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Emotion recognition utilizing MindWave signals and neural networks presents a 

substantial challenge due to the inherent complexity of human emotions and the 

variability of individual brainwaves. The selection of the appropriate algorithm, dictated 

by the problem and available data, necessitates an understanding of each algorithm's 

unique strengths and weaknesses. Previous studies have predominantly focused on the 

classification of emotions through EEG signals employing various standalone neural 

network algorithms. However, our study fills a notable research gap by integrating 

Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). This 

innovative combination yields improved testing performance and accuracy, setting a 

benchmark in the realm of emotion recognition. The process encompasses the collection 

of MindWave data, the elimination of noise through preprocessing, the extraction of 

features indicative of emotional states, and the training of a neural network using 

labeled data. Finally, the network's accuracy is evaluated on novel data. By addressing 

the unique challenges and complexities associated with emotion classification using 

EEG signals, this study provides a promising and advanced approach towards the 

understanding and recognition of human emotions, paving the way for potential real-

world applications. 
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1. INTRODUCTION

Emotions, fundamental to human expression, greatly 

influence daily decisions and normal activities. In the current 

era, artificial intelligence (AI) techniques are being harnessed 

for recognizing human emotions, thereby enhancing the 

progression of human-computer interaction. The brain, the 

central organ for information processing and management 

within the human body, generates physiological signals that 

are captured and scrutinized via electroencephalography 

(EEG). The limbic system, the brain's control center, is a four-

tiered system responsible for emotion regulation and 

motivation. In most instances, emotions are intricately linked 

with behavioral patterns, and an individual's genuine thoughts 

can provide insight into their feelings, emotional states, and 

psychological conditions [1]. Emotions are integral to 

decision-making in daily life and physiological activities [2]. 

Consequently, EEG signals hold the potential to provide real-

time insights into an individual's current emotional state. 

Electroencephalogram (EEG) devices are primarily 

designed to record the electrical activities that transpire in the 

brain during various physical and chemical brain functions. 

These brain-generated signals vary in frequency and amplitude 

depending on the individual's state, whether awake, asleep, or 

in different mood conditions. Deemed as aperiodic signals, 

brain waves are segregated into five distinct frequency bands 

of EEG signals: Theta, Alpha, Delta, Beta, and Gamma. Each 

band is confined within specific frequency values measured in 

Hertz [3]. 

Numerous methods exist for emotion detection, 

identification, and feature extraction, with EEG signals being 

one of the most significant [4]. In the twentieth century, 

psychologist Paul Ekman categorized feelings into emotions 

closely associated with human physiological responses. Hence, 

through brain wave emotion classification, categories of 

feelings can be established [5]. For EEG data collection, 

devices equipped with electrodes are positioned on the scalp. 

In this study, the MindWave Mobile device was utilized to 

acquire EEG signals. The device comprises a headset, ear clip 

sensors, and a forehead clip, the latter grounding the EEG 

electrode. Figure 1 illustrates the device's structure [6]. 

Figure 1. MindWave device [7] 
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The primary objective of this study is to discern emotions 

utilizing EEG signals, specifically through the employment of 

the MindWave Mobile device. The creation of a unique dataset 

for this research not only facilitates practical comparison of 

algorithms and methods but also enables the integration of 

various methods to yield enhanced results during analysis and 

conclusion phases. This comprehensive approach 

distinguishes the study, addressing the limitations of previous 

research that relied solely on pre-existing datasets and 

implemented certain methods in a restricted manner. 

 

 

2. LITERATURE REVIEW 

 

In previous studies, various approaches have been 

employed to address the task of emotion classification using 

EEG signals. These approaches investigate the relationship 

between brain activity and emotional responses, utilizing 

different sensory stimuli such as visual and auditory cues like 

words, images, and video clips to influence an individual's 

emotional state. For instance, Tomarken et al. [7] hypothesized 

that resting forehead asymmetry can predict emotional affect 

and conducted research using electroencephalography (EEG) 

to explore this relationship. Similar findings were reported by 

Davidson, who indicated that brain electrical activity is 

associated with emotional responses [8]. 

Numerous studies have utilized EEG signals to classify and 

examine emotions. Lee and Hsieh focused on communication 

patterns dependent on EEG signals for classification [9]. Wang 

et al. [10] conducted an experiment to record emotional states 

through EEG signals while participants were exposed to 

emotionally stimulating films. Wang et al. [10] utilized self-

assessment by their research (SAM) and created a dataset of 

six volunteers to investigate emotion state classification based 

on EEG signals, employing SVM for accuracy calculation. 

Murugappan et al. [11] employed the discrete wavelet 

transform to analyze EEG signals and highlighted the 

challenges researchers face in collecting EEG data using 

clinical EEG devices. Peining et al. [12] added that while 

clinical devices offer high accuracy, they pose challenges for 

participants and patients. Clinical data collection restricts 

movement, and electrodes placed on the scalp may leave 

residue on the hair. Moreover, the high cost of medical devices 

has led to the development of commercial alternatives to 

address these issues. 

The emergence of deep learning techniques has garnered 

attention in the field of emotion recognition based on brain 

waves. Convolution Neural Networks (CNNs) have been 

widely utilized in EEG-based emotion classification tasks due 

to their ability to automatically learn spatial and temporal 

patterns in data. Zhang et al. [13] proposed a deep CNN 

architecture for emotion recognition from EEG signals, 

outperforming conventional machine learning techniques. In 

another study, Liu et al. [14] presented an emotion 

classification approach using Bi-LSTM, which amalgamates 

both forward and backward information from input sequences. 

This method utilizes Bi-LSTM by combining forward and 

backward LSTMs. The study applied this model to improve 

accuracy on to the DEAP dataset. 

Recurrent Neural Networks (RNNs), including variants like 

LSTM and GRU, are suitable for modeling sequential 

dependencies in time-series data like EEG signals. 

Researchers have employed RNN architectures for emotions 

classification. Yang et al. [15] introduced a multi-channel 

LSTM network for emotion recognition from EEG, 

demonstrating competitive accuracy and robustness to 

artifacts. Phan et al. [16, 17] proposed a hybrid LSTM-CNN 

architecture that effectively captured both temporal and spatial 

features in EEG signals, resulting in improved emotion 

classification performance. 

Deep Belief Networks (DBNs) have also been utilized in 

emotion classification tasks to learn hierarchical 

representations of EEG data. DBNs consist of stacked 

Restricted Boltzmann Machines (RBMs) that progressively 

learn more abstract features. Yao et al. [18] utilized a DBN-

based approach for emotion recognition from EEG signals, 

achieving notable performance across various datasets. 

Ensemble methods, which combine multiple classifiers, 

have been explored for EEG-based emotion classification. 

Chen et al. [19] proposed an ensemble framework that 

integrated multiple CNN and LSTM models, leveraging the 

complementary strengths of each model to enhance accuracy 

on emotion classification tasks. 

These approaches and architectures highlight the ongoing 

efforts in the field of emotion classification using EEG signals, 

aiming to improve accuracy and robustness in capturing and 

understanding human emotions. 

In this study, algorithms and classification methods were 

highlighted and compared in terms of accuracy and loss. 

Where the model was trained using LSTM alone, then using 

GRU alone, and finally integrating the GRU with CNN, on a 

data set that was specially configured in this study using the 

MindWave device and processing it. After training, the initial 

results for both LSTM and GRU showed an accuracy rate 

ranging between 65-73%, while the final results showed 

preference using the hybrid algorithm between GRU and CNN, 

where the results were for accuracy 80-83%. Note that the 

results could be much better if ready-made data sets were used, 

because the used data set contains fewer shapes and the reason 

is that the use of commercial intellectual wave devices 

contains fewer sensors, which limits the possibility of 

capturing more shapes and signals, unlike EEG devices 

medical. 

 

 

3. METHODOLOGY 

 

There are hundreds of thousands of emotions in humans, 

studies indicate that there are different characteristics in 

different emotions, classifying emotions is a complex research 

problem due to the diverse range of expressions that emotions 

can take in daily life. It can be simply divided into three states: 

positive, neutral, and negative. But emotion is basically a 

synthesis of many feelings, and it is considered a physiological 

state. Therefore, psychologists tend to define emotions from a 

multidimensional perspective. Some researchers divided 

feelings into positive, negative, and neutral, in addition, some 

researchers have categorized emotions into five distinct 

categories: “happiness, fear, sadness, disgust, and relaxation”. 

Visual stimuli are commonly utilized to evoke these specific 

emotions for research and analysis purposes [20]. 

In our study, emotions were divided into five categories, 

including (joy, sadness, natural state, anger, and calmness). 

The data was collected through the MindWave Mobile equally 

for you emotion as shown in Figure 2. 

These are the main emotions in humans, in which clarity 

and observation lie. However, there is some confusion 

between these feelings, and the data may converge in some 
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cases. For example, the state of nature and the state of calm are 

close in that they are closer to being one state. Likewise in the 

case of anger and sadness. This also adds a challenge in 

capturing the signals accurately and how to classify each of 

these five emotions. These cases were named by collecting 

data for a group of people through a supervised pattern and 

displaying some external influences to focus on the emotion to 

be captured first. Among the external influences that stimulate 

emotion in people are videos, music, virtual game challenges, 

and verbal influences. 

In general, any EEG-based emotion classification model 

goes through several stages. This flowchart is an overview of 

the classification process and that the steps and methods can 

differ depending on the research question and its methodology 

(Figure 3). 

 

 
 

Figure 2. Emotional type 

 

 
 

Figure 3. General steps for emotion recognition 

 

3.1 Data collection stage  

 

This model was trained on five types of data extracted by 

the EEG from three different subjects at different times. Using 

supervised technology, the MindWave Mobile device was 

attached to the scalp to collect EEG data for each person. A 

number of videos with different effects on emotions were 

played. Data were collected for each case while viewing these 

clips. Then classifying this data set according to the 

psychological state of that person while watching the video 

clip, whether the state was (happiness, anger, calmness, 

sadness, and neutral state). Things may get mixed up in some 

cases, as in cases of sadness and anger, and sometimes this 

causes problems in categorization. Therefore, the state of 

anger was affected by stimulating the person emotionally in 

virtual games and losing him in a game, as well as provoking 

the person through verbal altercation, which had an effect on 

capturing the signals of the state of anger. This goes through 

the stages of preparation and data processing. The MindWave 

device was first powered on to make sure it was working fine. 

Then the MindWave library was installed in Python, and this 

library can be found on Neurosky's official website or through 

GitHub. Then to connect the MindWave headset to the 

computer via USB or Bluetooth, a special function must be 

called from the library to initiate the connection. After 

successful communication processes, the EEG can be accessed 

through steps specified in the operating system and 

programming language. Once this is done, the data reading 

process can start. This data includes ('Timestamp', 'Raw', 

'Attention', 'Meditation', 'delta', 'theta', 'low-alpha', 'high-alpha', 

'low-beta', 'high-beta' ','low-gamma', 'mid-gamma'). 
 

3.2 Data label 
 

During the data collection process through the MindWave 

device, the EEG data were labelled with the corresponding 

feelings during the reading process by means of the supervised 

technique. Separately, labeling data were created for the 

divided data for each of the states (happy, sad, calm, angry, 

and neutral). Then it was loading the all matrixes and 

combining in one dataset (called all_data) as shown in Table 

1. 
 

3.3 Data preparation 

 

Preparing segmented EEG data and corresponding labels 

for input into the neural network. These include reshaping the 

data into a 2D or 3D matrix, normalizing the data, and dividing 

the data into training and test sets. Through machine learning 

libraries or SKlearn library in the implementation of this pre-

processing. 

 

3.4 Pre-processing 

 

In this study, a comprehensive data preprocessing pipeline 

was employed to refine the all_data data frame, which is 

integral to the investigation of emotion recognition from EEG 

data. First, any rows containing missing (NaN) values were 

meticulously removed from the dataset, ensuring data integrity. 

Subsequently, extraneous columns, such as timestamps and 

channel names, were systematically eliminated to streamline 

the dataset for analysis. To facilitate a deeper exploration of 

emotions, the data was further segmented into separate data 

frames based on distinct emotion categories, achieved through 

meticulous filtering using the loc method. Additionally, to 

provide a concise and representative view of the data, 

"sample" data frames were meticulously crafted for each 

emotion category, each comprising a single randomly selected 

row from the respective emotion-specific data frame. This 

curated dataset and the resultant sample data frames serve as a 

foundational component of the study, enabling a 

comprehensive investigation into emotion distribution and 

patterns within EEG data. These preprocessing steps lay the 

groundwork for rigorous analysis and hold potential 

implications for diverse applications, ranging from emotion 

recognition to EEG-based research in cognitive sciences. 

 

1645



 

Table 1. EEG dataset after combination and label them 

 
Attention Meditation ... Low-Gamma Mid-Gamma Emotion 

48 24 … 29566 5583 Happy 

66 60 … 3361 1444 Angry 

93 78 … 2020 2183 Neutral 

75 50 … 10090 5472 Neutral 

53 20 … 3265 3116 Calm 

… … … … … … 

87 81 … 1988 2203 Neutral 

47 56 … 3198 2417 Neutral 

54 17 … 527 708 Calm 

67 51 … 2270 1145 Happy 

66 57 … 3757 6254 Happy 
[3000 rows×12 columns] 

 

The distribution of feelings within a data frame after 

performing the prior operations on it before the input process. 

Figure 4 shows the emotion distribution process. 

 

 
 

Figure 4. Emotion distribution process 

 

The operation under consideration represents a 

quintessential procedure integral to the scientific domain of 

data preprocessing and transformation. This process is aptly 

denominated as "data conditioning" within the context of 

machine learning research. Within this meticulously designed 

Python function, denoted as Transform_data, an array of 

crucial tasks is orchestrated on the input dataframe, denoted as 

all_data. These encompass the essential conversion of emotion 

labels into numerical encodings, the segregation of EEG 

signals and emotion labels into distinct variables, meticulous 

standardization of EEG signal values, and the consequential 

one-hot encoding of emotion labels. These orchestrated tasks 

serve the fundamental purpose of ensuring the dataset's 

alignment with the prerequisites for efficacious machine 

learning model training and validation. Subsequently, the 

dataset is judiciously bifurcated into training and testing 

partitions, an imperative facet in the scientific inquiry of 

model evaluation. The focal point of interest lies in 

ascertaining the count of features, signifying the dimensional 

complexity of the training dataset, and wielding substantial 

significance in modeling endeavors. This methodical data 

preprocessing operation, as elucidated in the academic paper, 

occupies a seminal role in expediting the precision and 

effectiveness of machine learning model development, hence 

warranting meticulous documentation and exposition. 

 

3.5 Architectures used for emotion classification 

 

To evaluate the process of categorizing emotions using EEG 

signals, accuracy as an indicator of competence is used in 

many studies and extensively in the literature. Therefore, the 

quality of the method used for classification is judged to be 

accurate as the key in how traits are classified. 

Various methods have been extensively researched for 

emotion classification, including Support Vector Machines 

(SVM), Linear Discriminant Analysis (LDA), GRU, LSTM, 

RNN, and CNN. 

 

3.5.1 SVM  

SVM is a popular machine learning model used for 

regression analysis and statis-tical classification. It is a binary 

model and a linear classifier, assuming that the classifier 

objects are linearly separable. SVM defines the most 

prominent margin in the feature space and utilizes interval 

maximization as a learning strategy. Guo et al. [21] employed 

Fuzzy Cognitive Graph (FCM) and SVM in their research for 

emotion recognition, incorporating both facial expressions and 

EEG signals. They conducted experiments on a 

comprehensive dataset and performed a deep analysis of the 

data. To reduce noise, the researchers divided the data into 

short time periods and applied data compression techniques to 

minimize spacing between the data. They utilized the wavelet 

transform method for feature extraction, which was then used 

in the classification process. Kumar conducted an empirical 

comparison using SVM between a deep dataset and a SEED 

dataset, achieving good accuracy in both cases [22]. 

SVM has its advantages and disadvantages. One of its 

advantages is its ability to effectively reflect the brain's state. 

By employing signal processing techniques in the frequency 

and time domains, it can analyze static signals and leverage 

the benefits of irregular movement. It offers high 

computational efficiency and allows for the extraction of 

relevant information from the data. However, it may not 

perform well with unstable signals, and its computational 

complexity can be a drawback due to the large number of 

arithmetic operations [23-25]. 

The mathematical formulation of SVM involves finding an 

optimal hyperplane that maximizes the margin between the 

two closest data points from different classes in a training 

dataset. These data points, known as "support vectors," lie on 

the boundary of the decision regions. 

Solve the optimization problem by the following 

mathematical formula: 

Minimize: 

 

(
1

2
) ∗ ||𝑤||

2
+ 𝐶 ∗ 𝛴𝜉𝑖 (1) 

 

Subject to: 

 

𝑌𝑖 ∗ (𝑤𝑇 ∗ 𝑋𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1 𝑡𝑜 𝑁 

𝜉𝑖 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1 𝑡𝑜 𝑁 
(2) 

 

SVM can also be applied to classify emotions using EEG 
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data. Here's a mathematical explanation of SVM for emotion 

classification: 

Data Representation: The data of EEG is typically displayed 

as an Array X, where each column denotes a feature and each 

row a sample (e.g., power spectral density, frequency bands, 

etc.). The corresponding emotion labels are represented as a 

vector Y. 

Formulation for Binary Classification: SVM can be used for 

binary emotion classification by assigning labels of +1 and -1 

to the two emotions of interest. The objective is for finding the 

hyperplane that separates the two classes with the maximum 

margin. 

Mathematical Formulation: The mathematical formulation 

for SVM in binary classification can be expressed as: 

Minimize: 

 

(
1

2
) ∗ ||𝑤||

2
+  𝐶 ∗  𝛴𝜉𝑖 (3) 

 

Subject to: 

 

𝑌𝑖 ∗  (𝑤𝑇 ∗  𝑋𝑖 +  𝑏) ≥  1 −  𝜉𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =  1 𝑡𝑜 𝑁 

𝜉𝑖 ≥  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =  1 𝑡𝑜 𝑁 
(4) 

 

In this formulation, the weight vector is denoted by W. 

perpendicular to the hyper-plane, b is the bias term, ξi are slack 

variables, C is the regularization parameter, (Xi) represents the 

(i-th) samples in the data matrix X, and Yin is the corresponding 

emotion label. 

Kernel Trick: To handle non-linearly separable data, SVM 

employs the kernel trick. the incoming data is transformed into 

a higher-dimensional feature space, the SVM can find a 

hyperplane that effectively separates the classes. Frequently 

employed kernels for classifying emotions in EEG data consist 

of linear, sigmoid, polynomial, and radial basis function 

kernels. 

Multi-Class Classification: SVM is inherently a binary 

classifier. To extend it for multi-class emotion classification, 

several strategies can be used, such as “one-vs-one” or “one-

vs-rest”. In one-vs-one, multiple SVM models are trained, 

each comparing pairs of emotions. In one-vs-rest, separate 

SVM models are trained for each emotion against the rest. 

Training and Prediction: Once the SVM model is trained 

using the labeled EEG data, it can be used to classify new, 

unseen EEG samples. The sign of (wT*X+b) determines the 

predicted emotion label. 
 

3.5.2 CNNs  

Numerous traditional “machine learning” techniques have 

been utilized for emotion classification and have shown 

Certain achievements. Nonetheless, such approaches are 

hindered by certain drawbacks, including challenges 

encompass difficulties in extracting features, achieving low 

accuracy rates, and encountering limited stability. Research 

indicates that deep learning provides a more effective 

approach to emotion detection and is particularly suitable for 

analyzing and identifying physiological signals. The use of 

deep learning in emotion recognition has become increasingly 

prevalent because of its extraordinary capacity for learning 

and flexibility [26]. 

CNNs have both advantages and disadvantages when it 

comes to emotion recognition using EEG signals. 

Advantages: 

CNNs are effective in identifying patterns in large and 

complex datasets, which is useful in analyzing the complex 

EEG signals for emotion recognition. 

They can learn complex feature representations in a 

hierarchical manner, allowing them to take the raw EEG 

signals and extract the high-level features. 

CNNs can handle the high dimensionality of EEG data 

effectively, making them suitable for use in emotion 

recognition tasks. 

They are robust to noise and artifacts, which is essential 

when working with EEG signals that are susceptible to various 

sources of interference. 

Disadvantages: 

CNNs require a large amounts of s labeled data for training, 

which may be challenging to obtain in the case of EEG-based 

emotion recognition. 

The interpretability of CNNs is limited, making it 

challenging to understand the features that the network has 

learned from the EEG data. 

But when using large data sets and complex networks, it can 

be expensive in computational operations. 

CNNs can overfit the training data, which may result in poor 

generalization to un-seen EEG signals. 

CNNs are a deep learning algorithm that is particularly well-

suited for handling large datasets due to its unique architecture. 

Unlike traditional artificial neural networks with three layers, 

CNNs incorporate two additional layers: the pooling layer and 

the con-volution layer. The convolution layer plays a crucial 

role in extracting relevant features from EEG data and 

reducing the influence of noise. The pooling layer performs 

information filtering and feature selection. Once the features 

are extracted and selected, the fully connected layer combines 

them as inputs to the output layer, which employs SoftMax 

functions for classification. CNNs consist of numerous 

neurons organized in a “three-dimensional coordinate system”, 

allowing for efficient processing of large datasets [27, 28]. The 

CNN structure in Figure 5. 

 

 
 

Figure 5. CNN structure [29] 

 

Yang's proposal for sentiment recognition is a multi-column 

CNN model which includes multiple recognition units whose 

primary reliance is on one-dimensional clustering and 

convolution layers CNN. In their study, the researchers used 

the DEAP dataset as experimental data, which was 

preprocessed by reducing frequency and analyzing and 

sampling EEG signals with a bandpass filter multiple time. 

The preprocessed data was then utilized as input for the 

recognition module. The model used a weighted averaging of 

the decisions made by each module to ensure accurate 

recognition results. The model code was implemented using 

Python and Pytorchi libraries. Experimentally results revealed 

that the model achieved a high valence rate of 90.01% and 

arousal rate of 90.65% [15, 29]. 

Here's a brief explanation of the mathematical components 

involved in CNNs for EEG-based emotion classification: 

Convolution Operation: The convolutional operation is a 

fundamental component of CNNs. It involves sliding a filter 

(also known as a kernel) over the input EEG data, per-forming 

element-wise multiplication, and summing the results to 
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generate feature maps. The mathematical calculation for a 

convolution operation: 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝[𝑖, 𝑗] 
= 𝑠𝑢𝑚(𝐼𝑛𝑝𝑢𝑡[𝑖 + 𝑘, 𝑗 + 𝑙] ∗  𝐹𝑖𝑙𝑡𝑒𝑟[𝑘, 𝑙]) 

(5) 

 

Activation Function: After each convolutional operation, an 

activation function is applied element-wise to introduce non-

linearity. Common activation functions used in CNNs include 

ReLU, sigmoid, or hyperbolicitangenti (tanh) functions. 

Pooling Operation The pooling process preserves the most 

prominent features and reduces the spatial dimensions of 

feature maps. Max pooling is commonly used in CNNs, where 

the maximum value within each pooling region is selected. 

The mathematical process of max pooling can be represented 

as: 

 

𝑃𝑜𝑜𝑙𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝[𝑖, 𝑗] 
= 𝑚𝑎𝑥 (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝[𝑖 + 𝑘, 𝑗 + 𝑙]) 

(6) 

 

In a fully connected layer, the extracted features from the 

previous layer are passed through a set of neurons, where each 

neuron is connected to every neuron in the previous layer. The 

calculation in a fully connected layer can be represented 

mathematically as follows: 

 

𝑂𝑢𝑡𝑝𝑢𝑡[𝑖] 
= 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑢𝑚(𝑊𝑒𝑖𝑔ℎ𝑡[𝑖, 𝑗] 

∗ 𝐼𝑛𝑝𝑢𝑡[𝑗]) + 𝐵𝑖𝑎𝑠[𝑖]) 

(7) 

 

The soft magnetization function is commonly used in the 

final layer of a neural-network for multi-class classification 

tasks, such as emotion classification. It takes the raw output 

values from the previous layer and transforms them into a 

probability distribution over the different classes: 

 

𝑃(𝑐𝑙𝑎𝑠𝑠 𝑖) =
𝑒𝑥𝑝(𝑂𝑢𝑡𝑝𝑢𝑡[𝑖])

𝑠𝑢𝑚(𝑒𝑥𝑝(𝑂𝑢𝑡𝑝𝑢𝑡[𝑗]))
to 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (8) 

 

Loss Function and Optimization: The choice of loss 

function depends on the specific problem. For multi-class 

classification, cross-entropy loss is commonly used. The CNN 

is trained by optimizing the weights and biases to minimize the 

loss using optimization algorithms such as stochastic gradient 

descent (SGD), Adam, or RMSprop. 

The above mathematical components are combined to 

create a CNN architecture for emotion classification using 

EEG data. The architecture may vary depending on the 

specific requirements and complexity of the task. Additionally, 

data preprocessing, data augmentation, regularization 

techniques, and hyperparameter tuning are essential aspects to 

consider for achieving optimal performance in CNN-based 

emotion classification systems. 

 

3.5.3 RNN 

RNN is a deep learning network that has a unique structure 

distinguishing it from other neural networks. Unlike most 

networks that only consider the current input, an RNN 

incorporates a "memory" function, allowing it to take into 

account inputs at any given time. This enables RNNs to 

process sequential data by retaining information from previous 

calculations and utilizing it to influence the Output of the 

current input. The RNN structure consists of an input layer, a 

hidden layer, and an output layer, and it can be combined with 

other neural networks to extract temporal characteristics from 

EEG signals. Following feature extraction and selection, the 

output layer utilizes the SoftMax function for classification. 

RNNs are particularly suitable for processing sequential data, 

such as continuous natural language or lengthy text sections, 

as they can remember past calculations and use that 

information to predict the next segment of the sequence [29]. 

Esmeralda Contessa Djamal proposed a model for 

emotional recognition that com-bines wavelet transform (WT) 

and RNN to detect emotions such as sadness, relaxation, and 

pleasure. The model, developed using Python and 

TensorFlow, employed EEG signals generated by emotional 

audio and visual stimuli from ten healthy individuals. The 

researcher converted the EEG readings using WT into brain 

waves associated with emotions, which were then fed into an 

RNN model for recognition. EEG data from four channels 

were collected to ensure the accuracy of the findings. 

Experimental results demon started recognition rates of 92% 

for sorrow, 53% for relaxation, and 97% for happiness, in-

dictating that the combination of wavelet transforms and RNN 

is a reliable technique for emotion categorization [30]. 

To categorize emotional aspects in EEG data, Tao et al. [31] 

proposed a model called ACRNN, which combines CNN and 

RNN with an attention mechanism. RNN is utilized to capture 

temporal features, while CNN is employed to extract spatial 

features. The ACRNN model was trained using EEG and ECG 

signals generated by unemotional stimuli and implemented 

using Python and Tensor-Flow. Noise in the EEG readings 

was reduced using blind source separation. The ACRNN 

model, employing the soft max function in RNN, achieved 

accurate emotion classification. The research revealed that 

both the CNN and CNN-LSTM models performed well in 

extracting emotional features. 

The mathematical formulation of a RNN involves capturing 

sequential information and utilizing recurrent connections. 

Here's an overview of the key mathematical formulations: 

Hidden State Update: 

In an RNN, the hidden state captures information from 

previous time steps and influences the current prediction. 

Updates are made to the concealed state at time step t, 

represented by “h(t)”, is updated using the input at time step t, 

denoted by “x(t)”, and the previous hidden state, denoted by 

“h(t-1)”. The mathematical calculation for the hidden state 

update can be expressed as: 

 

ℎ(𝑡) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊𝑥ℎ ∗ 𝑥(𝑡) + 𝑊ℎℎ
∗ ℎ(𝑡 − 1) + 𝑏ℎ) 

(9) 

 

where, Wxh represents the weight matrix for the input, Whh 

represents the weight matrix for the hidden state, and bh 

represents the bias term. The activation function is typically a 

non-linear activation function like tanh or sigmoid. 

Output calculation: 

The output of the RNN at each time step is calculated based 

on the current hidden state. The output at time step t, denoted 

by y(t), is obtained by applying a weight matrix, Wyh, to the 

hidden state and adding a bias term by. The mathematical 

calculation for the output can be expressed as: 

 

y(t)=activation function (Wyh*h(t)+by) 

 

where, “Wyh” is the weight matrix for the output, and by 

represents the bias term. 

Sequence unfolding: To process a sequence of inputs, the 
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RNN is typically unfolded over time, creating a series of 

interconnected RNN cells. Each RNN cell represents a time 

step, and the hidden state is updated sequentially based on the 

previous hidden state and the input. 

Backpropagation Through Time (BPTT): Training an RNN 

involves propagating the error gradient back through time. 

This process, known as BPTT, adjusts the weights and biases 

to minimize the loss function. BPTT essentially extends the 

standard backpropagation algorithm to handle the sequential 

nature of RNNs. 

These are the key mathematical formulations for an RNN. 

Variations of RNNs, such as LSTM and GRU, introduce 

additional equations and mechanisms to address issues like the 

vanishing gradient problem and improve the modeling of long-

term dependencies. 

 

3.5.4 LSTM 

Traditional machine learning models often face challenges 

such as complex computations and low efficiency, as 

mentioned in reference [32]. However, in the field of emotion 

recognition, the LSTM) neural network, which belongs to the 

domain of deep learning, has gained significant attention due 

to its unique network architecture [33]. LSTM is a specialized 

type of recurrent neural network [34] that incorporates a "gate" 

mechanism, setting it apart from the simple cyclic structure of 

traditional RNNs. The LSTM architecture consists of an input 

layer, a recurrent body structure, and an output layer that can 

selectively retain or discard information using the "gate" 

mechanism, thus enabling memory storage or forgetting [35]. 

The structure of an LSTM unit is illustrated in Figure 6. 

 

 
 

Figure 6. LSTM structure 

 

Oblivion Gate: It is considered the first gate of the gates. All 

old memories pass through when this portal opens fully. While 

when closed, Past memories won't be retained. It consists of 

multiplying one element with another. The forgetting gate 

equation can be expressed as follows: 

 

𝑓𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓) (10) 

 

To erase most of the old memory, multiplied by a vector that 

is nearly zero. Whereas, when setting the forgetting gate to the 

value of 1, this allows the old memory to pass through, as in 

the following equation: 

 

𝐶𝑡−1 ∗ 𝑓𝑡 = 0(𝑖𝑓 𝑓𝑓) = 0 (11) 

 

𝐶𝑡−1 ∗ 𝑓𝑡 = 𝐶𝑡−1(𝑖𝑓 𝑓𝑓) = 1 (12) 

 

When Xt and Ht-1 are inserted, they represent the current 

input timestamp and the hidden state of the previous 

timestamp, respectively. The weights associated with the in-

put and hidden states are expressed by Uf and Wf. 

The input gate is the second gate in the LSTM unit. It 

determines how much new information should be allowed in. 

It considers that new and old memories may be influenced 

differently by adjusting this gate. The input gate measures the 

significance of the new data that the input carries. The 

equation for the input gate is as follows: 

 

𝑖𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖) (13) 

 

where, Wi and Ui represent the weights associated with the 

current input and the previous hidden state. 

The cell state, denoted by Ct, is a combination of the old 

memory and the current in-put. It combines the elements of the 

old memory and the current input using element-wise addition. 

 

𝐶𝑡̅ = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈𝑐 + 𝐻𝑡−1

∗ 𝑊𝑐)(𝑁𝑒𝑤 𝑖𝑛 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 
(14) 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ 𝐶𝑡̅(𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒) (15) 

 

The output gate generates the output for the LSTM unit. It 

is influenced by the new memory, the current input, and the 

previous output. The output gate controls the amount of new 

memory that should be passed on to the next LSTM unit. 

 

𝑂𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑂 + 𝐻𝑡−1 ∗ 𝑊𝑂) (16) 

 

The current hidden state is determined by using the 

modified cell state Ct and ap-plying the tanh function. The 

output gate Ot is also considered, as its value is between 0 and 

1 due to the sigmoid function. 

 

𝐻𝑡 = 𝑋𝑡 ∗ tanh(𝐶𝑡) (17) 

 

The function for current output and long term memory (Ct) 

is the hidden state. The SoftMax activation function is applied 

to the hidden state Ht if there is a need to get the current 

timestamp output. 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑡) (18) 

 

Liu proposed a model for emotion classification that utilizes 

Bi-LSTM to incorporate both forward and backward 

information of input sequences based on LSTM. The model 

was evaluated using EEG data from 15 channels associated 

with emotions in the DEAP dataset. The researchers 

preprocessed the data by filtering and down-sampling before 

feeding it into the Bi-LSTM for recognition and classification. 

The SoftMax layer was used to classify the output results of 

the Bi-LSTM, achieving high classification rates [36]. 

Lu et al. [37] introduced another model that combines CNN 

and LSTM for emotion recognition. The model leverages 

CNN to extract features from the 62-channel signals, and the 

LSTM network further integrates and extracts features based 

on the interconnections between the signal features of each 

channel. The SoftMax function is used to classify the output 

results of the CNN-LSTM model. The model was 

implemented using TensorFlow deep learning framework on 

the Ubuntu environment. Both the CNN and LSTM-based 

methods demonstrated high classification rates in their 

respective experiments. 

 

3.5.5 GRU 

GRU is similar to LSTM but has fewer gates and is a variant 
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of the RNN architecture where gates are used to control the 

flow of information between neurons. It also relies on the 

hidden state to transfer memory between redundant units. 

Compared to LSTM, it is new and thus surpasses it with its 

clearer structure [38]. 

GRU is a type of recurrent neural network that operates by 

passing a hidden state from one time step to another. It 

incorporates gate mechanisms to perform calculations on the 

input data and the hidden state. One of the distinctive features 

of GRU is its ability to capture both short-term and long-term 

dependencies simultaneously. GRU has found applications in 

various fields such as “speech recognition”, stock price 

prediction, “sentiment analysis”, “machine translation”, and 

more. Figure 7 illustrates the structure of a GRU unit. 

 

 
 

Figure 7. GRU structure 

 

(1-2) Reset gate: The current input (x_t) and the previous 

hidden state (h_t-1) are multiplied by their respective weights 

and then transferred together through the reset gate. The first 

step determines which values to ignore (0), remember (1), or 

partially keep (between 0 and 1) because the sigmoid function 

has a range of 0 and 1. The previous hidden state is reset in the 

second step by multiplying it by the results of the first step. 

 

𝑟𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑟 + 𝐻𝑡−1 ∗ 𝑊𝑟) (19) 

 

The hidden case in (3-4-5), although the third step of the 

update gate may appear similar to the first step in some 

respects, the weights and biases used to measure these vectors 

are different, resulting in a characteristic sigmoidal output. As 

a result, in the fourth step, we subtract the complex vector from 

the vector containing 1 and multiply it by the sigmoid function 

(the previous hidden case). (Step 5). This is a component of 

updating the hidden state with new data. 

 

𝑈𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑢 + 𝐻𝑡−1 ∗ 𝑊𝑢) (20) 

 

(6-7-8) The outputs are mixed with the new inputs (x_t), 

multiplied by their respective weights, and biases added before 

going through the tanh activation function (6th step). This is 

done after resetting a previous hidden state in step two. The 

state is generated the new hidden state ht multiplies the hidden 

state filter by the update gate output (step 7) and combines it 

with the previously changed hidden state ht-1. Once the 

iterative unit has processed the complete sequence, the process 

is then repeated for the time step t+1 and subsequent time steps. 

 

ℎ̅ = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈ℎ + 𝑟𝑡 ∗ ℎ𝑡−1 ∗ 𝑊ℎ) (21) 

 

ℎ𝑡 = 𝑈𝑡 ∗ ℎ𝑡−1 + (1 − 𝑈𝑡) ∗ 𝑋𝑡 ∗ ℎ̅ (22) 

where, ht indicates the current hidden state architecture by 

GRU.  
 

3.6 Compared different algorithms 
 

SVM, CNN, RNN, LSTM, and GRU are all commonly used 

algorithms for emotion recognition in EEG signals. Here's a 

comparison of their strengths and weaknesses: 

1. SVM: 

-Strengths: Can handle high-dimensional data with a limited 

number of samples, effective in binary classification tasks, can 

handle non-linear data through the use of kernel functions, 

good at capturing non-linear decision boundaries. 

-Weaknesses: Limited ability to capture temporal dynamics, 

computationally ex-pensive for large datasets, requires careful 

selection of kernel functions and hyperparameters. 

2. CNN: 

-Strengths: Effective in capturing spatial and temporal 

features, automatically learns relevant features from raw data, 

reduces the need for manual feature engineering, suitable for 

large-scale datasets, widely used in image and signal 

processing tasks. 

-Weaknesses: Requires large amounts of labeled data, 

computationally expensive for complex architectures and 

large datasets, may overfit with insufficient regularization. 

3. RNN: 

-Strengths: Can model sequential data and capture temporal 

dependencies, flexible in handling inputs of varying lengths, 

suitable for real-time processing, widely used in natural 

language processing and speech recognition. 

-Weaknesses: Suffers from the vanishing/exploding 

gradient problem, limited ability to capture long-term 

dependencies, computationally expensive due to sequential 

processing, difficult to parallelize. 

4. LSTM: 

-Strengths: Specifically designed to address the vanishing 

gradient problem, effective in capturing long-term 

dependencies, retains memory over long sequences, widely 

used in various sequence modeling tasks, such as speech 

recognition and language translation. 

-Weaknesses: Computationally expensive, requires large 

amounts of labeled data, may overfit with insufficient 

regularization, can be difficult to interpret. 

5. GRU: 

-Strengths: Similar to LSTM, captures long-term 

dependencies, faster to train due to fewer parameters, uses 

gating mechanisms to selectively update and forget 

information, can handle sequence-to-sequence learning tasks. 

-Weaknesses: May still suffer from the vanishing gradient 

problem, requires careful tuning of hyperparameters, may 

overfit with insufficient regularization. 
 

3.7 Classification 
 

Our custom neural network model featured a multi-layered 

architecture, encompassing convolutional and recurrent layers, 

designed to extract intricate patterns and temporal 

dependencies within the input data. The architecture consisted 

of the following layers: 

•Input Layer: Accepting input data with 11 features. 

•Convolutional Layers: Employing 256 filters for feature 

extraction. 

•Gated Recurrent Unit (GRU) Layer: Facilitating the 

capture of sequential dependencies. 

•Flatten Layer: Transforming data into a one-dimensional 
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format. 

•Dense Layer: Producing the final classification output with 

five emotion categories. 

Our model was trained over 100 epochs to refine its internal 

parameters and optimize its performance. 

 

Table 2. Keras implementation (CNN & GRU) architecture 

model 

 
Layer (Type) Output Shape Param  

input_1 (InputLayer) [(None, 11)] 0 

tf.expand_dims (TFOpLambda)  (None, 11) 0 

conv1d (Conv1D) (None,9, 256) 1024 

conv1d_1 (Conv1D) (None,5,256 327936 

gru (GRU) (None,2560) 1182720 

flatten (Flatten) (None,2560) 0 

dense (Dense) (None,5) 12805 

Total params 

Trainable params 

Non-trainable params 

1,524,485 

1,524,485 

0 

 

The presented neural network model, denoted as "model" in 

Table 2 comprises a structured architecture designed for 

Emotion classification by EEG signals. This model is 

composed of multiple layers, each serving a distinct purpose 

in the information processing pipeline. The initial layer, 

named "input_1 (InputLayer)" takes input data characterized 

by a shape of (None, 11), where "None" signifies a flexible 

batch size, and the data encompasses 11 distinct features. 

Subsequently, the "tf.expand_dims (TFOpLambda)" layer 

extends the input into a three-dimensional format, resulting in 

a shape of (None, 11, 1), a transformation often employed to 

facilitate compatibility with convolutional layers designed to 

handle three-dimensional data. 

The model then integrates two consecutive 1D 

convolutional layers, "conv1d" and "conv1d_1," each 

comprised of 256 filters. The application of these 

convolutional layers results in output shapes of (None, 9, 256) 

and (None, 5, 256), respectively, each contributing varying 

degrees of complexity to the model's representation. The "gru 

(GRU)" layer, a Gated Recurrent Unit with 512 units, 

introduces recurrent processing capabilities to the model, 

enhancing its ability to capture sequential dependencies within 

the data. 

Following the GRU layer, the data is transformed by a 

"flatten (Flatten)" layer, effectively converting the output into 

a one-dimensional format with 2,560 elements. Lastly, the 

"dense (Dense)" layer, a fully connected component, produces 

the final classification output with five distinct classes. This 

corresponds to the number of categories or classes relevant to 

the classification task. The dense layer encompasses 12,805 

trainable parameters, contributing to the model's decision-

making process. 

In totality, this model architecture encompasses 1,524,485 

trainable parameters, with the training process commencing 

over a span of 100 epochs. Each epoch represents an iterative 

learning cycle wherein the model refines its internal 

parameters to optimize its performance with respect to the 

specified task. This summary of the model architecture 

provides a comprehensive insight into the neural network's 

structural intricacies, aiding in understanding its capabilities 

and complexity in the context of the experimental setup. 
 

3.8 Predict emotion in real time 
 

After training the model and classifying the emotions on the 

EEG dataset, this trained deep learning model was used to 

classify and predict the emotions on new EEG data in real-time. 

This study focuses also on the real-time prediction of emotions 

using a pre-trained model. The model, previously trained on a 

suitable dataset, is loaded to make predictions on incoming 

data. The real-time data, obtained in CSV format, is 

preprocessed to remove irrelevant columns and normalize the 

brain signals. Preprocessing includes encoding emotion labels 

into numerical values and scaling the brain signals using 

StandardScaler. 

After preprocessing, the pre-trained model is used to predict 

the emotions associated with the input data. The model's 

predictions are obtained by applying the argmax function to 

the model's output, resulting in the most probable emotion for 

each input. These predicted emotions are then assigned back 

to the data. 

To determine the prevailing emotion from the predictions, 

the code calculates the frequency of each emotion. The 

emotion with the highest frequency is considered the most 

likely emotion and is printed accordingly ("Happy", "Angry", 

"Calm", "Neutral", or "Sad"). 

This approach enables real-time emotion prediction by 

utilizing a pre-trained model and applying it to incoming data. 

By incorporating appropriate preprocessing techniques and 

leveraging the model's prediction capabilities, it offers a 

practical and efficient method for emotion recognition in real-

world scenarios. 

 

3.9 The rationale for enhanced CNN-GRU hybrid neural 

networks 

 

The choice of using a combination of Convolutional Neural 

Networks (CNN) and Gated Recurrent Units (GRU) for 

emotion classification using EEG signals is based on 

leveraging the strengths of both architectures to effectively 

process and analyze the complex temporal and spatial patterns 

present in EEG data. 

CNN for spatial feature extraction: CNNs are well-suited 

for spatial feature extraction. EEG data often contains valuable 

spatial information, as different regions of the brain are 

associated with various emotional states. By using 

convolutional layers, CNNs can automatically learn and 

extract relevant spatial features from the EEG signal. These 

features can capture the distinct patterns in brain activity 

associated with different emotions. 

GRU for temporal modeling: EEG signals are inherently 

temporal in nature. They consist of time-series data where the 

sequence of measurements is critical for understanding brain 

activity. GRUs, a type of recurrent neural network (RNN), are 

designed to model sequential data effectively. They capture 

temporal dependencies and patterns in the EEG signal, 

enabling the network to consider how brain activity evolves 

over time, which is crucial for emotion recognition. 

Combining Spatial and Temporal Information: Emotion 

recognition from EEG data often requires considering both 

spatial and temporal aspects. For instance, specific patterns of 

brain activity may evolve differently over time for different 

emotions. By combining CNN and GRU layers in a neural 

network architecture, you can process the spatial features 

extracted by CNNs and capture temporal dependencies in the 

EEG data using GRUs. This hybrid architecture allows the 

model to make predictions by considering both spatial and 

temporal information simultaneously. 

Improved Generalization: CNNs and RNNs, including 
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GRUs, have shown success in various machine learning tasks. 

Combining these architectures can lead to improved 

generalization because each part of the network focuses on 

what it does best. CNNs excel at capturing spatial features, 

while GRUs excel at modeling sequential dependencies. This 

can result in a more robust model that is better equipped to 

handle the complexity of EEG data. 

In summary, the logic behind using a combination of CNN 

and GRU for emotion classification using EEG signals is to 

take advantage of their complementary strengths in processing 

spatial and temporal information. This approach can lead to 

more accurate and interpretable models for recognizing 

emotions from EEG data, which is vital for applications in 

fields like affective computing, healthcare, and human-

computer interaction. 

 

 

4. RESULTS 

 

Emotion recognition is a complex field in artificial 

intelligence, and achieving high accuracy in classifying 

emotions from data is crucial for its successful integration into 

AI systems. In our study, we focused on enhancing emotion 

recognition through the implementation of advanced neural 

network models. We explored the capabilities of a custom-

designed model and compared its performance to traditional 

machine learning classifiers. 

Each classifier has its own weaknesses and strengths, the 

choice depends on the specific requirements of the problem at 

hand. SVM is suitable for binary classification and handling 

high-dimensional data. CNN is effective in capturing spatial 

and temporal features from raw data. RNN and LSTM are 

suitable for modeling sequential data, while LSTM excels at 

capturing long-term dependencies. GRU offers a balance 

between computational efficiency and capturing temporal 

dynamics. The selection should consider factors such as the 

nature of the data, available computational resources, and the 

desired trade-off between model complexity and performance. 

The classification was performed using five different 

machine-learning algorithms. “Gaussian Naïve Bayes 

classifier, support vector machine, logistic regression, 

decision tree classifier, and random forest”, addition to 

algorithms that was mentioned first. 

The model has trained for each classifier on (X_train, 

Y_train) data, and then predictions was made for the test data 

(X_test) and the classification is printed, which includes 

accuracy, recall, F1 score, and support for each separately. In 

addition, the confusion matrix was calculated and drawn using 

the Confusion Matrix. 

Upon closer inspection, we observed the following 

predictions and actual labels for a subset of test samples: 

-Predicted Emotions: [0 3 0 3 2 4 3 2 4 4] 

-Actual Emotions: [0 3 0 3 3 1 3 4 0 4] 

then has been analyzed the confusion matrix to gain insights 

into the model's performance. Notably, the confusion matrix 

for our custom model, as well as traditional machine learning 

classifiers. 

Custom Neural Network Model (GRU & CNN) 

 

[90 4 5 7 8] 

[6 107 0 5 8] 

[6 0 96 10 4] 

[8 9 6 105 5] 

[7 9 3 4 88] 

 
 

Figure 8. GRU & CNN convolution matrix 

 

Figure 8 shows that the confusion matrix plot visually 

displays the model's classification performance. Each cell 

represents the number of correct and incorrect predictions for 

each category. Where the horizontal labels are the predicted 

labels and the vertical features are the true labels that are 

supposed to be correct. The color intensity shows the size of 

these counts. The greater the intensity of the blue color, the 

more accurate the model is in classification and prediction. 

The results in Figure 8 above showed great distinction in 

classification, as each feature was given a high color intensity 

and was consistent between the predicted labels and the true 

labels. 

In contrast to the following Figure 9, which shows the 

extent of dispersion of colors in the confusion matrix, which 

means that the classification results are weak for this algorithm 

when working on it, this algorithm was tested to clarify the 

extent of the difference in the confusion matrix diagram when 

the algorithm gives high classification accuracy and when the 

accuracy is low. 

 

Gaussian Naive Bayes 

 

[31 7 60 3 13] 

[9 46 24 8 39] 

[10 3 98 0 5] 

[14 19 58 13 29] 

[18 5 43 5 40] 

 

 
 

Figure 9. GaussianNB convolution matrix 
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When the confusion matrix is as in Figure 9, the real-time 

prediction will give wrong results, as most of the time reading 

the sentiment data will give the sad emotion. The reason is that 

the dominant characteristic and intensity of the color is due to 

emotion of sad.  

But we notice in Figure 10 that the confusion matrix of the 

SVM algorithm in classification results better than 

GaussianNB, but we also notice from the figure that the happy 

state in true label gives similar results to the sad state when 

predicting. This is called confusion when predictive label. 

This is also the case in Figure 11, which describes the 

Logistic Regression technique, where the results are similar to 

SVC. 

 

Support Vector Machine 

 

[36 7 38 15 18] 

[5 69 7 21 24] 

[11 5 84 9 7] 

[10 34 18 59 12] 

[10 13 22 17 49] 

 

 
 

Figure 10. SVC convolution matrix 

 

Logistic Regression  

 

[35 5 39 11 24] 

[10 70 6 17 23] 

[15 3 83 7 8] 

[12 35 17 58 11] 

[10 21 20 13 47] 

 

 
 

Figure 11. LR Convolution matrix 
 

Random Forest (Figure 12) 
 

[102 2 4 2 4] 

[3 118 0 2 3] 

[4 2 104 6 0] 

[3 17 2 110 1] 

[9 6 0 0 96] 
 

 
 

Figure 12. RFC convolution matrix 
 

Finally, a classification report was printed for the deep 

learning model (GRU & CNN) that was previously trained on 

the same dataset and compares the results of all classifiers 

(Table 3). 

The classification report for our Brain Waves GRU & CNN 

model provides a comprehensive evaluation of its performance 

in emotion recognition. It reveals precision values ranging 

from 0.77 to 0.87 across different emotion categories, 

highlighting the model's ability to make accurate predictions. 

Moreover, the recall scores, ranging from 0.79 to 0.85, 

underscore the model's capacity to effectively capture true 

positive instances. The F1-score, a harmonic mean of 

precision and recall, demonstrates strong values, ranging from 

0.78 to 0.85, indicating a balanced trade-off between precision 

and recall. Overall, the model achieves an impressive accuracy 

of 81% on a dataset of 600 samples, reflecting its robustness 

in classifying emotions. The macro-average and weighted-

average metrics further support the model's consistency, 

reliability and superiority over other algorithms, including 

LSTM, with macro-average values of 0.81, highlighting a 

balanced performance across emotion categories. These 

results affirm the model's potential for applications requiring 

precise emotion recognition. 
 

Table 3. Classification report of brain waves GRU & CNN 
 

 Precision Recall F1-Score Support 

0 0.77 0.79 0.78 114 

1 0.83 0.85 0.84 126 

2 0.87 0.83 0.85 116 

3 0.80 0.79 0.80 133 

4 0.78 0.79 0.79 111 

Accuracy   0.81 600 

Macro avg 0.81 0.81 0.81 600 

Weighted avg 0.81 0.81 0.81 600 

 

The results of our experiment were promising, with the 

custom neural network model achieving an accuracy of 81% 

on the training dataset as figure 13 showed. While. However, 

it is essential to assess the model's performance on unseen data. 

On the testing dataset, our model reported a loss of 7.2959 and 
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an accuracy of 81%, demonstrating its ability to generalize 

well to new, previously unseen data. It is superior to other 

classifiers, including LSTM, the accuracy results were 67% 

Figure 14 shows this. 

Then the trained GRU and CNN model was saved to a file 

so that new predictions are performed on the new data in real-

time. Doing that, the classification process has been completed 

for the dataset after collecting, labeling, and processing it. 

 

 
 

Figure 13. CNN & GRU results 

 

 
 

Figure 14. LSTM results 

 

 

5. CONCLUSIONS 

 

This study illuminates the proficiency of advanced neural 

networks in emotion recognition tasks, discussing the intricate 

process of recognizing emotions using MindWave (EEG) 

signals and deep neural networks. The process encompasses 

several stages including data collection, processing and 

labeling, preprocessing, feature extraction, feature selection, 

classification, model evaluation, and finally prediction of new 

data. Furthermore, several algorithms, namely SVM, CNN, 

RNN, LSTM, and GRU, were compared. SVM demonstrated 

its ability to manage high-dimensional data with limited 

samples, although its capacity to capture temporal dynamics 

may be constrained. CNN can autonomously learn relevant 

features from raw data but necessitates substantial amounts of 

labeled data and can be computationally challenging. RNN 

captures short-term dependencies in sequential data but may 

be hindered by the vanishing gradient problem and limited in 

capturing long-term dependencies. LSTM can address the 

vanishing gradient problem and capture long-term 

dependencies, but it can also be computationally burdensome. 

GRU, similar to LSTM but with fewer parameters, can be 

quicker to train, making it beneficial in scenarios where 

labeled data is limited or sequence-to-sequence learning is 

required. 

These algorithms were tested alongside some traditional 

machine learning algorithms. Each classifier model was 

trained on (X and Y) data, predictions for the test data were 

made, and the classification was printed. This included 

Accuracy, Recall, F1 score, and support for each, separately. 

Additionally, the confusion matrix was calculated and 

depicted using the confusion matrix. These were compared 

with the proposed model specifically designed for this study, 

which encompasses the integration of two algorithms (Multi 

1D CNN & GRU). 

Our custom-constructed model, with its multi-layered 

architecture, attains noteworthy accuracy levels on both 

training and testing datasets. When integrating CNN and GRU 

and training the model, results of 81% accuracy were obtained, 

exceeding the performance of other classifiers. While the 

model was also trained on LSTM, less efficient results were 

achieved, with an accuracy of 67%. 

The results suggest that our custom neural network model, 

which integrates convolutional and recurrent layers, exhibits 

competitive accuracy levels in emotion recognition. Moreover, 

it surpasses traditional machine learning classifiers across 

multiple emotion categories. This underlines the potential of 

advanced neural network architectures in augmenting emotion 

recognition capabilities, which could have significant 

implications for applications such as human-computer 

interaction and mental health monitoring. 

As the field of emotion recognition advances, the 

incorporation of advanced neural network models harbors 

substantial promise for real-world applications, ultimately 

contributing to the development of more emotionally 

intelligent AI systems. 

 

 

6. FUTURE WORK 

 

In this research, we proposed an innovative architecture for 

emotion recognition in EEG signals by synergizing multiple 

1D CNN layers with a GRU layer. This architecture aims to 

exploit the strengths of both CNNs and GRUs to effectively 

capture and model the complex temporal dynamics inherent in 

EEG data. 

Future works can explore and incorporate alternative 

structures. For instance, a combination of LSTM and CNN or 

RNN could be utilized. 

The dataset employed in this study was captured, processed, 

and input via a MindWave portable device, lending strength to 

the study by relying on a self-constructed dataset rather than a 

pre-existing, published one. However, this feature also 

introduces drawbacks, including the cost of EEG signal 

capture devices and some devices' limitations in capturing 

EEG signals. These limitations include a restricted number of 

columns (samples) such as 'Attention', 'Meditation', 'delta', 

'theta', 'low-alpha', 'high-alpha', 'low-beta', 'high-beta', 'low-

gamma', and 'mid-gamma'. This could negatively impact 

classification results and accuracy. Pre-existing datasets, with 

their larger sample sizes, might provide superior model 

training results when used. 

Furthermore, the enhancement of results is influenced by 

several factors, including the number of filters for feature 

extraction, the number of layers, and the number of time 

periods. The accuracy of results could also be improved by 

reducing the number of ratings or emotional features. For 

instance, in our study, emotions were divided into five traits 

(sad, angry, happy, calm, and neutral). These could be 
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replaced with fewer attributes such as negative condition, 

normal condition, and positive condition. This would increase 

the relative difference between the values of the data captured 

through the supervised technique, potentially enhancing 

model performance. 
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