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The expanding landscape of cyber threats, alongside the diminished effectiveness of 

traditional detection methods, has necessitated the exploration of machine learning 

(ML) techniques in information security. This study investigates the potential of various

ML techniques in detecting a myriad of network threats using the UNSW-NB15 dataset,

a comprehensive repository of diverse network attack instances. The dataset is initially

analyzed and subsequently prepared for ML algorithms by transforming non-numerical

attributes into numerical features using the popular “Label Encoder” encoding method.

Subsequently, an array of ML techniques, including Decision Tree, Random Forest,

Gradient Boosting, XGB, AdaBoost, MLP, and Voting, is deployed on the prepared

dataset. Three experimental setups were designed: 1) Binary classification to

distinguish between normal and malicious attack types. 2) Multiclass classification to

differentiate among various malicious attack types. 3) An enhancement experiment to

improve upon the second experimental setup. These experiments were conducted to

evaluate the ability of each algorithm to discern among the malicious attack types

represented in the UNSW-NB15 dataset. The results suggest that the voting classifier

exhibited superior performance in the attack detection process. Furthermore, the XGB

algorithm demonstrated higher evaluation metrics compared to other techniques.

Consequently, the XGB algorithm outperformed others regarding the performance

measures used in the detection process. This study offers valuable insights into the

application of ML techniques in enhancing information security and detection efficacy

of complex cyber threats.
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1. INTRODUCTION

Over the past few decades, the global number of internet 

users has seen a significant expansion [1]. This considerable 

growth, driven by technological advancements and worldwide 

digitalization, has brought numerous benefits to the 

international community. Such benefits include enhanced data 

sharing, network efficiency, productivity, customer 

experience, agility, data transparency, and decision-making 

effectiveness [2]. Moreover, digital transformation has 

facilitated business automation and network integration, 

offering critical solutions for both businesses and research [3]. 

The internet, technology, and digitalization collectively 

have streamlined the time, effort, and cost associated with data 

transfer and information exchange across distant locations [4]. 

They have also improved data and resource management, 

enabling daily information and statistics to be archived in 

network databases readily accessible to employees and 

managers [5]. Moreover, these platforms support the transfer 

and storage of sensitive information related to customers or 

citizens, underscoring the necessity for robust security 

measures to ensure data privacy [5, 6]. 

Internet, database, and network security have been 

extensively studied by scholars, yet offering efficient solutions 

for improved information security remains a challenge. 

Despite the immense benefits of digitalization, the internet, 

and technology, their expansion has brought about an increase 

in network threats and cyber-attacks [7]. The evolving nature 

of internet attacks and viruses necessitates the use of 

intelligent network-detection approaches for effective 

prediction and high-accuracy detection of such threats [8]. 

In response, researchers and computer engineers have 

employed machine learning (ML) algorithms and novel 

techniques to detect network viruses and bolster internet and 

online database security. ML, as a practical internet security 

technique, can predict powerful network attacks that are 

difficult to detect using conventional antivirus programs. 

Instead of dealing with only raw malware, ML antivirus 

approaches involve training a model to enhance its 

effectiveness and ability to predict new viruses. By exploring 

the key characteristics and common features of cyber threats 

and network viruses, ML approaches can train virus detection 

models to improve their performance in predicting new viruses 

and cyber-attacks. 
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This study aims to explore and assess the significant role of 

ML in shielding internet networks and databases from rapidly 

evolving cyber threats. The paper is structured as follows: 

Section 2 covers the key features and crucial contributions of 

ML in defending internet networks and databases from 

cyberattacks, with a focus on identifying intelligent algorithms 

and innovative techniques that leverage ML principles. 

Section 3 outlines the primary approach and methodology 

employed in this research. Section 4 presents the major study 

findings related to numerical analysis, with validation 

conducted using Python software to underscore the 

contribution of ML models and intelligent ML algorithms. 

This section also discusses the research outputs in relation to 

findings by other researchers. Lastly, Section 5 summarises 

the study's critical findings and outlines recommendations and 

proposals for future work. 

 

 

2. LITERATURE REVIEW 

 

2.1 ML principles for effective cyber threats detection 

 

Various studies have adopted Data Mining (DM) and 

Machine Learning (ML) techniques to detect and analyze 

cyber threats. In a particular model, three DM and ML 

techniques were utilized, including Logistic Regression (LR), 

Decision Tree (DT), and Random Forest (RF) algorithms. This 

model focused on investigating various attack time frames, 

collecting post-infection data. The data was formatted and 

structured based on the CSV principles to overcome data 

diversity challenges. Preprocessing operations such as data 

cleaning, normalization, feature selection, and feature 

extraction were performed during the numerical analysis. The 

dataset was also partitioned into training and testing datasets. 

The analysis demonstrated that the LR algorithm yielded 

remarkable accuracy of 99.96% compared to other ML 

algorithms [9]. 

In another study, Anwer et al. [10] conducted a comparative 

analysis of four ML techniques to detect malicious network 

traffic, using the NSL-KDD dataset. They utilized intelligent 

ML algorithms including RF, Gradient Boosted Decision 

Trees (GBDT), and Support Vector Machine (SVM). These 

algorithms were evaluated based on accuracy, specificity, 

training time, and prediction time. The RF algorithm exhibited 

the best performance and reliability, with an accuracy of 

approximately 85.34% in cyber threat detection and internet 

attack identification. 

Ferriyan et al. [11], meanwhile, explored the contributions 

of ML principles and intelligent algorithms in classifying and 

locating complex cyber threats. They employed various ML 

algorithms to analyze the HIKARI-2021 dataset, including 

MultiLayer Perceptron (MLP), K-Nearest Neighbors (KNN), 

SVM, RF, among others. The performance of these algorithms 

was assessed using accuracy, balanced accuracy, precision, 

recall, and F1 score. The study found that the application of 

ML techniques resulted in enhanced detection outcomes, with 

maximum accuracy of roughly 99% for SVM, MLP, and RF 

compared to 98% for KNN. 

Lastly, Pelletier and Abualkibash [12] utilized intelligent 

ML algorithms to predict various categories of cyber threats 

and harmful internet attacks. They used the CIC IDS-2017 

dataset and implemented Artificial Neural Networks (ANNs) 

and RF algorithms to identify severe network threats. The 

dataset encompassed 80 features, 15 classes of attacks, and 15 

million samples. A simulation process and coding analysis 

were conducted using the Boruta software. Their findings 

confirmed that the use of ML algorithms, like RF, resulted in 

satisfactory accuracy rates of 96.24% compared to traditional 

detection techniques. These studies collectively highlight the 

significant potential of ML in enhancing cyber threat detection 

and network security. 

 

2.2 ML approaches for detecting cyber threats based on 

the UNSW-NB15 dataset  

 

Several studies have focused on the UNSW-NB15 dataset 

to develop Machine Learning (ML) algorithms for cyber threat 

detection, demonstrating varying degrees of effectiveness, 

reliability, speed, and accuracy. 

Kumar et al. [13] introduced a novel ML algorithm to 

investigate cyber threat detection. Their numerical analysis 

and simulation process found that their proposed ML 

algorithm surpassed conventional algorithms, such as 

Decision Trees (DT). The new algorithm demonstrated 

significant improvements in the false alarm rate, detection 

accuracy, average detection accuracy, average F-measure, and 

the speed of cyber threat identification. 

Amaizu et al. [14] proposed a new intelligent ML algorithm, 

aimed at detecting cyber threats with higher accuracy and 

effectiveness. They used the CSE-CIC-IDS 2018, UNSW-

NB15, and NSL-KDD datasets for their research. A 

comparative analysis was conducted to compare the 

performance of their proposed algorithm with other common 

ML algorithms. Their numerical simulations revealed that 

their proposed ML algorithm achieved detection accuracies of 

76.47%, 89.99%, and 97.89% for the CSE-CIC-IDS2018, 

UNSW-NB15, and NSL-KDD datasets, respectively. 

Kasongo and Sun [15] applied ML-based intrusion 

detection systems to identify severe network threats, using the 

UNSW-NB15 intrusion detection dataset. They implemented 

a filter-based feature minimization approach with the 

XGBoost (XGB) algorithm. Their simulation and coding 

analysis confirmed that the XGB-based feature identification 

technique significantly enhanced the accuracy of the ML 

algorithms. Specifically, the accuracy rate of the DT algorithm 

increased from 88.13% to 90.85% in a binary classification 

situation. These results underline the potential of ML in 

enhancing cyber threat detection and network security, 

particularly when optimized with feature selection techniques 

such as those used in XGB. 

 

 

3. METHODOLOGY 

 

The proposed methodology described in this section was 

employed in this study to recognize distinct types of assaults 

in the UNSW-NB15 cybersecurity dataset, as depicted in 

Figure 1. The proposed methodology is demonstrated in the 

ensuing sections. 

 

3.1 Dataset description 

 

We used in our experiment a well-known dataset that has 

many cybersecurity attacks: the UNSW-NB15 dataset. Table 

1 shows the name of each dataset, the number of Instances, the 

number of features, and what are the cybersecurity attacks. 

The IXIA traffic generator uses three servers to generate this 

dataset: two servers for normal attacks and one server for 
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malicious attacks. This dataset contains 45 features and 

257,673 instances divided into 93,000 regular attacks and 

164,673 malicious attacks [16]. The vicious attacks included 

nine attacks: Analysis, Reconnaissance, DoS, Exploits, 

Fuzzers, Generic, Normal, Worms, Backdoor, and Shellcode. 

The features of this dataset are shown in Table 2. 

 

 
 

Figure 1. Diagram of the proposed methodology 

 

Table 1. Information on cybersecurity datasets 

 
Dataset 

Name 

No. of 

Instances 

No. of 

Features 
Cybersecurity Attacks 

UNSW-

NB15 
257,673 45 

Analysis, Reconnaissance, 

DoS, Exploits, Fuzzers, 

Generic, Normal, Worms, 

Backdoor, Shellcode 

 

Table 2. UNSW-NB15 features 

 
No. Feature No. Feature No. Feature 

1) id 16 ( dloss 31 ( response_body_len 

2) dur 17 ( sinpkt 32 ( ct_srv_src 

3) proto 18 ( dinpkt 33 ( ct_state_ttl 

4) service 19 ( sjit 34 ( ct_dst_ltm 

5) state 20 ( djit 35 ( ct_src_dport_ltm 

6) spkts 21 ( swin 36 ( ct_dst_sport_ltm 

7) dpkts 22 ( stcpb 37 ( ct_dst_src_ltm 

8) sbytes 23 ( dtcpb 38 ( is_ftp_login 

9) dbytes 24 ( dwin 39 ( ct_ftp_cmd 

10) rate 25 ( tcprtt 40 ( ct_flw_http_mthd 

11) sttl 26 ( synack 41 ( ct_src_ltm 

12) dttl 27 ( ackdat 42 ( ct_srv_dst 

13) sload 28 ( smean 43 ( is_sm_ips_ports 

14) dload 29 ( dmean 44 ( attack_cat 

15) sloss 30 ( trans_depth 45 ( label 

 

Table 3. Attack classes in UNSW-NB15 dataset 

 
Attack Label Frequency 

Normal Normal 93,000 

Analysis Malicious 2,677 

Backdoor Malicious 2,329 

DoS Malicious 16,353 

Exploits Malicious 44,525 

Probing Malicious 23,389 

Fuzzers Malicious 24,246 

Generic Malicious 58,871 

Reconnaissance Malicious 13,987 

Shellcode Malicious 1,511 

Worms Malicious 174 

Furthermore, the classes and significant categories of cyber 

threats associated with those data, with their frequency and 

number of iterations, can be described in Table 3. 

It is concluded from the data illustrated in Table 3 that the 

most frequent number of cyber threats associated with the 

UNSW-NB15 dataset is the Normal attack, corresponding to 

93,000 cyber threats. In addition, the numeric data represented 

in Table 3 can be expressed as a graphical architecture via 

Figure 2. 

 

 
 

Figure 2. UNSW-NB15 frequency attacks 

 

It can be inferred from the data represented in Figure 2 that 

the Generic, Exploits, Fuzzers, Probing, and DoS Cyber 

Attacks come after the Normal attack in terms of frequency, 

contributing to iterations of 58,871, 44,525, 24,246, 23,389, 

and 16,353 attacks, respectively. At the same time, Worms and 

Shellcode have the least frequency of cyber threats, with a 

number of 174 and 1,511, respectively. 

 

3.2 Dataset preparation 

 

We use a well-known encoding approach to turn each 

dataset’s non-numerical features into numerical features to 

apply various machine-learning algorithms to them  [17]. This 

method is known as the “Label Encoder,” and it turns non-

numerical data into machine-readable forms by replacing each 

value with a unique number starting at 0  [17]. In the dataset, 

named UNSW-NB15, the proto, service, and state are 

categorical features. Therefore, we must convert it to 

numerical features. After that, the dataset was split into two 

datasets: a training dataset to build the models and a testing 

dataset to assess the performance of these models. The size of 

each dataset is as follows: 0.10 of the whole datasets is for 

testing and the remainder is a training dataset. 

 

3.3 Main ML algorithms 

 

To detect the aforementioned cybersecurity assaults in each 

dataset, the dataset is created and then fitted to seven machine 

learning algorithms. With a test size of 0.1, we used a hold-out 

approach to split the dataset into training and testing datasets. 

As a result, testing datasets account for 0.1 of all datasets, 

whereas training datasets make for 0.9 of them. The 
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performance of the machine learning models created using the 

training dataset is assessed using the testing dataset. 

 

3.3.1 Random Forest algorithm (RF) 

A vast number of Decision Trees are trained in the ensemble 

supervised learning technique known as random forests, which 

is used for regression and classification applications. The class 

that most trees select is the predicted outcome in 

categorization problems. For regression tasks, the mean or 

average forecast of each tree is returned  [18]. Decision Trees 

have the propensity to overfit their training set, which can be 

prevented using random-choice forests. To categorize any 

cybersecurity dataset, which includes a variety of assaults, the 

Random Forest classifier is used  [19, 20]. Because the label in 

our experiment is discrete, we employed a Random Forest 

with a categorization type. Sqrt is the maximum number of 

features, none is the maximum depth, and 42 is the unexpected 

state. These are the RF settings that were used. 

 

3.3.2 Decision Tree algorithm (DT) 

A supervised machine learning system called a Decision 

Tree makes decisions based on rules, much like people do  [21]. 

Data mining, statistics, and machine learning all use Decision 

Tree learning, also known as induction of Decision Trees, as a 

predictive modeling technique  [22]. It moves from making 

observations about a sample (represented by the branches) to 

concluding the sample’s target value (represented by the 

attack-type leaves on a Decision Tree)  [23]. Classification 

trees are tree models with a discrete target variable; in these 

tree structures, the leaves correspond to the many sorts of 

assaults, while the branches correspond to the characteristics 

of the dataset that help predict the class labels  [24, 25]. 

Decision Trees with a continuous objective variable (usually 

real numbers) are known as regression trees [25]. Due to their 

clarity and simplicity, Decision Trees are one of the well-

known machine learning algorithms. Because the label in our 

experiment is discrete, we utilized the Decision Tree with 

classification type. The DT settings we used were 

criterion=gini and random state=42. 

 

3.3.3 Multilayer Perceptron algorithm (MLP) 

A fully linked feedforward artificial neural network called a 

Multilayer Perceptron (MLP) is one type (ANN). The term 

“MLP” can apply to any feedforward ANN or networks made 

up of many layers of perceptrons, depending on the context 

(with threshold activation). The basic neural networks are 

multilayer perceptrons, especially those with a single hidden 

layer  [26]. The minimum number of node levels for an MLP 

is an input layer, a hidden layer, and an output layer. Each node 

is a neuron with a nonlinear activation function, except the 

input nodes  [26, 27]. MLP employs backpropagation as a 

supervised learning technique during training. MLP differs 

from a linear perceptron in that it uses nonlinear activation and 

has a large number of layers. It can distinguish between data 

that cannot be separated linearly  [28]. Since the label in our 

experiment is discrete, we utilized the MLP with classification 

type, activation=relu, and random state=42. 

 

3.3.4 eXtreme Gradient Boosting algorithm (XGBoost) 

XGBoost, or extreme Gradient Boosting, is a technique for 

classification and regression issues. It has undergone careful 

parallelization and optimization for the gradient-boosting 

approach  [29]. The training time is significantly decreased by 

parallelizing the entire boosting procedure. We train hundreds 

of models on various subsets of the training dataset instead of 

creating the best model that can be built using the data, and 

then we vote on the model that performs the best  [29]. (As in 

traditional approaches). XGBoost frequently performs better 

than conventional Gradient Boosting methods  [30]. You have 

access to a ton of inner parameters in the Python code that you 

may change for increased precision and accuracy [31]. 

This algorithm’s primary function is to transform Decision 

Trees, which are weak learners, into strong learners, which 

results in the strong learner producing the final prediction label 

(average of each prediction by week classifier). Numerous key 

characteristics of the XGBoost have been optimized  [29-31]. 

1) Parallelization: The model is built to operate concurrently 

across several CPU cores. 2) Regularization: To avoid 

overfitting, XGBoost provides a range of regularization 

penalties. Regularizations with penalties result in effective 

training, which permits the model to generalize effectively. 

Non-linearity: XGBoost can identify nonlinear data patterns 

and learn from them. 4) Cross-validation is available and has 

already been incorporated. 5) Scalability: XGBoost can run 

distributed, allowing you to manage massive volumes of data 

with the aid of distributed servers and clusters like Hadoop and 

Spark. Numerous programming languages are supported, 

including Julia, Python, C++, and Java. We utilized this 

technique with a classification type and the XGBoost settings 

of col sample by level=1, learning rate=0.1, gamma=0, n 

estimators=100, and random state=42 because the label in our 

experiment is discrete. 

 

3.3.5 AdaBoost algorithm 

A particular kind of statistical classification meta-algorithm 

is called AdaBoost or Adaptive Boosting. Combining it with a 

variety of different learning tactics can boost performance. 

The final output of the boosted classifier is merged with the 

output of additional learning algorithms, or “weak learners” 

[32]. In circumstances where prior classifiers misclassified 

them, AdaBoost adapts to the weak learners by modifying 

them as they come in. It might, in some cases, be less prone to 

the overfitting problem than other learning techniques. As long 

as a learner’s performance is marginally better than random 

guessing, even if they perform poorly individually, the final 

model will still condense to a potent learner  [33]. AdaBoost 

has been shown to be effective in combining weak base 

learners (like decision stumps) with strong base learners (like 

deep Decision Trees), producing a model that is more accurate 

[34]. 

Before a learning algorithm works at its peak on a dataset, 

it must be configured with a number of different parameters, 

and most of them are more appropriate for certain issue kinds 

than others. The best out-of-the-box classifier is usually 

referred to as AdaBoost, which uses Decision Trees as weak 

learners [32-34]. The Decision Tree learning process employs 

information obtained from each stage of the AdaBoost 

approach to determine the relative “hardness” of each training 

sample. As a result, later trees focus on data that are harder to 

categorize  [34]. Because the label in our experiment is discrete, 

we utilized AdaBoost with classification type, and the GB 

parameters we used are as follows: n estimators are 50, the 

learning rate is 1, the random state is 42, and the algorithm is 

SAMME.R. 

 

3.3.6 Gradient Boosting algorithm (GB) 

A technique of machine learning called Gradient Boosting 

has applications in regression and classification, among other 
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things. It provides a prediction model in the form of several 

models  of Decision Tree-based weak predictions [35]. A 

method called Gradient Boosting turns several weak learners 

(Decision Trees) into one powerful learner. Individual 

Decision Trees are poor learners in this situation  [36]. Each 

tree in succession is connected to the one before it and works 

to fix the flaw of the one before it. Boosting algorithms are 

frequently time-consuming to train yet very accurate because 

of this sequential link. Slower learning models do better in 

statistical learning  [35, 36]. Each new student in the group of 

weak learners fits into the residuals of the stage preceding 

them as the model gets better. The final model combines the 

findings from each phase to produce a potent learner. Utilizing 

a loss function, residuals are found. For instance, mean square 

error (MSE) and logarithmic loss (log loss) can be utilized in 

classification and regression, respectively. It’s crucial to 

understand that the model remains unchanged when a new tree 

is added. The additional Decision Tree matches the current 

model’s residuals  [35-37]. Due to the discrete nature of the 

label in our experiment, we employed the GB with 

categorization type. We applied the following GB parameters: 

n estimators=100, learning rate=0.1, friedman mse criterion, 

subsample=1.0, and random state=42. 

 

3.3.7 Voting algorithm 

Voting classifiers are ensemble machine learning models 

that, after learning from a range of different models, predict an 

output (class) based on the output’s best likelihood of being 

the target class  [38]. The output class with the highest votes 

will be revealed by adding the outputs of each classifier that 

was input into the voting classifier  [39]. As opposed to 

creating separate, specialized models and evaluating their 

performance, we suggest creating a single model that trains on 

many models and predicts output according to the overall 

number of votes for each output class. Two voting processes 

are supported by Voting Classifier  [40, 41]. 1) Hard voting: 

Each classifier is most likely to correctly forecast the projected 

output class that receives the most votes or the class that each 

classifier is most likely to correctly predict. 2) Soft voting: The 

forecast is made using an average of the likelihoods assigned 

to each output class and the class itself. Because the label for 

our experiment is discrete, we employed the voting with 

classification method. There were the following voting 

choices: The voting process uses hard voting, and the 

estimators are DT, RF, and XGB. 

 

3.4 Simulation setting 

 

This research depended on numerical calculations and 

simulation processes by virtue of the Python software package. 

In this software, a numeric code was developed and created to 

conduct a comparative analysis for the seven algorithms, 

which are: 

A- Decision Tree (DT); 

B- Random Forest (RF); 

C- Gradient Boosting (GB); 

D- XGBoost (XGB); 

E- Multilayer Perceptron (MLP), and; 

F- Voting. 

The simulation process was accomplished via the numerical 

Python code to generate some statistical findings and vital 

outcomes associated with the seven algorithms addressed in 

this work. 

 

3.5 Parameter adjustment 

 

Based on the seven algorithms chosen in this article, this 

study relied on some parameters and critical variables that 

could help assess and examine those seven algorithms in terms 

of their performance and reliability. Therefore, some 

evaluation metrics and assessment measures were adopted. 

Those evaluation techniques include the following concepts: 

a- Accuracy; 

b- Precision; 

c- Recall; 

d- F1-Score. 

 

 

4. RESULTS AND DISCUSSION 

 

The experimental results for each machine learning 

technique utilizing a cybersecurity dataset are summarized in 

this section based on four evaluation metrics. 

 

4.1 Evaluation metrics 

 

To evaluate the machine learning algorithms that were 

utilized, a few assessment criteria include accuracy, precision, 

recall, and f1-score  [42]. The following are the formulas for 

these metrics: TP, TN, FP, and FN, respectively, stand for True 

Positives, True Negatives, False Positives, and False 

Negatives. 

 

4.1.1 Accuracy 

The most obvious performance indicator is the ratio of 

properly predicted samples to total samples, which is just a 

ratio of correctly predicted samples to total samples. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
  (1) 

 

4.1.2 Precision 

The proportion of accurately predicted positive tweets to all 

of the anticipated positive samples is known as precision: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

 

4.1.3 Recall 

Is the ratio of correctly predicted positive samples to all 

projected positive samples? 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

4.1.4 F1-score 

F1-score is the weighted average of Precision and Recall. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

In this dataset, we applied three experiments to detect 

several types of attacks: 1) Binary classification (normal and 

malicious attack types). 2) Multiclass classification (malicious 

attack types). 3) Enhancement experiment on the second 

experiment. These experiments are done to know if each 

algorithm is able to distinguish between the malicious attack 

types in UNSW-NB15 dataset. 
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4.2 Binary classification experiment 

 

Machine learning methods are used in this experiment to 

determine if the sample in this dataset represents a legitimate 

attack or a malicious one. The performance results for the 

machine learning methods utilized are based on four metrics: 

precision, accuracy, f1-score, and recall, as shown in Table 4. 

In the detecting attack process, the Voting classifier 

outperforms the others with superior performance results. 

It can be inferred from the data explained in Table 4 that the 

accuracy rates of the seven algorithms considered in this work 

range between a minimum value of 96.3% (which is for the 

AdaBoost algorithm) and a maximum value of 99.0% (which 

is related to the Voting algorithm). In addition, the precision 

ratios range from 97.1% to 99.6%, corresponding to AdaBoost 

and XGB algorithms, respectively. Further details and 

graphical illustrations pertaining to the results of assessment 

metrics and evaluation techniques of the seven algorithms are 

described in Figure 3. 

It can be indicated from the data represented in Figure 3 

(and Table 4) that the recall ratios linked to the seven 

algorithms are approximately closer together in terms of their 

proportions. The lowest recall ratio is recorded for the 

AdaBoost algorithm, corresponding to an amount of 97.1%. In 

contrast, the voting algorithm has the most significant portion, 

with a value of 98.9%. Also, the ultimate value of F1-Score 

was registered for the voting algorithm, recording a percentage 

of 99.2%. 

 

Table 4. Performance results of binary classification 

 
Algorithm Type Accuracy Precision Recall F1-Score 

DT 98.6% 99.1% 98.7% 98.9% 

RF 98.5% 98.8% 98.8% 98.8% 

GB 96.8% 97.4% 97.6% 97.5% 

XGB 98.9% 99.6% 98.7% 99.1% 

AdaBoost 96.3% 97.1% 97.1% 97.1% 

MLP 97.1% 98.0% 97.4% 97.7% 

Voting 99.0% 99.4% 98.9% 99.2% 

 

 
 

Figure 3. Performance results of binary classification 

 

4.3 Multiclass classification experiment 

 

The following forms of malicious software are used in this 

experiment: Analysis, Backdoor, DoS, Exploits, Fuzzers, 

Generic, Reconnaissance, Shellcode, and Worms. Precision, 

accuracy, f1-score, and recall are the four metrics on which the 

performance outcomes for the machine learning approaches 

used are based, as shown in Table 5 and Figure 4. The XGB 

algorithm surpassed the competition in terms of these metrics 

during the detection process. 

It can be indicated from the data expressed in Table 5 that 

the accuracy rates of the seven algorithms considered in this 

work range between a minimum value of 57.5% (which is for 

the AdaBoost algorithm as in the first case) and a maximum 

value of 83.2% (which is related to the XGB algorithm). 

Besides, the precision percentages range from 50.2% to 80.5%, 

corresponding to AdaBoost and XGB algorithms, respectively 

(as in the first case). More details and graphical 

representations associated with the numerical outputs of 

evaluation techniques and assessment metrics of the seven 

intelligent algorithms can be described in Figure 4. 

It can be inferred from the data expressed in Figure 4 (and 

Table 5) that the recall ratios regarding the seven algorithms 

are relatively approximate to each other according to their 

percentages. The maximum recall ratio is recorded for the 

XGB algorithm, corresponding to an amount of 65.3%. On the 

other hand, the AdaBoost algorithm has the weakest portion, 

with a ratio of 40.1%. Besides, the F1-Score recorded a 

minimum percentage of 34.5% for the AdaBoost algorithm. In 

contrast, the XGB attained the maximum rate of F1-Score, 

providing an ultimate percentage of 68.8%. 

 

Table 5. Performance results of multiclass classification 

 
Algorithm Type Accuracy Precision Recall F1-Score 

DT 80.2% 62.4% 62.7% 62.5% 

RF 82.1% 66.2% 61.2% 63.0% 

GB 82.0% 77.4% 61.7% 65.6% 

XGB 83.2% 80.5% 65.3% 68.8% 

AdaBoost 57.5% 50.2% 40.1% 34.5% 

MLP 80.1% 73.9% 48.5% 53.0% 

Voting 82.4% 66.5% 64.9% 65.6% 

 

 
 

Figure 4. Performance results of multiclass classification 

 

4.4 Enhancement experiment 

 

To improve the results of the second experiment, we apply 

the machine learning algorithms to three attacks (Generic, 
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Fuzzers, and Exploits) because the models faced difficulty in 

detecting one of the nine attacks, and the number of samples 

in deleted attacks is small. Table 6 displays the performance 

results of these algorithms for three network attacks. Even yet, 

the XGB algorithm outperformed the competition in terms of 

these parameters during the detection procedure. 

It is concluded from the obtained in Table 6 that the 

accuracy rate of the seven algorithms investigated and 

implemented in this research ranges from a minimum amount 

of 94.2% (which is for the AdaBoost algorithm as in the 

previous cases) and a maximum percentage of 96.4% (which 

is related to the XGB algorithm similar to the previous 

scenarios). Besides, the precision percentages range between 

93.1% to 95.9%, corresponding to AdaBoost and XGB 

algorithms, respectively (as in previous cases). Also, a 

graphical representation of those numerical evaluation data 

can be expressed in Figure 5. 

It can be inferred from the numeric information expressed 

in Figure 5 (and Table 6) that the recall ratios regarding the 

seven algorithms are relatively approximate to each other 

according to their percentages. However, the AdaBoost 

algorithm offered the least balance of recall, with a percentage 

of 92.5%. Meantime, the XGB algorithm recorded the 

maximum portion of recall compared with all five algorithms, 

with a rate of 95.3%. Furthermore, the AdaBoost has also 

registered the minimum F1-Score rate of 92.7% compared 

with the 95.6%, which is associated with the XGB algorithm 

(as well). This value is the ultimate amount of all ratios 

obtained in the F1-Score evaluation results. 

 

Table 6. Performance results of multiclass classification 

with three attacks 

 
Algorithm Type Accuracy Precision Recall F1-Score 

DT 94.6% 93.3% 93.5% 93.4% 

RF 95.9% 95.0% 94.9% 94.9% 

GB 95.6% 95.2% 94.2% 94.6% 

XGB 96.4% 95.9% 95.3% 95.6% 

AdaBoost 94.2% 93.1% 92.5% 92.7% 

MLP 95.0% 94.2% 93.5% 93.7% 

Voting 96.1% 95.3% 95.1% 95.2% 

 

 
 

Figure 5. Performance results of multiclass classification 

with three attacks 

5. CONCLUSION 

 

This research is guided to examine the critical role and 

major contributions of ML and DL principles in achieving 

considerable accuracy and effectiveness in cyber threat 

detection. Seven ML algorithms were selected, which were: 

DT, RF, GB, XGB, AdaBoost, MLP, and voting to detect 

network attacks in the information security field. The first step, 

the UNSW-NB15 dataset, is studied in this paper related to 

various types of network attacks. Second, the dataset was 

prepared for use in machine learning methods so that many 

models could be created. For example, each dataset’s non-

numerical features were converted to numerical features using 

the “Label Encoder” encoding method, which is a well-known 

encoding approach. In this dataset, we applied three 

experiments to detect several types of attacks: 1) Binary 

classification (normal and malicious attack types). 2) 

Multiclass classification (malicious attack types). 3) 

Enhancement experiment on the second experiment. These 

experiments are done to know if each algorithm is able to 

distinguish between the malicious attack types in UNSW-

NB15 dataset. The results shown in three experiments are as 

follows: 1. The Voting classifier outperforms the higher 

performance results compared with the others in the detection 

attack process. 2. The XGB algorithm achieved better 

performance results in the evaluation metrics in the detection 

process compared with the others. 3. Even yet, the XGB 

algorithm outperformed the competition in terms of 

performance measures used in the detection process. 

It is worth mentioning that the practical implications of this 

work and the managerial benefits and real-life importance of 

those numerical simulations and evaluation analyses are 

reflected in the following aspects: 

A- Providing better practices and robust approaches to 

cyber threats detection and internet attacks 

identification with enhanced levels of performance, 

reliability, accuracy, speed, and trustworthiness; 

B- Supporting businesses, managers, and investment 

owners in protecting their private data and achieving 

better rates of information security; 

C- Offering reliable and flexible techniques of cyber threat 

determination to save financial resources and 

customers’ private data without affecting companies’ 

security and safety in terms of data storage and 

information dependability; 

D- Preventing any damage or harmful threats that could 

affect firms and organizations and might disrupt their 

secretive databases or employees’ information; 

E- Providing beneficial tools and more effective tactics 

and strategies for detecting cyber threats quickly with 

the help of innovative ML and DL principles compared 

with traditional methods and slower approaches to 

internet attack identification. 
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