
A Novel Secure Session Key Agreement Protocol Based on Multivariate Polynomials 

Sravani Jayanti, Chittibabu Kandikatla, Pragathi Chaganti , Chandra Sekhar Akkapeddi*

Department of Mathematics, Gandhi Institute of Technology and Management, Visakhapatnam 530045, India 

Corresponding Author Email: cakkaped@gitam.edu

https://doi.org/10.18280/mmep.100535 ABSTRACT 

Received: 13 May 2023 

Revised: 7 August 2023 

Accepted: 24 August 2023 

Available online: 27 October 2023 

Cryptology, a crucial discipline for safeguarding sensitive information against 

unauthorized access, underpins the Session Key Agreement Protocol (SKAP), which 

facilitates authorized access. SKAP generates unique cryptographic session keys for 

each session, allowing authorized users to access, share, and modify encrypted data. 

The current research landscape is dominated by the development of Key Agreement 

Protocols (KAPs) and key exchange mechanisms that are robust against known attacks 

and provide security to the cryptographic key. These novel KAPs leverage complex 

mathematical algorithms for enhanced security. This article introduces an innovative 

SKAP that employs Affine Transformation over Multivariate polynomials. The non-

commutative and invertible nature of Affine Transformation forms the cornerstone of 

this protocol. The use of Multivariate polynomials augments the quantity of potential 

private keys, thereby amplifying security. The proposed protocol's security features are 

thoroughly analyzed and compared with existing key exchange mechanisms and 

SKAPs. Moreover, the paper encapsulates the application of the proposed SKAP in the 

realm of Telemedicine. This approach demonstrates the real-world implications and 

practical utility of this advanced SKAP. 
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1. INTRODUCTION

The designing of cryptosystems mainly focuses on 

enhancing the confidentiality of data. This is accomplished by 

designing complex algorithms to perform encryption. The 

cipher text obtained through these computations is sent to the 

authorized recipient to retrieve the information. Consequently, 

the sender and the recipient agree on a mutual key 

communicated over a secure channel to access, encrypt and 

decrypt the data. Various key exchange mechanisms are 

developed using mathematical concepts to safeguard the 

cryptographic key [1]. 

The sole responsibility of protecting data is on the key used 

to unlock the vault. In most of the developed algorithms, some 

information is displayed publicly while some are hidden, 

which in terms of cryptography, is the public and the private 

key. Key exchange protocols allow the users to securely share 

a key to access the stored information. The infeasibility to 

retrieve the key using the available public data makes a key 

exchange or agreement protocol secure. This is mainly focused 

on designing the key exchange mechanisms and 

cryptosystems. 

The cryptographic key either needs to be remembered or 

preserved in a password vault for accessing the information in 

future. The strength and security of the key is compromised 

when an intruder tries to unlock the vault or the key is 

forgotten, or the memory occupancy of the key is large. To 

eradicate the pertaining threat, session keys are introduced. A 

session key unlocks the vault and provides user access only for 

a single session. The key is rejuvenated when the session 

expires. SKAPs are developed over time to generate the 

session keys applying mathematical and cryptographic 

algorithms. 

In the Key exchange protocols [2-5] and Key generation 

mechanisms [6], multivariate polynomials, Diophantine 

equations, Diffie-Hellman, RSA and ElGAmal algorithms are 

incorporated to establish a new competent protocol. 

Diophantine equations in multiple variables are applied to 

develop secure cryptosystems [7]. 

KAPs are the major cryptographic primitives for 

establishing secure communication channels over public 

networks. Several real time applications like e-voting, e-

commerce, Telemedicine rely on SKAPs and block chain 

technologies. 

Some of the designed protocols are reviewed. A KAP over 

Sylvester Hadamard matrices is proposed in the study [8] 

whose security drawbacks are overcome in the study [9]. A 

trusted third party is involved in studies [8, 9] to develop the 

KAP. In the study [10], SKAP and an authentication scheme 

are developed applying ECC applicable in Telemedicine. 

This paper proposes a SKAP inspired by studies [11-13]. 

The protocols developed in studies [11-13] are discussed in 

detail. 

In the study [11], a key exchange mechanism over the 

Diophantine equation over n variables is proposed by Yosh. 

The basic idea behind the developed method in the study [11] 

is: 

• Suppose that a key is to be exchanged between two

parties, say A and B. Initially, B selects a solution set

{αi}i=1,2,… n  randomly and forms a Diophantine

equation.

f (x1,  x2, … ,  xn) = 0 ∋ f (α1,  α2, … ,  αn) = 0 (1) 

• f (x1,  x2, … ,  xn) is the public key and the solution set
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{αi}i=1,2,…n is the private key. 

• A defines an invertible linear transformation 

T[a,b,c] over the quotient ring 

Z [x1,  x2, … ,  xn] (f (x1,  x2, … ,  xn))⁄ . 

• A chooses an element l (x1,  x2, … ,  xn) ∈

Z [x1,  x2, … ,  xn] (f (x1,  x2, … ,  xn))⁄  and computes 

T[a1, b1, c1] T[a2, b2, c2]  … T[am, bm, cm] (l (x1,  x2, … ,  xn)) =

h (x1,  x2, … ,  xn). 
• Since h (x1,  x2, … ,  xn) ∈

Z [x1,  x2, … ,  xn] (f (x1,  x2, … ,  xn))⁄  and can be represented 

in different ways, therefore any one of the representations of 

h (x1,  x2, … ,  xn), (k (x1,  x2, … ,  xn)) is made public along 

with l (x1,  x2, … ,  xn). 

• B computes l (α1,  α2, … ,  αn), k (α1,  α2, … ,  αn) and 

returns k (α1,  α2, … ,  αn) to A. 

• A computes l (α1,  α2, … ,  αn)  by applying inverse 

transformation on 

k (α1,  α2, … ,  αn): T[am, bm, cm]
−1 T[am−1, bm−1, cm−1]

−1  … 

 T[a1, b1, c1]
−1 (k (α1,  α2, … ,  αn)) = l (α1,  α2, … ,  αn). 

• Thus, A and B share the key: l (α1,  α2, … ,  αn). 

From the publicly available information in the above 

protocol, the attacker is left with two equations: 

 

F (α1,  α2, … ,  αn) = 0 and 

k (x1,  x2, … ,  xn) = k (α1,  α2, … ,  αn) 
(2) 

 

The insolvability of the above set of Diophantine equations 

of higher order is the basis for the security of the protocol. 

However, this protocol is safe for n>2. In the study [12], an 

analysis of the protocol developed in the study [11] is carried 

out, which states that the protocol with the same polynomial 

can be used at most (n-3) times. 

In the study [13], a key exchange protocol is designed over 

Diophantine equations over n variables, which is secure for 

n>1. The basic idea behind the methodological approach for 

exchanging key in the study [13] is: 

• Suppose that the key is to be exchanged between two 

parties say A and B. 

• A selects a random Diophantine equation 

f (x1,  x2, … ,  xn)  and defines an invertible operator 

T [a,b] on the Diophantine equation. 

• A computes 

T[a1, b1] T[a2, b2]  … T [am, bm](f (x1,  x2, … ,  xn)) =

h (x1,  x2, … ,  xn) and publicly displays 

f (x1,  x2, … ,  xn) and h (x1,  x2, … ,  xn). 

• B selects a solvable Diophantine equation 

g (x1,  x2, … ,  xn)  and a random solution {αi}i=1,2,…n 

of g=0. 

• B computes f (α1,  α2, … ,  αn), h (α1,  α2, … ,  αn) and 

sends h (α1,  α2, … ,  αn) to A keeping 

f (α1,  α2, … ,  αn) secret. 

• A computes T[am, bm]
−1 T[am−1, bm−1]

−1  … T [a1, b1]
−1  

(h (α1,  α2, … ,  αn)) = f (α1,  α2, … ,  αn). 

• Thus, both parties exchange the key f (α1,  α2, … ,  αn). 
This key exchange protocol is secure for n>1 since the 

publicly available information, cannot be solved to deduce 

{αi}i=1,2,…n to reach the key f (α1,  α2, … ,  αn) whenever n>1. 

This protocol can be used with the same Diophantine equation 

and the solution set for ut most (n-2) times. 

 

h (x1,  x2, … ,  xn) = h (α1,  α2, … ,  αn) (3) 

This paper proposes a SKAP inspired by studies [11, 13]. 

Our methodological approach applies the mathematical 

concepts of Affine cipher [14, 15] and multivariate 

polynomials to establish the protocol. 
 

1.1 Affine cipher 
 

An affine cipher is a combination of a multiplicative cipher 

and an additive cipher. In an Affine Cipher, over a congruence 

modulo n, for the values of a, b ∋ gcd  (a, n) = 1 , a, b < 𝑛, 

plaintext (P) is encrypted as Cipher text: 
 

C = (a ∗ P + b) mod n (4) 
 

and the Cipher text (C) is decrypted to Plain text: 
 

P = (C − b) ∗ a−1 mod n where a ∗ a−1

≡ 1 (mod n) 
(5) 

 

Here, for different choices of a, b, various cipher texts are 

obtained for the same plain text character. The maximum 

possible combinations for a, b is n ∗ φ (n). 
 

1.2 Multivariate polynomial 
 

A polynomial in multiple variables is a multivariate 

polynomial. For example: x1 + 3x2
2 + 10x3

3 is a polynomial in 

3 variables and is a multivariate polynomial. 
 

 

2. PROPOSED SESSION KEY AGREEMENT 

PROTOCOL 
 

The SKAP proposed is demonstrated using the following 

parameters. 

S=Set of multivariate polynomials in n variables 

Let: 

• 𝑓, 𝑔 ∈ 𝑆, 

• 𝛼 = {𝛼𝑖}𝑖=1,2,..,𝑛, 𝛽 = {𝛽𝑖}𝑖=1,2,..,𝑛, 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖𝑠,  𝛽𝑖𝑠 ∈

ℕ, 

• [𝑎, 𝑏] = [𝑎𝑖 ,  𝑏𝑖]𝑖=1,2,…,𝑛,  [𝑐, 𝑑] =
[𝑐𝑖 , 𝑑𝑖]𝑖=1,2,..,𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝑠,  𝑏𝑖𝑠,  𝑐𝑖𝑠,  𝑑𝑖𝑠 ∈ ℕ. 

Define a non-commutative linear operator 𝑇 on S where the 

inverse of 𝑇 is 𝑇−1. 

Let: 

• ℎ = 𝑇[𝑎,𝑏] (𝑓), 𝑙 = 𝑇[𝑐,𝑑] (𝑔), 

• 𝑢 = 𝑙 (𝛼), 𝑣 = ℎ (𝛽), 

• 𝑓 (𝛽) = 𝑇[𝑎,𝑏] 
−1 (𝑣), 𝑔(𝛼) = 𝑇[𝑐,𝑑]

−1  (𝑢). 

The final key value, 𝐾 = 𝑓 (𝛽) ∗ 𝑔 (𝛼). 
 

 
 

Figure 1. Methodology of SKAP proposed 
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The methodological approach adopted to agree on a key K 

by two communicating parties A and B is depicted in the 

Figure 1. 

The methodological approach to agree on a session key 

demonstrated above is cryptographically implemented 

applying modulo congruence and an Affine operator over 

multivariate polynomials. The multivariate polynomials 

involved are polynomials in n  variables over the ring of 

polynomials Z [x1,  x2, … ,  xn]. The Affine operator involved 

in the process of key exchange is: 

For a multivariate polynomial function ‘f’ define. 

 

T{a,b} (f) = (a ∗ f + b) mod p where gcd  (a, p)

= 1, b < 𝑝 
(6) 

 

T{a,b}
−1 (f) = ((f − b) ∗ a−1) mod p where a ∗ a−1

≡ 1 (mod p) 
(7) 

 

Here, mod p is performed over the coefficients and 

constant term of the polynomial. 

Suppose that the communicating parties are A and B. 

Parameters those are public: Prime number (p). 

Step 1: Public key and private key generation by A. 

• Select a set of integers {∝i}i=1,2,…,n , αi ∈ Z  and 

[ai,  bi]i=1,2,…,r, r ∈ N. 

• Select a multivariate polynomial 

f (x1,  x2, … ,  xn) over the ring Z [x1,  x2, … ,  xn]. 
• Compute 

T[a1, b1] T[a2, b2]  … T[ar, br] (f (x1,  x2, …  xn)) =

h (x1,  x2, … ,  xn). 

• Public key of A: (f (x1,  x2, … ,  xn),

h (x1,  x2, … ,  xn)). 

• Private key of A: ({∝i}i=1,2,…,n,  [ai,  bi]i=1,2,…,r). 

Step 2: Public key and private key generation by B. 

• Select a set of integers {βi}i=1,2,…,n , βi ∈ Z  and 

[ci,  di]i=1,2,…,s, s ∈ N. 

• Select a multivariate polynomial 

g (x1,  x2, … ,  xn) over the ring Z [x1,  x2, … ,  xn]. 
• Compute 

T[c1, d1] T[c2,d2]  … T[cs,ds](g (x1,  x2, …  xn)) =

l (x1,  x2, … ,  xn) 

• Public key of B: (g (x1,  x2, … ,  xn), l (x1,  x2, … ,  xn)). 

• Private key of B: ({βi}i=1,2,…,n, [ci,  di]i=1,2,…,s). 

Step 3: Key exchange. 

• A computes l (α1,  α2, … ,  αn) mod p = u and sends it 

to B. Similarly, B computes 

h (β1,  β2, … ,  βn) mod p = v and sends it to A. 
• A computes f (β1,  β2, … ,  βn) mod p =

T[ar, br]
−1  … T[a1, b1]

−1 T[a1, b1]  … T[ar, br]
−1(v) =

y and g (α1,  α2, … ,  αn) mod p = z. 
• B computes g (α1,  α2, … ,  αn) mod p =

T[cs, ds]
−1  … T[c1, d1]

−1 T[c1, d1]  … T[cs, ds] (u) = z and 

f (β1,  β2, … ,  βn) mod p = y. 

• Finally, A and B agree on the key: y ∗ z. 

The proposed methodology is explained through Figure 2. 

• PA (f) = T[a1, b1] T[a2, b2]  … T[ar, br](f (x1,  x2, …  xn)), 

• PB (g) = T[c1, d1] T[c2, d2]  … T[cs, ds](g (x1,  x2, …  xn)),  

• PA
−1 (h (β1,  β2, … ,  βn))  =

T[ar, br]
−1  … T[a1, b1]

−1(h (β1,  β2, … ,  βn))  =

f (β1,  β2, … ,  βn), 

• PB
−1 (l (α1,  α2, … ,  αn))  =

T[cs, ds]
−1  … T[c1, d1]

−1(l (α1,  α2, … ,  αn))  =

g (α1,  α2, … ,  αn). 
 

 
 

Figure 2. Key exchange process: (a) Public and private key generation of A and B; (b) Exchange of information by both A and B 

to retrieve the key; (c) Deducing the exchanged key 

 

The application of a non-commutative invertible linear 

operator in the proposed protocol is a necessary condition for 

retaining the security and efficiency of the protocol. If the 

operator is commutative, then it is easy for an intruder to 

deduce the key. This is explained below: 

T is commutative ⇒ 𝑇[𝑎,𝑏] 𝑇[𝑐,𝑑](𝑢) = 𝑇[𝑐,𝑑] 𝑇[𝑎,𝑏](𝑢) =

𝑇[𝑒,𝑓](𝑢) for some e, f. 

The values of [𝑎, 𝑏], [𝑐, 𝑑] are private to the party but it is 

computationally feasible to trace e, f values and therefore 
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𝑇[𝑒,𝑓]
−1 (𝑢) could be calculated to retrieve g(α). Similarly, f(β) 

could be retrieved. Whereas if T is non-commutative then the 

intruder needs access to [𝑎, 𝑏], [𝑐, 𝑑]  and the order of 

applying the transformations 𝑇[𝑎,𝑏],  𝑇[𝑐,𝑑] to reach g(α). 

Therefore, non-commutative nature of the operator plays a 

major role in retaining the security of the protocol. 

If the operator is non-invertible, it is impossible for the 

communicating parties to retrieve f(β) and g(α). Thus, the 

operator needs to be invertible. 

Public keys of A and B assist the communicating parties to 

send signals to each other to initiate the process of key 

agreement. Private keys of A and B permit the parties to access 

the key confidentially. 

Affine transformation is invertible, non-commutative, and 

easy to comprehend and implement thus making it the best fit 

for the protocol. The prime number 𝑝 chosen increases the 

number of possibilities for the 𝑎𝑖𝑠 and 𝑐𝑖𝑠 as gcd(𝑎𝑖 , 𝑝) = 1 

and gcd(𝑐𝑖 , 𝑝) = 1  is required. All the computations in the 

protocol are performed over modulo 𝑝 thus the parameter 𝑝 is 

declared publicly. 

The rest of the paper is organized as follows: Section 3 

illustrates the proposed method with an Example. Section 4 

displays a comparative analysis of the proposed SKAP with 

studies [10, 11, 13]. Section 5 presents a mathematical model 

of the proposed SKAP in Telemedicine. Section 6 concludes 

the presented work in the paper, and the future scope of the 

work is presented in Section 7. 

 

 

3. ILLUSTRATION 

 

The illustration of the proposed SKAP is explained through 

the example below. 

Suppose that the key is shared between two parties, A and 

B. For the following choices of n=3, p=13, r=2 and s=2, the 

protocol works as: 

 

Step 1: Public and private key generation of A 

Let (α1,  α2,  α3) = (2, 3, 5) be any random solution set, f (x1,  x2,  x3) = x1
2 + x2 + 3x3

2 + 5 be any multivariate polynomial in 

3 variables and [a1,  b1] = [5, 6], [a2,  b2] = [2, 3]. 

Then h (x1,  x2,  x3)  = T[a1, b1] T[a2, b2] (f (x1,  x2,  x3)) = T[5,6] T[2,3](x1
2 +

x2 + 3x3
2 + 5) = T[5,6]((2. (x1

2 + x2 + 3x3
2 + 5) + 3) mod 13) =

(5. (2x1
2 + 2x2 + 6x3

2) + 6) mod13 = 10x1
2 + 10x2 + 4x3

2 + 6. 

From Eq. (6), 𝑇[5,6](𝑥) = (5. 𝑥 + 6) 𝑚𝑜𝑑 13  and 

𝑇[2,3](𝑥) = (2. 𝑥 + 3) 𝑚𝑜𝑑 13. 

Public key of A:(x1
2 + x2 + 3x3

2 + 5,10x1
2 + 10x2 + 4x3

2 + 6). 

Private key of A: ((2, 3, 5), ([5, 6], [2, 3])). 

Step 2: Public and private key generation of B 

Let (β1,  β2,  β3) = (3, 5, 7) be any random solution set, g (x1,  x2,  x3) = 2x1 + 3x2
2 + x3 + 6 be any multivariate polynomial in 

3 variables and [c1,  d1] = [5, 6], [c2,  d2] = [1, 2]. 

Then l (x1,  x2,  x3) = T[c1, d1] T[c2, d2](g (x1,  x2,  x3)) = T[5,6] T[1,2](2x1 +

3x2
2 + x3 + 6) = T[5,6] (((2x1 + 3x2

2 + x3 + 6) + 2)  mod 13) =

(5. (2x1 + 3x2
2 + x3 + 8) + 6) mod13 = 10x1 + 2x2

2 + 5x3 + 7. 

From Eq. (6), 𝑇[5,6](𝑥) = (5. 𝑥 + 6) 𝑚𝑜𝑑 13  and 

𝑇[1,2](𝑥) = (1. 𝑥 + 2) 𝑚𝑜𝑑 13. 

Public key of B:(2x1 + 3x2
2 + x3 + 6,10x1 + 2x2

2 + 5x3 + 7). 

Private key of B: ((3, 5, 7), ([5, 6], [2, 3])). 

Step 3: Key exchange 

A computes g (α1,  α2,  α3) = 42 mod 13 = 3, l (α1,  α2,  α3) = 70 mod 13 = 5 and sends l (α1,  α2,  α3) to B. 

B computes f (β1,  β2,  β3) = 166 mod 13 = 10, h (β1,  β2,  β3) = 342 mod 13 = 4 and sends h (β1,  β2,  β3) to A. 

A retrieves the value of f (β1,  β2,  β3)  =

T[a2,b2]
−1 T[a1,b1]

−1(f (β1,  β2,  β3)) = T[2,3]
−1 T[5,6]

−1(4) = T[2,3]
−1((4 −

6). 8 mod 13) = (10 − 3). 7 mod 13 = 10. 

From Eq. (7), 𝑇[5,6]
−1  (𝑥) = ((𝑥 − 6). 8) 𝑚𝑜𝑑 13 

as 5.8 ≡ 1 (𝑚𝑜𝑑 13). 

Similarly, 𝑇[2,3] 
−1 (𝑥) = ((𝑥 − 3). 7) 𝑚𝑜𝑑 13 

as 2.7 ≡ 1 (𝑚𝑜𝑑 13). 

B retrieves the value of g (α1,  α2,  α3) =

T[c2, d2]
−1 T[c1, d1]

−1(l (α1,  α2,  α3)) = T[1,2]
−1 T[5,6]

−1(5) = T[1,2]
−1((5 −

6). 8 mod 13) = (5 − 2). 1 mod 13 = 3. 

From Eq. (7), 𝑇[5,6]
−1  (𝑥) = ((𝑥 − 6). 8) 𝑚𝑜𝑑 13 

as 5.8 ≡ 1 (𝑚𝑜𝑑 13). 

Similarly, 𝑇[1,2]
−1  (𝑥) = ((𝑥 − 2). 1) 𝑚𝑜𝑑 13 

as 1.1 ≡ 1 (𝑚𝑜𝑑 13). 

Final Key: f (β1, β2,  β3) ∗ g (α1,  α2,  α3) = 10 ∗ 3 = 30. 
 

 

4. COMPARATIVE ANALYSIS 

 

The proposed SKAP is analyzed on the following security 

aspects and is compared with some existing methods [10, 11, 

13] of safeguarding the cryptographic key: 
 

4.1 Methodological approach 

 

Diophantine equations serve as the building block of the 

protocol in studies [10, 13]. In study [11], Elliptic Curve 

Cryptography (ECC) is applied to design the protocol. The 

methodology adopted in designing the SKAP proposed applies 

two multivariate polynomials, f and g, and Affine 

transformation T. The non-commutative and invertible nature 

of the Affine operator serves as the base for the working of the 

protocol. 
 

4.2 Number of secure rounds in a single session 
 

This section demonstrates the maximum number of times 

the protocol is secure with the same choice of public and 

private keys chosen by the communicating parties. In short, it 

1827



 

discovers the number of times a generated key through the 

SKAP could be used to encrypt data demonstrated in the 

Figure 3. 

In the study [13], a Linear Diophantine equation: 

 

f (x1,  x2, … ,  xn) = 0 ∋ f (∝i) = 0 (10) 

 

is selected by the recipient which facilitates the working of the 

protocol that is secure for at most (n − 2) times with the same 

LDE and the solution set. In the (n-1)th round, the recipient 

needs to change the solution set of the chosen equation. 

 

f (x1,  x2, … ,  xn) = 0 (11) 

 

to retain the security of the protocol. 

Our protocol works over the public keys, multivariate 

polynomials f (x1,  x2, … ,  xn),  g (x1,  x2, … ,  xn)  and the 

private keys, set of integers {∝i}i=1,2,…,n  , {βi}i=1,2,…,n , 

[ai,  bi]i=1,2,…,r  and [ci,  di]i=1,2,…,s . The designed protocol is 

secure with the same polynomials and the set of integers for at 

most (n-2) rounds. After (n-2) rounds, either of the 

communicating parties needs to change the chosen polynomial 

or the set of integers alternately which would work for the next 

2(n-2) rounds. Hence, both the communicating parties share 

the responsibility of changing public or private keys after each 

session. Although the system needs a change of polynomial or 

the set of integers after every (n-2) rounds, the individual 

communicating party needs to change the polynomial or the 

set of integers after 2(n-2) rounds. 

The SKAP consists of a maximum of 2(n-2) rounds in a 

single session. The diagram below represents the changes 

required in the protocol after (n-2) rounds which are 

incorporated alternately by both the communicating parties A 

and B individually after 2(n-2) rounds. 

 

 
 

Figure 3. Required change in the chosen multivariate polynomial or the set of integers in the (n-1)th round 

 

In the (n-1)th step, the intruder has access to a set of n 

equations in n variables, which are: 

 

h (βi) = vj;  l (∝i) = uj, i, j = 1,2, … , n (12) 

 

The above set of equations can be solved to retrieve the 

values of {∝i}i=1,2,…,n and {βi}i=1,2,…,n. 

As depicted in the diagram above, on changing the set of 

integers {βi}i=1,2,…,n in (n-1)th round, the values of {∝i}i=1,2,…,n 

can be traced from the system of equations. 
 

l (∝i) = uj, i, j = 1,2, … , n (13) 

 

But {βi}i=1,2,…,n is unknown. 

If the polynomial g is changed then the values of 

{βi}i=1,2,…,n can be traced from the system of equations. 

 

h (βi) = vj, i, j = 1,2, … , n (14) 

 

But the values of {∝i}i=1,2,…,n is unknown for the next (n-2) 

rounds because of the change in the polynomial g. Therefore, 

the protocol is secure with the same set of integers and the 

polynomials chosen by both the communicating parties for at 

most (n-2) rounds but the individual communicating party can 

travel with the same polynomial or set of integers chosen for 

at most 2(n-2) rounds. Hence, the responsibility of changing 

the chosen polynomial or set of integers is divided equally 

among both the communicating parties in the protocol. 

 

4.3 Session key 

 

Session Key is a key that permits the users to access 

information for a single session. Once the session ends, the key 

expires and a new key is generated mutually among the 

authorized users to access the information and enhance the 
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security. 

The protocol developed in the study [11] generates Session 

key whereas the protocols in studies [10, 13] emphasis on 

exchanging a single cryptographic key and no discussion 

regarding the session key is encapsulated. The SKAP proposed 

in this paper generates a Session Key discussed in detail in 

section 4.7. 

 

4.4 Session key confidentiality 

 

Session Key Confidentiality (SKC) refers to accessibility of 

the generated session key to the authorized users only such that 

no intruder can intercept it. This feature is achieved by the 

study [11] and the proposed SKAP. The non-commutative and 

invertible nature of the Affine operator helps in achieving the 

SKC in our protocol. The mathematical explanation of the 

security of the protocol is explained in section 2. The order of 

applying the Affine operators to obtain ‘h’ and ‘g’ is private to 

the authorized users only, which is required for retrieving the 

key from the public information. Hence the generated Session 

Key is confidential. 

 

4.5 Known key security 

 

Known key security is a feature where the knowledge of the 

current session key reveals no information about the next 

session key. This feature is possessed by the protocol in the 

study [11]. 

In the proposed SKAP, the change in the solution sets after 

every session is responsible for the rejuvenation of the session 

key. The choice of solution sets is private to the respective 

parties. Hence, the generated session keys are independent of 

the previous session keys retaining the Known-Key Security 

feature. 

 

4.6 Brute-force attack 

 

Brute-force attack is the attack carried out by an intruder to 

discover the cryptographic key used in encryption by trying all 

the possible keys. Thus, a large set of possible keys is desirable 

to prevent a cryptosystem from Brute-force attack. 

In the proposed SKAP, the maximum possible values for f(β) 

is p and for g(α) is 𝑝. Therefore, the number of possible keys 

𝑓(𝛽) ∗ 𝑔(𝛼)  is 𝑝2 . Therefore, the attacker has to try p2 

number of keys, which are {1, 2, … ,  p2 − 1,  p2} to reach the 

exchanged key. Thus, by sufficiently increasing the value of p, 

the number of possible keys can be increased to improve 

security. 

 

4.7 Passive attack 

 

A cryptographic protocol displays some information 

publicly and conceals some for attaining efficiency and 

security respectively. Adversaries attack the protocols through 

the available public information and such attacks are 

categorized as passive attacks.  

The developed SKAP’s resistance to passive attacks is 

discussed as: 

The intruder can use the publicly available information in 

the protocol in two ways to trace the key. One way is to reach 

the private keys [ai,  bi]i=1,2,…,r of A and [ci,  di]i=1,2,…,s of B. 

The other way is to trace the values of {∝i}i=1,2,…,n  and 

{βi}i=1,2,…,n from the publicly available information: 

 

f (x1,  x2, … ,  xn), h (β1,  β2, … ,  βn) = v (8) 

 

g (x1,  x2, … ,  xn), l (α1,  α2, … ,  αn) = u (9) 

 

4.7.1 Infeasible to trace the private keys [ai,  bi]i=1,2,…,r of A 

and [ci,  di]i=1,2,…,s of B 

Although the composition of Affine operators is Affine, but 

the composition of operators cannot be confined to a single 

operator due to the multivariate polynomial function used in 

the process. In the example discussed above, let us consider 

that T[a1, b1] T[a2, b2](f (x1,  x2,  x3)) = T[m,n](f (x1,  x2,  x3)). 

Then, 

T[m,n] (f (x1,  x2,  x3)) = 10x1
2 + 10x2 + 4x3

2 + 6  

⇒ (m. (x1
2 + x2 + 3x3

2 + 5) + n) mod 13 = 10x1
2 +

10x2 + 4x3
2 + 6  

⇒ m = 10, n = 5,  m−1 = 4.  

Now, T[m,n]
−1 (h (β1,  β2,  β3)) = T[m,n]

−1 (4) = 9, which 

is not the required value of f (β1,  β2,  β3). 

Therefore, it is not possible to use a single value in place of 

[ai,  bi]i=1,2,…,r or [ci,  di]i=1,2,…,s by the intruder. 

 

4.7.2 Infeasible to retrieve the set of integers {∝i}i=1,2,…,n and 

{βi}i=1,2,…,n for n>1 for a single round 

Through the available information, it is possible to retrieve 

the key only when the chosen f and g are polynomials in one 

variable i.e., n=1. Thus, the key exchange protocol is secure 

for n>1. 

 

4.8 Computation and implementation 

 

The proposed SKAP is easy to implement because choosing 

multivariate polynomials and selecting [ai,  bi]i=1,2,…,r  or 

[ci,  di]i=1,2,…,s , solution sets {∝i}i=1,2,…,n , {βi}i=1,2,…,n  are 

independent of each other. The methodology applies Affine 

operator to compute the key, which is computationally 

efficient. The initial step in protocols [10, 13] is to choose 

Diophantine equation f (x1,  x2, … ,  xn) = a1x1 + a2x2 + ⋯ +
anxn = b ∋ f (α1,  α2, … ,  αn) = b . This choice is suitable, 

provided gcd  (a1,  a2, … ,  an) divides b. Tracing such solution 

sets for a Diophantine equation with large coefficients is 

computationally complex and difficult to implement in real-

time 

 

4.9 Application 

 

The developed SKAP is implementable in real-time 

applications where a secure online platform is to be 

constructed for sharing information and communication. One 

of the applications is Telemedicine which is discussed in detail 

in Section 5 of this paper. 

The comparative analysis of the protocol is summarized in 

Table 1. 

Thus, the developed SKAP is resistant to Brute-force and 

passive attacks. Also, the session key generated through the 

proposed SKAP retains confidentiality and known-key 

security feature. The number of secure rounds in a single 

session of the key agreement protocol is (n-2) which is 

extendable to 2 (n-2) as discussed in section 4.2. The protocol 

is easily implementable and computationally efficient whose 

application in Telemedicine is explored in section 5. Hence, 

the proposed protocol is ideal than the protocols developed in 

studies [10, 11, 13]. 
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Table 1. Comparison of the proposed SKAP with studies [10, 

11, 13] 

 
Key 

Agreement or 

Key Exchange 

Protocol 

Ref. [10] 
Ref. 

[11] 
Ref. [13] 

Proposed 

Work 

Method 

Based on 

higher order 

Diophantine 

equations 

Based 

on 

ECC 

Based on 

linear 

Diophantine 

equations 

Based on 

multivariate 

polynomials 

and affine 

transformation 

Number of 

secure rounds in 

a single session 

NM NM Y Y 

Session key NM Y NM Y 

Session key 

confidentiality 
NM Y NM Y 

Known key 

security 
NM Y NM Y 

Brute-force 

attack 
Y Y Y Y 

Passive attack Y NM Y Y 

Computation 

and 

implementation 

Hard Y Hard Easy 

Application N Y N Y 
Note: Y: Resistant to attacks or holds the property or incorporated in the 

work; N: Doesn’t hold the property; NM: Not incorporated in the work. 

 

 

5. MATHEMATICAL MODEL OF THE PROPOSED 

SKAP IN TELEMEDICINE 

 

Telemedicine has focused on the comfort of patients and 

doctors in remote areas for medical needs by providing a 

secure and efficient online platform for mutual communication 

[10, 16]. The medical information of a patient is at risk of 

manipulation for seeking undue advantage in terms of 

claiming insurance and personal grudges. The medical data 

hence needs to be safeguarded while transferring. During the 

COVID-19 pandemic, the mobility of patients was not 

recommended to halt the risk of infection with the life-

threatening Corona virus. Telemedicine played an essential 

role in the times of the COVID-19 pandemic in curbing the 

spread of the virus and saving doctors’ time [17]. Identifying 

the illness through the symptoms and prescribing necessary 

remedies needs mere communication between the patient and 

the doctor, which could be performed on an online platform. 

In fact, a patient suffering from cardio-vascular disease is 

more prone to infections whose treatment through 

Telemedicine Services is preferable to diminish the spread of 

the virus during the pandemic [10]. 

The online Health Service platforms permit the patient to 

consult the doctor remotely and share sensitive medical 

information for further treatment as depicted in Figure 4. This 

communication occurs in multiple sessions unless the patient 

is relieved from illness. The data is shared in an encrypted 

format for better security. Mutual Session keys are generated, 

which allow the patient and the doctor to access the encrypted 

data. These session keys expire after every session, and a new 

session key is rejuvenated to rescue the data from an intruder, 

which needs multiple computations. 

Cryptography is an aid to implement the advancement in 

Telemedicine [18-21]. The Electronic Health Service platform 

designed should be efficient enough to support user mobility, 

patient privacy, mutual authentication, data confidentiality, 

and integrity. 

• User Mobility refers to accessing and lending medical 

diagnosis by a patient and doctor respectively from a 

remote location. 

• Patient’s privacy refers to concealing the health status 

and details of the patient. 

• Mutual authentication verifies the identity of the 

patient and the doctor. 

• Data confidentiality refers to protecting the data from 

illegitimate access and integrity is to retain the 

accuracy of the data. 

Researchers are thriving to develop competent real-time 

online Heath Service platforms that apply strong mathematical 

models in programming. In the study [22], several secure and 

efficient symmetric key exchange protocols are designed to 

assist in Telemedicine, supporting user mobility, patient 

privacy, and anonymity. 

 

 
 

Figure 4. Remote diagnosis of patient through e-health 

service 

 

5.1 Proposed online e-health service model 

 

The proposed model of an e-Health Service Platform 

depicted in the Figure 5 relies on a key agreement protocol has 

the following main components: 

 

 
 

Figure 5. Proposed model of an e-health service platform 

 

• Health Care Provider (HCP): One who diagnoses the 

illness of the patient and provides medical treatment. 
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• Patient: One who suffers from illness and needs 

medical diagnosis. 

• Online Health Service Platform: An authenticated 

online platform that would connect the health care 

provider and the patient for medical consultation. 

• Key Agreement Protocol: A passive attack-resistant 

protocol to agree on a key between two 

communicating parties. 

The proposed model permits communication between the 

Health Care provider and the patient to agree on a password 

that unlocks the Online Health Service platform to continue 

the medical treatment. The privacy of the patient’s health 

record is retained in the developed model by providing a 

remote diagnosis. 

 

5.2 Working of the proposed online e-health service 

platform 

 

The Online e-Health Service platform is accessible to the 

HCP and the patient by using their respective credentials, 

which constitute a valid Login Id and a password. The Health 

Care Provider and the patient choose their Login Ids randomly, 

which are applied to generate a shared password to unlock the 

Health Service platform. The chosen Login Ids and the 

generated password are valid for a finite number (k) of logins. 

After k logins, a request to change the Login Id is sent to the 

HCP initially. This reflects a change in the shared password 

which is valid for the subsequent k logins. Subsequently, a 

request to the patient is sent to change the Login Id to create a 

new password. The proposal to change Login Ids is 

communicated to both the HCP and the patient alternatively 

after every k number of logins to retain security. 

The password generated is secure from passive attacks for k 

logins. To provide authenticity, the password is stored in a 

vault to verify it against the input login Id and password. An 

intruder can attack the vault to trace the password set. Session 

passwords are a solution to the mentioned threat which expire 

after every session and are rejuvenated for every single session. 

The passive attack-resistant SKAP proposed in Section 2 of 

this paper is applicable to develop the proposed Online Health 

Service Model. The protocol is secure with the same choice of 

polynomials, solution sets and the transformations for a 

maximum of (n-2) logins where n is the number of variables 

in the chosen polynomial. The number of secure logins is 

extendable to 2(n-2) logins with an alternate change in the 

solution sets or the chosen polynomials or the transformations 

after (n-2) rounds. To generate Session passwords, the solution 

sets are changed after every session which is randomly input 

by the user. The working of the proposed online e-health 

service platform is demonstrated in the Figure 6. 

 
 

 
 
 

 
 
 

 
 

 

Figure 6. Working of an e-health care system 

 

 

6. CONCLUSIONS 

 

A robust and efficient Session Key Agreement Protocol 

(SKAP) based on Affine transformations over multivariate 

polynomials has been proposed. This protocol's methodology 

was derived from the classical Affine cipher, facilitating ease 

of understanding and implementation. The protocol is 

designed to generate a session key, thereby enhancing security. 

Notably, it delineates the number of possible secure rounds 

within a single session, given a consistent selection of public 

and private keys. Resistance to brute-force and passive attacks 

is inherent to the protocol, which operates independently of a 

trusted third party. 

The developed SKAP is suitable for secure two-party 

communication, permitting information access and privacy for 

the participating entities. Telemedicine, characterized by 

remote diagnostics and treatment, presents an appropriate 

application scenario. In this context, the protocol's application 

in Telemedicine is elucidated, underscoring the practical value 

of SKAP in real-world settings. 

 

 

7. FUTURE SCOPE 

 

The communicating parties in the SKAP lack mutual 

authentication. Hence, competent authentication schemes are 

required to enhance the security of the developed SKAP. 
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