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This study investigates the application of peak current-mode control to a dual-module, 

independent-input, series-output boost DC-DC converter characterized by mismatched 

inductors. The converter, operating in continuous-conduction mode, incorporates non-

identical modules, each supplied by a distinct voltage source while their outputs are 

interconnected in series. A small-signal state-space averaged model, useful for 

individual module control, is proposed. Utilizing this model, both direct and cross-

coupling control-to-output voltage small-signal responses under inductor mismatch are 

generated with MATLAB assistance. A conventional Type-2 Proportional-Integral 

controller is designed for the module voltage loop, guided by the direct control-to-

output voltage responses. The impact of inductor mismatch on the transient 

performance of the module input current and output voltage under step changes in the 

load current and module source voltage is examined. The cycle-by-cycle simulations 

conducted via PSIM demonstrate significant agreement with the model predictions. 
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1. INTRODUCTION

Modular DC-DC power conversion architectures, which 

incorporate two or more individual modules in various 

series/parallel configurations, have been demonstrated to 

provide efficient and reliable solutions for a range of 

applications, including renewable energy systems, distributed 

power systems, and specialized switched-mode DC power 

supplies. Four fundamental connection arrangements for 

modular DC-DC converters have been extensively studied in 

existing literature: parallel-input/parallel-output (PIPO) [1-4], 

parallel-input/series-output (PISO) [5-9], series-input/parallel-

output (SIPO) [10-18], and series-input/series-output (SISO) 

[12, 14, 19, 20]. These studies [1-20] offer a snapshot of recent 

publications on these four fundamental arrangements, which 

also serve as a gateway to earlier works. Besides these 

configurations, more advanced modular structures have been 

explored, such as independent-input/parallel-output (IIPO) 

[21-26], independent-input/series-output (IISO) [27-36], and 

series-input/independent-output (SIIO) [37]. Research has 

also extended to more complex configurations, such as series-

parallel-input/series-output [38], series-input/series-parallel-

output [39], and series-parallel-input/series-parallel-output 

[40]. 

Various control methods have been proposed for the 

regulation of modular DC-DC converters, and many of these 

methods have been classified and reviewed in studies [41, 42]. 

One method, known as peak current-mode control (PCMC), is 

favored by many researchers due to its established advantages 

including fast response, stable current sharing, and precise 

output voltage regulation [42]. This control technique has been 

applied to PIPO [1, 3], PISO [8], SIPO [10], SISO [12], IIPO 

[24, 26], IISO [35, 36], and SIIO [37] converters. Preliminary 

analysis of the dynamics of PCMC converters is typically 

performed using linearized small-signal (SS) models. 

Deriving these models becomes straightforward when the 

modular converter can be replaced by an equivalent single 

module. However, in instances where the converter is powered 

from independent sources, such as those employing the IISO 

and IIPO structures, or when a parametric mismatch exists 

between the converter’s constituent modules, a reduced-order 

model may not be feasible. In such cases, detailed SS models 

are required. 

The primary aim of this research is to devise a SS model 

that can be used for the design of voltage feedback controllers 

in the presence of inductor mismatch for an IISO PCMC boost 

converter. A converter with the IISO structure is powered from 

separate energy sources, achieving higher output voltages by 

series-connecting the outputs from two or more single-cell 

converters. Over the past three decades, numerous studies 

have been published on IISO converters for various 

applications, particularly focusing on renewable and 

distributed energy systems, and high-voltage DC power 

supplies [27-36]. While various control methodologies have 

been utilized, only two works [35, 36] have implemented 

PCMC. However, in these studies, the current-mode control 

SS analysis has only been conducted for the case of identical 

modules. To date, no published work has reported a state-

space SS model for an IISO boost converter comprising non-

identical modules nor investigated the impact of mismatch in 

inductance values on the control of this converter. It will be 

demonstrated in the following sections that this mismatch 

influences the location of the module right-half-plane zero, 

thereby impacting the design of the voltage feedback loop 

controller. 

The contributions of this work are threefold: 
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(1) A small-signal model is developed for a PCMC IISO 

boost DC-DC converter consisting of two non-identical 

modules. 

(2) Direct and cross-coupling control-to-output voltage 

frequency responses of the converter are generated and studied 

in the presence of inductor mismatch.  

(3) Voltage feedback loop controllers for the mismatched 

modules are designed, and closed-loop transient responses are 

produced and studied under step changes in the load current 

and module input voltage. 

The converter schematic is depicted in Figure 1 where two 

separately-fed and independently-controlled PCMC boost 

cells working in the continuous-conduction mode are 

connected in series at their outputs to supply the load. A 

voltage attenuator Kv and a type-2 controller represented by Fv 

are used in each voltage feedback loop.  
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Figure 1. Representation of the two-module IISO converter 

 

The PCMC of the individual module resembles that of the 

single boost converter. Transistor ON time and switching 

cycle T is initiated by a constant-frequency clock. Sensed 

inductor current which has a rising slope (Sn=Ri*Vg/L) is 

compared to control voltage Vc and an external ramp slope Se. 

The comparison result determines the transistor duty ratio D. 

The external ramp is used to ensure stability of the current loop 

when D is greater than 0.5 [43].  

In order to design the module voltage feedback loop 

controller under inductor mismatch, a SS model is established. 

The model takes into account the sampling effect of the current 

loops and is suitable to use up to half the switching frequency.  

The module PCMC stage is modelled using a modified 

“new continuous-time technique” [43, 44]. The PCMC-stage 

law of each of the mismatched modules is augmented with the 

power-stage state-space equations to allow generating the 

direct and cross-coupling control-to-output voltage SS 

responses under inductor mismatch conditions. The module 

voltage-loop controller is designed based on the direct control-

to-output voltage frequency response when the inductance has 

its maximum value. Closed-loop time-domain responses under 

step changes in the load current and module input voltage are 

produced using MATLAB/SIMULINK to assess the effect of 

inductor mismatch. 

For an assumed mismatch of ±25% between inductor 

values, the major findings of this study are: the mismatch 

causes small changes to the overshoot/undershoot values of 

the module inductor current and output voltage closed-loop 

transient responses; the change in power losses due to 

inductor-current ripple mismatch is insignificant; and the dc 

load voltage remains equally distributed between the two 

modules. The entire model predicted responses correlate well 

with PSIM cycle-by-cycle simulations.  

 

 

2. SMALL-SIGNAL MODELLING 

 

Small-signal models are useful tools for the initial 

investigation of the dynamics of complex interconnected 

converter systems and also for feedback control design. 

 

2.1 Power stage 

 

Assuming ideal components, the SS model of the power 

stage can be characterized [36] by: 
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The symbol (^) denotes SS changes and D'=1-D. 

 

2.2 PCMC stage 

 

The module PCMC stage can be modelled in a way similar 

to that of the single-stage boost cell [43]. The SS model is 

illustrated in Figure 2 and consists of:  

- The gain of the current sensing network represented by (Ri). 

- Pulse-width modulator (PWM) gain symbolized by (Fm). 

- Current loop sampling gain (He) which represents the 

sample-and-hold action of the current loop.  

- Feedforward gains of the input and output voltages denoted 

by (Kf) and (Kr) respectively. These gains appear when the 

module current loop is closed. Variations in the voltage 

across the module inductor during the transistor’s ON and 

OFF times are denoted by (v̂on) and (v̂off) respectively. Table 

1 contains the model parameters. 
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Table 1. Small-signal model parameters 

 

Modulator 

Gain 

𝐹𝑚1 =
1

(𝑆𝑛1 + 𝑆𝑒1)𝑇
=

𝐿1

𝑀𝑐1𝑅𝑖1𝑉𝑔1𝑇
    

𝐹𝑚2 =
1

(𝑆𝑛2 + 𝑆𝑒2)𝑇
=

𝐿2

𝑀𝑐2𝑅𝑖2𝑉𝑔2𝑇
    

where 𝑀𝑐1 = 1 + 𝑠𝑒1 𝑠𝑛1⁄   

and 𝑀𝑐2 = 1 + 𝑠𝑒2 𝑠𝑛2⁄  

Sampling Gain 
𝐻𝑒1 = 𝐻𝑒2 ≅ (1 +

𝑠

𝜔𝑛𝑄𝑧
+

𝑠2

𝜔𝑛
2)  

where 𝑄𝑧 = −2 𝜋⁄   and  𝜔𝑛 = 𝜋 𝑇⁄  

Feedforward 

Gain of Input 

Voltage 

𝐾𝑓1 =
−𝐷1𝑇𝑅𝑖1(1−0.5𝐷1)

𝐿1
+

𝐷1
2𝑇2𝑅𝑖1(3−2𝐷1)

12𝐿1
𝑠  

𝐾𝑓2 =
−𝐷2𝑇𝑅𝑖2(1−0.5𝐷2)

𝐿2
+

𝐷2
2𝑇2𝑅𝑖2(3−2𝐷2)

12𝐿2
𝑠  

Feedforward 

Gain of Output 

Voltage 

𝐾𝑟1 =
(1−𝐷1)

2𝑇𝑅𝑖1

2𝐿1
  

𝐾𝑟2 =
(1−𝐷2)

2𝑇𝑅𝑖2

2𝐿2
  

Inductor 

Voltage During 

the ON and 

OFF Times 

�̂�𝑜𝑛1 = �̂�𝑔1 ;  �̂�𝑜𝑓𝑓1 = �̂�𝑜1 − �̂�𝑔1 

�̂�𝑜𝑛2 = �̂�𝑔2 ;  �̂�𝑜𝑓𝑓2 = �̂�𝑜2 − �̂�𝑔2 

 

Using Figure 2, the duty ratio laws can be expressed as: 
 

�̂�1 = 𝐹𝑚1(�̂�𝑐1 − 𝑅𝑖1𝐻𝑒1𝑖�̂�1 + 𝐾𝑓1�̂�𝑜𝑛1 + 𝐾𝑟1�̂�𝑜𝑓𝑓1) (2a) 
 

�̂�2 = 𝐹𝑚2(�̂�𝑐2 − 𝑅𝑖2𝐻𝑒2𝑖̂𝐿2 + 𝐾𝑓2�̂�𝑜𝑛2 + 𝐾𝑟2�̂�𝑜𝑓𝑓2) (2b) 

 

POWER STAGE

v g
1

v g
2

v

R
1

i

1

d1

K
1f

v

K
r
1 1off

on

 F
m

i o MODEL

v
c

i L1

i L

1ov

v
2

2

1

1

He
1

o

v

R i

d

K
f

v

K
r off

on

 F
m

v
c

2

2

2 2

22

2

2

He
2

 
 

Figure 2. Small-signal model with only current loops closed  
 

After the application of Laplace transforms to (1) and the 

substitution for the duty ratios from (2), we can write: 
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(3) 

 

The A and B elements of (3) are presented in Table 2, and 

the parameters Fm, He, Kr and Kf are as given in Table 1. 

In summary, augmenting the power-stage SS model with 

the PCMC law of each module produced Eq. (3) which 

characterizes the converter model with closed current loops. 

By using (3) the SS transfer function expressions of an IISO 

PCMC boost converter consisting of two non-identical 

modules can be found. 
 

Table 2. Elements of Eq. (3) 
 

A11 
−𝑉𝑜1𝑅𝑖1𝐻𝑒𝐹𝑚1

𝐿1
  B11 

𝑉𝑜1𝐹𝑚1

𝐿1
  

A12 
−𝐷1

′ + 𝑉𝑜1𝐹𝑚1𝐾𝑟1
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1+𝑉𝑜1𝐹𝑚1(𝐾𝑓1−𝐾𝑟1)
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3. DIRECT AND CROSS-COUPLING CONTROL-TO-

OUTPUT VOLTAGE RESPONSES  

 

The direct and cross-coupling control-to-output voltage SS 

transfers denoted by (�̂�𝑜1 �̂�𝑐1⁄ )  and (�̂�𝑜2 �̂�𝑐1⁄ )  respectively 

are obtained from Eq. (3) and programmed into MATLAB 

software using the parameters: 

Vg1=Vg2=24 V; Vo1=Vo2=96 V; R=64 Ω; T=10 µs;  

C1=C2=24 µF; Ri1=Ri2=0.1 Ω; 

L1=100 µH ±25%; L2=100 µH 

Three cases of inductance values are considered: 

- Case (1): L1=L2=100 µH (nominal values) 

- Case (2): L1=75 µH, and L2=100 µH (inductance value of 

module 1 is lower than that of module 2 by 25%) 

- Case (3): L1=125 µH, and L2=100 µH (inductance value of 

module 1 is higher than that of module 2 by 25%) 

A mismatch of ±25% is chosen because the tolerance in 

inductance values can typically vary from several percent up 

to 15% according to the study [45], and gets worse in time due 

to aging. 

MATLAB generated Bode plots of (�̂�𝑜1 �̂�𝑐1⁄ )  and 
(�̂�𝑜2 �̂�𝑐1⁄ ) are compared with PSIM “ac sweep” results. The 

“ac sweep” command is enabled after implementing the IISO 

converter of Figure 1 with voltage feedback loops left open. 

Figure 3 shows the model predictions of (�̂�𝑜1 �̂�𝑐1⁄ ) 

responses for the three cases mentioned above with external 

ramp amplitude Vramp=0.34 V, while Figure 4 gives the 

responses with Vramp=0.86 V. The ramp values are selected to 

inspect the under-damped and damped responses. These 

figures also show the results found using PSIM “ac sweep”. It 

can be seen that PSIM results correlate well with those 

predicted by the proposed model up to ½ the switching 

frequency region. Figures 3 and 4 show that the low-frequency 

responses (up to≈900 Hz) are slightly affected by the ±25% 

mismatch in inductance values. A more noticeable change can 

be seen as frequency increases. The zero-pole locations of 
(�̂�𝑜1 �̂�𝑐1⁄ ) predicted by MATLAB are given in Table 3 which 

shows that when Vramp=0.34 V, the low-frequency response is 

influenced by a real right-half s-plane (RHSP) zero, and two 

real left-half s-plane (LHSP) poles sandwiching a real zero. At 
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half the switching frequency, a complex pair of poles appears 

because of the current-loop sampling action, and hence the 

peaking observed in Figure 3. Similar to the single-cell PCMC 

boost converters, this peaking can be reduced or eliminated by 

increasing the slope ratio Se/Sn. For the selected parameters 

and the nominal value of inductances (i.e., L1=L2=100 µH) 

critical damping is achieved with Vramp≈0.86 V which is 

equivalent to slope ratio Se/Sn=3.6. 

Table 3 also shows that the RHSP zero of (�̂�𝑜1 �̂�𝑐1⁄ ) moves 

to lower frequencies as inductance is increased (more on this 

in Section 4). The location of this zero can be expressed as: 

 

𝜔𝑟ℎ𝑠𝑝𝑧 = 𝑅(1 − 𝐷)2 (2𝐿1)⁄  (4) 

 

 

 
 

Figure 3. Direct control-to-output voltage (Vramp=0.34 V): 

Top Bode plots: model prediction; Bottom plots: PSIM 

 

 

 

Figure 4. Direct control-to-output voltage (Vramp=0.86 V): 

Top Bode plots: model prediction; Bottom plots: PSIM 

 

Figures 5 and 6 show the responses of the cross-coupling 

control-to-output voltage (�̂�𝑜2 �̂�𝑐1⁄ ) when Vramp=0.34 V and 

Vramp=0.86 V respectively, while Table 4 gives the 

corresponding zero-pole locations. (�̂�𝑜2 �̂�𝑐1⁄ )  has the same 

poles and RHSP zero observed in the direct transfer 

function  (�̂�𝑜1 �̂�𝑐1⁄ )  but the low-frequency LHSP zero is 

absent. The response of (�̂�𝑜2 �̂�𝑐1⁄ ) is affected by the external 

ramp in a similar fashion. Also, the effect of inductance 

mismatch on (�̂�𝑜2 �̂�𝑐1⁄ )  resembles that observed with 
(�̂�𝑜1 �̂�𝑐1⁄ )  in the sense that it causes slight changes in the 

magnitude and phase responses at low frequencies.

 

Table 3. Direct control-to-output voltage pole-zero locations in (rad/sec) 

 
 Vramp=0.34 V Vramp=0.86 V 

 L1=L2=100 µH 
L1=75 µH 

L2=100 µH 

L1=125 µH 

L2=100 µH 

L1=L2= 

100 µH 

L1=75 µH 

L2=100 µH 

L1=125 µH 

L2=100 µH 

Zeros 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-2090 

20000 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-2090 

26667 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-2090 

16000 

-3.8164e+05 

-2.5909e+05 

-2254.5 

20000 

-3.8164e+05 

-2.5909e+05 

-2254.5 

26667 

-3.8164e+05 

-2.5909e+05 

-2254.5 

16000 

Poles 

-45296+3.0613e+05i 

-45296-3.0613e+05i 

-45300+3.0613e+05i 

-45300-3.0613e+05i 

-2745.2 

-1434.8 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-9497.3+3.0937e+05i 

-9497.3-3.0937e+05i 

-2751.4 

-1441.7 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-87240+2.9706e+05i 

-87240-2.9706e+05i 

-2743.7 

-1432.5 

-3.8166e+05 

-3.8162e+05 

-2.5906e+05 

-2.5912e+05 

-1593.3 

-2915.8 

-2.0347e+05+2.3533e+05i 

-2.0347e+05-2.3533e+05i 

-3.8164e+05 

-2.5909e+05 

-1595.9 

-2916 

-3.8164e+05 

-7.6548e+05 

-2.5909e+05 

-1.34e+05 

-1592.8 

-2918 
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Figure 5. Cross-coupling control-to-output voltage 

(Vramp=0.34 V): Top Bode plots: model prediction; Bottom 

plots: PSIM 

 

 

 
 

Figure 6. Cross-coupling control-to-output voltage 

(Vramp=0.86 V): Top Bode plots: model prediction; Bottom 

plots: PSIM  

 

Table 4. Cross-coupling control-to-output voltage pole-zero locations in (rad/sec) 

 
 Vramp=0.34 V Vramp=0.86 V 

 L1=L2=100 µH 
L1=75 µH 

L2=100 µH 

L1=125 µH 

L2=100 µH 
L1=L2=100 µH 

L1=75 µH 

L2=100 µH 

L1=125 µH 

L2=100 µH 

Zeros 

-45361+3.071e+05i 

-45361-3.071e+05i 

20000 

-45361+3.071e+05i 

-45361-3.071e+05i 

26667 

-45361+3.071e+05i 

-45361-3.071e+05i 

16000  

-3.6807e+05 

-2.7276e+05 

20000 

-3.6807e+05 

-2.7276e+05 

26667 

-3.6807e+05 

-2.7276e+05 

16000 

Poles 

-45296+3.0613e+05i 

-45296-3.0613e+05i 

-45300+3.0613e+05i 

-45300-3.0613e+05i 

-2745.2 

-1434.8 

-45298+3.0613e+05i 

-45298-3.0613e+05i 

-9497.3+3.0937e+05i 

-9497.3-3.0937e+05i 

-2751.4 

-1441.7 

-45295+3.0607e+05i 

-45295-3.0607e+05i 

-87243+2.9713e+05i 

-87243-2.9713e+05i 

-2743.6 

-1432.3  

-3.8166e+05 

-3.8162e+05 

-2.5906e+05 

-2.5912e+05 

-1593.3 

-2915.8 

2.0347e+05+2.3533e+05i 

-2.0347e+05-2.3533e+05i 

-3.8164e+05 

-2.5909e+05 

-1595.9 

-2916 

-3.8164e+05 

-7.6548e+05 

-2.5909e+05 

-1.34e+05 

-1592.8 

-2918 

 

 
4. TIME DOMAIN TRANSIENT RESPONSES WITH 

ALL FEEDBACK LOOPS CLOSED 

 

This section studies the impact of mismatch on the transient 

behaviour of the module inductor (= input) current and output 

voltage when all the current and voltage feedback loops are 

closed. Figure 7 shows the MATLAB/SIMULINK model used 

for this purpose. The module voltage feedback loop is 

comprised of an attenuator Kv and a type-2 compensator Fv 

whose design is based on the direct control-to-output voltage 

response when the inductance has its maximum value (i.e., 

when L=125 μH) with no peaking present at ½ the switching 

frequency (i.e., with Vramp=0.86 V). The maximum inductance 

case is chosen as basis for the design in order to ensure system 

stability. This is so, because the module RHSP zero moves to 

lower frequencies as the inductance increases. With other 

parameters of (4) kept unchanged, the RHSP zero locates 

at≈2.55 kHz when L=125 μH. Traditional compensator design 

rules for single DC-DC converters [46] are applied; a crossover 

frequency of 850 Hz (≈ 1/3 of the RHSP zero location), and a 

phase margin of 60° are chosen as design data for PSIM “smart 

control” which is a controller-design software for converter 

circuits. PSIM response of (�̂�𝑜1 �̂�𝑐1⁄ )  is exported to “smart 

control” to get the compensator transfer function according to 
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the mentioned design rules. The expression for the module 

compensator transfer function is: 

 

𝐹𝑣1 = 𝐹𝑣2 = 8804
(1+𝑠 1718⁄ )

𝑠(1+𝑠 16595⁄ )
  (5) 

 

 
 

Figure 7. Matlab/Simulink model for generating the time-

domain transients 

 

Figures 8 and 9 respectively show the closed-loop output 

voltage transient responses of modules 1 and 2 under ± 50% 

step disturbances in load current for the same cases of inductor 

values: (L1=L2=100 µH), (L1=75 µH, L2=100 µH), and 

(L1=125 µH, L2=100 µH). Each figure shows the predictions 

of the MATLAB/SIMULINK averaged model and PSIM 

cycle-by-cycle simulation results. Two step changes are 

considered: These are from 3 A to 4.5 A at 10 msec and from 

4.5 A to 3 A at 18 msec. From Figures 8 and 9 the following 

can be stated: (a) the effect of inductance mismatch appears 

only in the output voltage of the module whose inductance 

value deviates from the nominal value (module 1 in this case); 

less than 1% change in the overshoot/undershoot values is 

observed with the mismatch of ±25% in inductance values; (b) 

the module average output voltage is not affected by the 

inductor mismatch and is controlled at the required value of 96 

V, with a settling time of about 4.5 msec and 

overshoot/undershoot values of no more than 10% of the dc 

output voltage. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Output voltage responses of module 1 due to step 

disturbances in load current: (a) Model predictions. (b), (c) 

and (d) PSIM verification 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 9. Output voltage responses of module 2 due to step 

disturbances in load current: (a) Model predictions. (b), (c) 

and (d) PSIM verification 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Inductor current responses of module 1 due to 

step disturbances in load current: (a) Model predictions. (b), 

(c) and (d) PSIM verification 
 

Figures 10 and 11 respectively show the closed-loop 

inductor current transient responses of modules 1 and 2 under 

± 50% step disturbances in load current for the three cases 

under consideration. From these figures the following can be 

stated: (a) the effect of inductance mismatch can only be 

noticed in the behaviour of the current of module 1; MATLAB 

model predicts an overshoot/undershoot in this current of 

around 1.2% of the steady-state value when inductance is 

increased from 100 µH to 125 µH, but settling time is hardly 

affected; (b) cycle-by-cycle simulation results indicate that the 

transient and steady-state inductor-current ripple of module 1 

are affected by the inductor mismatch; current ripple 

amplitude drops by≈22.2% as inductance value is increased 

from 100 µH to 125 µH, and goes up by≈33.3% when 

inductance value is changed from 100 µH to 75 µH. At steady 

state this current ripple mismatch will result in different rms 

values and hence different power losses when circuit 

resistance non-idealities are taken into consideration. The 

change in the rms value, however, is very small as predicted 
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by PSIM (less than 0.1% for an inductor mismatch of 25%). It 

is worth mentioning here that power imbalance between 

modules can have serious effect on the performance of battery-

based energy-storage systems employing the bidirectional 

type of the IISO converter; because the converter charging and 

discharging modes are decided by the battery state of charge 

(SOC). Therefore, a battery management system is necessary 

to ensure SOC equalization. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 11. Inductor current responses of module 2 due to 

step disturbances in load current: (a) Model predictions. (b), 

(c) and (d) PSIM verification 

Figures 12 and 13 respectively show the closed-loop output 

voltage responses of modules 1 and 2 under ±10% step 

disturbances in the input voltage of module 1, while Figures 

14 and 15 depict the corresponding responses of the inductor 

currents for the three cases under investigation: (L1=L2=100 

µH), (L1=75 µH, L2=100 µH), and (L1=125 µH, L2=100 µH). 

Unlike the responses in Figures 8 to 11, it can be observed here 

that the step changes impact both modules even when there is 

no inductance mismatch. With mismatched inductors the 

module output voltage experiences a small increase in 

overshoot/undershoot value as inductance value is increased 

(less than 1% when inductance is changed from 100 µH to 125 

µH). A considerable effect of the mismatch appears in the 

transient and steady-state inductor current ripple of the 

disturbed module. The change in ripple amplitude is the same 

as previously mentioned when the load current is step 

changed. As for the steady-state output voltage, both modules 

are regulated at the required 96 V; No effect of inductor 

mismatched has been observed. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

Figure 12. Module 1 output voltage responses due to step 

changes in its input voltage: (a) Model predictions. (b), (c) 

and (d) PSIM verification 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 13. Module 2 output voltage responses to step 

changes in module 1 input voltage: (a) Model predictions. 

(b), (c) and (d) PSIM verification 

 

Figure 14 also shows that following to the disturbance at 10 

msec, the inductor currents of modules 1 and 2 settles at≈13.3 

A and 12 A respectively. Due to this difference, the module 1 

will have more power losses than module 2. This rise in the 

current of the disturbed module is not related to inductor 

mismatch but to the 10% drop in its input voltage. In all the 

previous figures, the averaged model predictions correlate 

well with the cycle-by-cycle simulations. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 14. Inductor current responses of module 1 resulting 

from step changes to its input voltage: (a) Model predictions. 

(b), (c) and (d) PSIM verification 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 15. Module 2 inductor current responses resulting 

from step changes to module 1 input voltage: (a) Model 

predictions. (b), (c) and (d) PSIM verification  
 

 

5. CONCLUSIONS  
 

In this study, the peak current-mode control (PCMC) 

method is applied to a dual-module, independent-input, series-

output boost DC-DC converter, operating in continuous-

current mode with mismatched inductors. With the current 

loops closed and the voltage feedback loops open, the results 

derived from the mathematical, state-space-based small-signal 

model, in conjunction with PSIM simulations, suggest that a 

25% mismatch between the inductor values of the two 

modules has insignificant impact on the magnitude and phase 

of the direct and cross-coupling control-to-output voltage 

small-signal responses at low frequencies (up to 

approximately 900 Hz). However, the effect becomes more 

pronounced as the frequency increases. 

A conventional compensator is designed for the module 

voltage feedback loop control, predicated on the frequency 

response of the direct control-to-output voltage when the 

inductance has the maximum value. Upon closing all feedback 

loops and applying step disturbances to the load current and 

module input voltage, it is observed that a 25% mismatch in 

inductor values induces minor deviations, not exceeding 1.2%, 

in the overshoot/undershoot values of the module inductor 

current and output voltage. 

Despite the 25% mismatch eliciting a relatively large 

variation in the inductor-current ripple, reaching 33%, the 

consequent change in power losses due to this inductor-current 

ripple mismatch is less than 0.1%. Furthermore, the module 

DC output voltage following the step disturbances remains 

unaffected by the inductor mismatch, and the load voltage is 

1760



 

equally distributed among the constituent modules. 

Future research should focus on three main areas: 1) 

extending the derived small-signal model to account for circuit 

parasitics; 2) examining the effect of inductor mismatch under 

varying operating conditions; and 3) exploring alternative 

control strategies that may enhance the system’s dynamic 

performance. 
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