in V-D dominates this

vertex. Thus, the graph 𝐻4 has no inverse.

Case 2. If n>4, then there are at least two pendant vertices 

not belong to the set D. These two pendants’ vertices make 

another dominating set which keep the all conditions of CDS 

and disjoint from the set D. Thus, 𝛾𝑐𝑎
−1(𝐺) = 2.

From the two cases above, the required is done. 

4. CONCLUSIONS

According to the above results, the calculated captive 

domination of many graphs with it is a compliment, and an 

inverse of these graphs is a compliment. Most results of these 

graphs are different. Most results of these graphs are different 

and we obtained that some graphs have no captive domination 

number but when we used the operations, we got captive 

domination like, 𝑃2 have no captive domination number but by

using Cartesian product with path 𝑃2 in this case got captive

domination equal 2. 
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