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The urgent necessity to fortify coastal regions and safeguard both the natural environment 

and key coastal infrastructure underscores the significance of structural measures in 

coastal engineering. Among these, the seawall reigns as the primary fortification method. 

This study aims to elucidate the impact of a stepped structure on the propagation and 

overtopping of solitary waves when they encounter an impermeable seawall. The 

investigation has been conducted using ANSYS Fluent, a widely recognized commercial 

software. Although previous researchers have extensively used the two-dimensional 

volume of fluid (VOF) model, based on the Reynolds-Averaged Navier-Stokes (RANS) 

equations and the k-ε turbulence closure solver, this study fills the gap in the 

understanding of the stepped structure's effect. It shows a commendable agreement with 

experimental results, proving its reliability. Simulations were executed with varied 

configurations of stepped structures (Step width Sw=0.6 m, 1.2 m, 1.8 m, and Step height 

Sh=0.3 m, 0.6 m, 0.9 m), emulating tsunami waves of constant wave height and water 

depth over a stepped structure on a 1:20 sloped beach. Initially, the accuracy of the results 

was substantiated by comparing them with experimental and numerical data of the free 

surface and the distribution of the pressure field on the seawall. Numerical simulations, 

incorporating varying wave heights, water depths, and step heights, were performed to 

scrutinize the evolution of waves and the pressure exerted by waves impacting the seawall. 
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1. INTRODUCTION

Solitary waves, typified by their unique characteristics of 

run-up, overturning, and breaking, hold significant potential 

for inflicting substantial damage on shore-adjacent 

infrastructure. Tsunamis, as a primary exemplar of such waves, 

stand as natural disasters of profound consequence, wreaking 

havoc on a range of coastal infrastructure including, but not 

limited to, ports, bridges, and residential dwellings. Instances 

of such catastrophic events, as seen in the Chilean Sea 

Tsunami of 1960, with over 10,000 fatalities and individuals 

unaccounted for, and the Tohoku-Oki Earthquake of 2011, 

which culminated in a nuclear leakage at the Fukushima 

Nuclear Power Plant, underscore the devastating potential of 

tsunamis [1]. 

In the wake of the Indian Ocean tsunami that transpired on 

December 26, 2004, resulting in significant damages, a 

concerted effort has been directed towards comprehending the 

underlying dynamics of tsunamis, with the objective of 

enhancing predictive capabilities and mitigating their impacts. 

The observation and study of solitary waves can be traced 

back to the work of Russell, with the first documented instance 

appearing in 1844 [2]. Building upon Russell's seminal work, 

subsequent studies [3-6] have been instrumental in expanding 

our understanding of solitary waves. Recent research 

endeavors on the topic [7-9] have yielded invaluable insights 

into the characteristics and behavior of these waves. Aside 

from analytical solutions, the literature also presents a host of 

approximation methods for calculating solitary waves. 

However, these methods have their limitations. To address this, 

a number of numerical approaches have been proposed, as 

documented in the works of [10-12]. The current state-of-the-

art in tsunami wave simulation predominantly relies on 

numerical models, with solitary waves often serving as 

representations of a tsunami wave. This approach has been 

adopted by several researchers [12-16], further underscoring 

the importance of solitary waves in the study of tsunamis. 

In the domain of continuum mechanics, elucidating 

environmental motion is typically approached via two distinct 

methodologies: the Eulerian approach and the Volume of 

Fluid (VOF) model. The former approach operates on the 

premise of considering each phase as an entirely independent 

entity, necessitating the resolution of individual Eulerian fluid 

equations for each phase. The latter, in contrast, does not 

extend this level of autonomy to each phase. Instead, it 

simplifies the process by solving a unified set of momentum 

equations, tracing the volume fraction of each fluid throughout 

the domain. This methodological simplification bolsters 

computational efficiency and stability. 

A substantial body of research has leveraged the VOF 

model in conjunction with the Reynolds Averaged Navier-

Stokes (RANS) equations and the k-ε turbulence model. 

Studies such as those conducted by Hsiao and Lin [12], Xiao 

and Huang [17], and Jiang et al. [18] have scrutinized the 

propagation of tsunami-like solitary waves over seawalls. 

Further comparative analysis by Wu [19] of different k-ε 

turbulence models indicated a superior accuracy of results 

yielded by the k-ε RNG model. Numerical investigations 
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undertaken by Yao et al. [20] focused on the reduction of 

tsunami-like solitary wave run-up by pile breakwaters on 

varying sloping beaches. The application of Computational 

Fluid Dynamics (CFD), a popular tool for addressing a wide 

variety of research and engineering queries across diverse 

fields and industries, underpins these investigations. CFD 

often serves as a supplement or alternative to experimental and 

analytical methods, assisting in the design and analysis of 

everyday products. Within this sphere, ANSYS Fluent has 

emerged as a prominent CFD simulation tool, offering a 

comprehensive software package equipped with a user-

friendly interface and an extensive range of features. Its 

adoption by numerous researchers attests to its utility. Studies 

like those performed by Khaware et al. [21] have explored the 

sensitivity of 5th order solitary wave models in shallow wave 

environments. Findings from these investigations suggest that 

the application of Stokes wave theory remains viable within 

the shallow regime, and the Explicit formulation is particularly 

sensitive to breaking conditions, necessitating a very small 

step size. Additional research has undertaken numerical 

simulations of the propagation, impinging, and overtopping of 

solitary waves on sloped beaches [22, 23]. A comparative 

study by De Chowdhury et al. [24] between two numerical 

models, the Smoothed Particle Hydrodynamics and ANSYS 

Fluent software, noted a comparable level of performance 

between these models. 

Coastal infrastructures, including residential establishments 

and seawalls, are frequently constructed on slopes proximate 

to the shoreline. Despite this strategic positioning, they remain 

vulnerable to substantial impact forces and overtopping losses, 

primarily attributable to extreme wave action or tsunamis. In 

light of this, the prediction of wave overtopping discharges has 

emerged as a critical area of research within the realm of 

coastal engineering, running parallel to studies focusing on the 

propagation and evolution of solitary waves [25-27]. 

Numerical simulations conducted by Wei et al. [25], Ji et al. 

[26], and Luo et al. [27] have scrutinized the impact and surge 

of a solitary wave over a seawall, adopting the configuration 

presented by Hsiao and Lin [12]. A series of wave overtopping 

tests have been executed by Prabu et al. [22-29] to explore the 

propagation, impinging, and overtopping of tsunamis. The 

decrease in overtopping corresponding to an increase in wall 

slope was amongst their key findings. Historically, 

comprehensive investigations have been dedicated to various 

aspects of seawalls, including modifications on slope. These 

studies have yielded three prominent types of seawalls: 

Vertical seawalls [30-33], inclined seawalls [12, 34, 35], and 

stepped structures. The latter has been the subject of an 

extensive literature review [36], highlighting its efficacy as a 

coastal protection measure. Two-dimensional physical model 

tests were conducted by Krecic and Sayao [37], focusing on 

wave overtopping issues related to stepped seawalls across 

various scales. The researchers found that a stepped slope 

dissipates more energy than a smooth slope, culminating in an 

average reduction of 17.61% in the transmission coefficient. 

Empirical approaches for predicting the wave overtopping 

discharge of a stepped revetment were presented by Schoonees 

et al. [38] and Kerpen et al. [39], demonstrating the influence 

of step height on wave energy dissipation and overtopping 

discharge reduction. Further analysis by Chergui and Bouzit 

[40] examined the shoaling, breaking, breaking point position, 

and breaking height of solitary waves. 

The current study is designed to numerically examine the 

propagation and overtopping of solitary waves on stepped 

structure slopes and impermeable seawalls. The unsteady 

Reynolds averaged Navier-Stokes (RANS) equations, coupled 

with a k-ε turbulence model, are employed to simulate the free 

surface elevation. The primary objective is to numerically 

probe the effects of a stepped structure on the overtopping 

volume and the pressure distribution of solitary waves 

impacting an impermeable seawall. Additionally, this study 

seeks to understand the variation of the free surface along the 

stepped structure slope and seawall on different wave gauges, 

and the influence of steps on the shoaling, breaking, and the 

location of breaking point Xb. Based on preliminary findings, 

stepped structures appear highly effective in reducing wave 

energy, acting as roughness elements which mitigate wave 

overtopping. Furthermore, these structures, in addition to their 

functional benefits, offer aesthetic coastal solutions, 

enhancing beach access, promoting tourism, and serving as 

potential seating or walkway areas. 

 

 

2. NUMERICAL MODEL 

 

2.1 Governing equations 

 

The quality of a computational fluid dynamics (CFD) 

simulation can depend crucially on the selected turbulence 

model, and it is important to make the proper model choice. 

We use practical aspects of RANS turbulence model selection, 

which offers the most economic approach for computing 

complex turbulent industrial flows, simulation of the RANS 

equations greatly reduces the computational effort compared 

and is generally adopted for practical engineering calculations. 

However, the averaging procedure introduces additional 

unknown terms containing products of the fluctuating 

quantities, which act like additional stresses in the fluid. These 

terms, called ‘turbulent’ or ‘Reynolds’ stresses, are difficult to 

determine directly and so become further unknowns. Two 

dimensional Reynolds Averaged Navier Stokes (RANS) are 

numerically solved in the CFD solver FLUENT to simulate the 

unsteady and incompressible viscous fluids [22, 40, 41], in 

which the continuity equation and the momentum equation are, 

respectively: 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (1) 

 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥
+

𝜕

𝜕𝑥𝑗
(𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅) (2) 

 

where, i and j are the cyclic coordinates in an orthogonal 

coordinate system whose values are 1 and 2, while ui are the 

time-averaged velocity components; ρ is the density of the 

fluid; p is the pressure. 

In the present study, the k-ε turbulence model, as proposed 

by Khaware et al. [21], Wei et al. [25], and Luo et al. [27], has 

been selected for application. This model currently enjoys 

widespread usage in the simulation of turbulent flow 

conditions. In addition to solving the conservation equations, 

it incorporates two transport equations, thereby accounting for 

historical effects such as the convection and diffusion of 

turbulent energy. The two variables transported in this context 

are the turbulent kinetic energy (k), representative of the 

energy in turbulence, and the turbulent dissipation rate (ϵ), 

indicative of the rate of dissipation of turbulent kinetic energy. 

The mathematical formulations of these variables are as 
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follows: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖)

=
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑗

] + 𝐺𝑘 − 𝜌𝜀 

(3) 
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𝜕
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𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝜀
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] + 𝐶1𝜀

𝜀

𝑘
𝐺𝑘

− 𝜌𝐶2𝜀

𝜀2

𝑘
 

(4) 

 

To identified interfaces between non-penetrating fluids 

(VOF) method is used, the method can simulate two or various 

non-miscible fluids by calculating a unique equation of 

momentum and keeping the volume fraction of each of the 

fluids in the total domain [18, 23, 42]. Typical applications 

include the prediction of jet breakup, the motion of large 

bubbles in a liquid, the motion of liquid after a dam break, is 

capable of describing accurately the location and shape of the 

free surface, and provides a simple technique for computing 

its movement during each time step. Finally, VOF allows for 

a straightforward enforcement of the dynamic surface 

condition in the cells surrounding the interface. 

The volume fraction of a particular fluid (α) is characterized 

as the proportion of the volume occupied by that fluid in 

relation to the total volume. Interfaces between distinct fluids 

are recognized when the volume fraction ranges between 0 and 

1. 

The sum of volume fractions for all the fluids must equate 

to one. 

 

∑ 𝛼

𝑎

= 1 (5) 

 

Volume fraction equation is given as: 

 
𝜕𝛼

𝜕𝑡
+ ∇. (𝑢̅𝛼) = 0 (6) 

 

Total continuity equation for incompressible fluid is given 

as: 

 

∇. 𝑢̅ = 0 (7) 

 

To solve this model, the PISO scheme is used for pressure 

velocity coupling, for calculations momentum and volume 

fraction we utilize second-order upwind and compressive 

schemes, respectively [18, 20, 21]. First-order transient 

methods are employed using an Explicit formulation. Finally, 

first-order upwind scheme was selected for the discretization 

of the equations of turbulent energy and dissipation. 

 

2.2 Wave generation and solitary wave theory 

 

Small amplitude wave theories are typically relevant for 

waves with lower steepness and relative depth, Conversely, 

finite amplitude wave theories are better suited for scenarios 

involving increased wave steepness or relative depth. Wave 

steepness is commonly defined as the ratio of wave height to 

wavelength, and relative depth is defined as the ratio of wave 

height to the depth of the liquid. 

ANSYS Fluent offers the subsequent choices for 

incorporating incoming surface gravity waves using velocity 

inlet boundary conditions [43]: 

 

- The first-order Airy wave theory (linear in nature) is 

utilized for small amplitude waves across shallow to deep 

liquid depth ranges. 

- Higher order Stokes wave theories (nonlinear in nature), 

which are applied to finite amplitude waves in intermediate to 

deep liquid depth ranges. 

- Higher-order Solitary wave theories (nonlinear in nature) 

are used for finite amplitude waves in shallow depth ranges. 

 

Fluent develops Solitary wave theories expressed through 

Jacobian and elliptic functions by Fenton [44]. These wave 

theories are applicable to high steepness finite amplitude 

waves within the intermediate to deep liquid depth range. 

The wave profile for 5th order Stokes theory is: 

 

𝜍(𝑋, 𝑡) =
1

𝑘
∑ ∑ 𝑏𝑖𝑗𝜉𝑖𝑐𝑜𝑠(𝑗𝑘(𝑥 − 𝑐𝑡))

𝑖

𝑗=1

5

𝑖=1

 (8) 

 

𝜉 =
𝑘𝐻

2
=

𝜋𝐻

𝐿
 𝑎𝑛𝑑 𝑘 =

2𝜋

𝐿
 

𝑐 = √
𝑔

𝑘
tanh(𝑘ℎ) (∑ 𝑐𝑖𝜉

𝑖

5

𝑖=1

) 

(9) 

 

where, c is wave celerity, k is wave number, bij ci, are complex 

expressions of kH. 

Theories of solitary waves are predominantly employed in 

shallow depth regimes and are formulated by assuming that 

the waves possess an infinite wavelength. In shallow waters, 

the solution of solitary wave theories presents as extensive, 

level troughs and slender crests resembling real waves in 

shallow waters. to approach a real phenomenon and obtain the 

exact profile of a tsunami wave. 

Shallow wave profile is: 

 

𝜍(𝑋, 𝑡) = 𝐻 𝑠𝑒𝑐ℎ2 [
𝑘

ℎ
(𝑥 − 𝑥0 − 𝑐𝑡)] (10) 

 

Wave numbers and wave celerity are: 

 

𝑘 =
1

ℎ
√

3𝐻

4ℎ
 𝑎𝑛𝑑 𝑐 = √𝑔ℎ (1 +

𝐻

2ℎ
) (x0 is initial position of 

wave) 

 

 

3. NUMERICAL SETUP 

 

3.1 Numerical domain 

 

A two-dimensional numerical wave flume was used to study 

the evolutionary processes of solitary wave impinging and 

overtopping on a stepped structure slope, and dynamic 

pressure acting due to waves impacting the seawall, for a fair 

comparison the same computational domain was used 

according to Hsiao and Lin [12], to compare with experimental 

and numerical results. The flume is with the total length of 14 

m, height of 0.4 m (Figure 1(a)). The stepped structures are 

installed along of slope before the seawall, three cases of 
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stepped structure are studied the step width is Sw=0.6 m, 1.2 

m, 1.8 m which corresponds approximately to the step height 

is Sh=0.3 m, 0.6 m, 0.9 m, the slope is 1:20 starting at x=7 m 

from the wave generator, where a reference wave gauge 

(WG01) was fixed at 1.1 m in front of the beach slope. the 

coordinates of the measurement wave gauges are: WG1 (x=5.9 

m); WG3 (x=7.6 m); WG10 (x=9.644 m); WG15 (x=10 m); 

G22 (x=10.462 m); G28 (x=10.732 m); WG37 (x=11.005 m); 

WG38 (x=11.024 m); WG39 (x=11.045 m); WG40 (x=11.12 

m); WG46 (x=11.57 m) (Figure 1(b)). 

 

3.2 Boundary conditions and mesh description 

 

The Fifth Order solitary waves are generated at the left and 

propagate towards the right, where the inlet boundary is 

selected with open channel flow parameters (Choosing 

shallow wave in Wave BC Option, and Average Flow 

Direction in reference wave). The bottom and stepped 

structure are treated as a stationary wall and no-slip condition, 

to assure no further inputs are required and the wall is not 

moving relative to the adjacent cell zone, while the top is 

considered a pressure outlet, where backflow direction 

specification method is normal to boundary (see Figure 2(a)). 

To verify the accuracy of the model, a structured mesh is 

utilized (Figure 2(a)), offer simplicity and efficiency, requires 

significantly less memory than an unstructured mesh with the 

same number of elements, because array storage can define 

neighbor connectivity implicitly, also save time to access 

neighboring cells, and require many more elements than an 

unstructured mesh for the same problem, because elements in 

a structured mesh cannot grade in size as rapidly. 

 

 
(a) Schematic view of the numerical wave flume, with WG01 is reference wave gauge 

 

 
(b) Schematic view of the stepped structure on slope 

 

Figure 1. Schematic view of the domain 

 

 
(a) Layout of the numerical setup 

 

 
(b) Numerical grids of the computational domain 

 

Figure 2. Boundary conditions and meshing 
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Figure 3. Variations of the normalized location of breaking 

point Xb/L 

 

A numerical convergence test was performed by varying the 

grid size on slope using the typical wave condition of h0=0.2 

m and H0=0.07 m. We also tested another four sizes (1, 2, 4 

and 6 mm), Figure 3 shows the results for Variations of the 

normalized location of breaking point Xb/L (L is total domain 

length) at t=2.63 s, for comparison with numerical result of 

Hsiao and Lin [12] (see Figure 5(a)). 

The differences in the simulations were generally 10% 

when the grid size is 6 mm, 8% for grid size 6 mm, 3% for grid 

size 2 mm, and 2% for grid size 1mm, we can notice there is 

not a significant difference between a 2 mm and a 1 mm mesh, 

but the calculation time is double compared with the 2 mm 

mesh, so we use 2 mm mesh grid size for this simulation. 

The geometric model and grids are generated using ANSYS 

ICEM, In the vertical direction, the grid size start from 3 mm 

it was kept constant all the way at y=0.3 m and to y=0.3 to up 

to the top of the domain the grid size dy=10 mm. In the stream-

wise direction the mesh is reduced gradually, from the inlet of 

the domain to x=6 m the grid size is dx=10 mm-dy=3 mm, 

from x=6 m to x=8 m the grid size is dx=5 mm-dy=3 mm, and 

from x=8 m at a location 1m downstream of seawall, the size 

is dx=2 mm-dy=2 mm to capture the shoaling and breaking of 

solitary waves, finally the grid size increased dx=10 mm-

dy=10 mm from x=12 m at the end of the domain. 

So, the mesh refinement starts at x=8 m because the wave 

breaking process starts at x=8.8 m for the case of Sw=1.8 m, 

Sh=0.09 m. in order to fully capture the free surface profile, 

we continue the refinement to location 1m downstream of 

seawall (x=12 m) for a more precise capture the wave 

overtopping (see Figure 2). 

Several simulations were performed using different time 

step sizes, and a time step size of t=0.001 s was selected to 

ensure the accuracy and convergence of the solution. The 

simulations were carried out on a computer with a Core i7-

3770, 3.40 GHz processor, and 16.0 GB of RAM, and a 

simulation time of 16 s was chosen to ensure that the 

overtopping processes on the seawall were fully completed. 

To save computation time ANSYS Fluent propose parallel 

solver option, allows to compute a solution by using multiple 

processes that may be executing on the same computer, splits 

up the mesh and data into multiple partitions, then assigns each 

mesh partition to a different compute process, generally, as the 

number of compute nodes increases, turnaround time for 

solutions will decrease. 

4. RESULTS AND DISCUSSIONS 

 

4.1 Model validation 

 

A numerical test without a stepped structure was performed 

to validate the solitary waves generated by the model, the 

experimental work and the numerical generated solitary wave 

profile for the Type 1 tsunami test, conducted by Hsiao and 

Lin [12] were compared at the numerical wave gauges for 

wave height of H0=0.07 m in the water depth of h0=0.2 m, 

which gives a non-linear wave with a relative wave height of 

H/h=0.35, where a reference (t=0) wave gauge G01 was fixed 

at 1.1 m in front of the beach slope. 

 

 
 

Figure 4. Comparison of the solitary wave profile of the 

numerical present results with the experimental and 

numerical data [12] (h0=0.2 m, H0=0.07 m, slope 1:20) 

 

The comparison between the solitary wave profile obtained 

by the experimental and numerical simulation is in good 

agreement except for a little difference (Figure 4). Specifically, 

the present model slightly overestimates the surface elevation 

spike as the solitary wave climbs up on the seawall, and it 

slightly underestimates the thickness of the overland flow after 

the solitary wave overtops the seawall. The complexity and 

uncertainty in wave breaking during these stages can be 

attributed to the strong nonlinearity of the waves and the 

entrapped air within the water. These factors contribute to the 

challenging nature of accurately predicting and simulating 

wave breaking phenomena. 
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Figure 5. Comparative free surface evolution, measured and 

simulated (h0=0.2 m, H0=0.07 m), (left and center panel) 

Images from laboratory and numerical [12], (right panel) 

numerical present predictions 

 

A However, these deviations are relatively small and do not 

significantly affect the overall accuracy of the model's 

simulation. The comparison of the present numerical results 

with the experimental and numerical data reveals a close 

agreement, indicating that the present model is capable of 

accurately simulating the propagation, shoaling, and breaking 

of solitary waves on slopes with a high degree of accuracy. 

Spatial snapshots of the solitary wave during their distinct 

evolutionary course, including wave shoaling, breaking, 

impingement, run-up, and overtopping were presented in 

Figure 5. Laboratory images, measurement data, and 

numerical results by [12] are plotted together for comparison. 

The solitary wave is generated and shoaled as it advances 

along the slope. Due to the significant nonlinearity of the 

incident solitary waves (A/h=0.35), the wave finally broke on 

the slope, resulting in the formation of a plunging breaker at 

t=2.63s, illustrated on Figure 5(a). 

The current model not only precisely estimates the wave 

impact process, but also records the phenomena of wave 

separation and splashing, as illustrated in Figure 5(b). As the 

impinging jet approaches the shoreline, it collapses and 

incorporates a notable volume of air into the water. creating a 

turbulent bore at the offshore toe of the seawall. The model 

offers a real representation of the shape of the bore, depicted 

on Figure 4(c). 

The turbulent bore persists in ascending along the slope of 

the seawall; subsequently, it surges over the crown of the 

seawall resembling a turbulent jet, a phenomenon adeptly 

captured by the current model (Figure 5(d)). When the jet 

passes downwind of the seawall, the jet continues to trap air 

within the fluid, mirroring observations from the physical 

experiment. The present model cannot predict the air trapping 

on the lee side of the seawall. Consequently, the model 

forecasts the point at which the jet makes contact with the flat 

beach on the lee side of the seawall (Figure 5(e)). After the 

peak bore surpasses the seawall, the overtopping flow 

gradually weakens, while residual fluid continues to propagate 

along the slope. The numerical prediction corresponds to the 

image from the laboratory, demonstrated on Figure 4(f), 

indicating a reasonable agreement between the two. 

 
 

Figure 6. Snapshots of simulated free surface and 

distribution of the pressure field unit: kPa (ε=0.4, ho=0.2 m) 

(a) Numerical data [12], (b) Present results 

 

 
 

Figure 7. Pressure contour distributions when solitary wave 

propagates on slope 1:20 and seawall (h0=0.2 m, H0=0.07 m) 

 

The preceding comparison effectively demonstrates the 

concordance between numerical results and free surface 

measures obtained from various gauges, and a qualitative 

comparison with laboratory images. The next comparisons are 

further made with the free surface and wave pressure field 

(Figure 6). 

We also observe this slight difference in wave with a 

condition (ε=0.4, h0=0.2 m) the maximum error of pressure 

fields value compared to numerical data is 10% near the free 

surface and 2% near the wall or bottom, the difference 

decreases as approaching closer to the seawall seaward slope. 

The current numerical approach falls short of precisely 

predicting the values of the pressure fields in proximity to the 

free surface, this is attributed to the intricate and unpredictable 

nature of wave breaking during these stages, characterized by 

pronounced nonlinearity and the entrapment of air into the 

water near the free surface. 

The evolution of the pressure distribution is presented in 

Figure 7 without the stepped structure, we notice an important 

concentration of pressure at the toe of the seawall x=10.6 m at 

the time of wave impact and overtopping, also a slighter 

pressure at x=11.04 m downstream the seawall, similar results 

of the simulation and phenomenon were presented by Luo et 

al. [27] (t=3.35 s and t=3.71 s). 

 

4.2 Wave surface elevations and overtopping on stepped 

structure and seawall 

 

Figure 8 presented the wave surface elevation time histories 

at the different wave gauges, a numerical reference wave 

gauge (t=0) WG01 is placed at x=1.1 m from the toe of the 

slope, the wave height of the solitary wave remains mostly 

constant along the flat flume bottom WG01 for all case studies, 

suggesting good simulation accuracy, we also observed 

reflected waves depending to the number of steps, six waves 

for the first case, three waves for the second case, and two 

waves for the third case, a last reflected wave (t=8 s) due to 

the seawall, according to Yao et al. [20], Chergui and Bouzit 
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[40] the reflected wave increase with increasing of step height 

Sh. 

However, a slight increase was observed in G03 for all cases, 

this is due to the slope, the wave height increases up to the 

maximum height at the breaking point, we also observe that 

the number of reflected waves reduced because the position of 

the gauge is forward and exceeds some steps. 

The wave gauge WG10 recorded a significant increase of 

the wave height η=0.08 m (Figure 8(a3)) because the breaking 

point is just near the location of Xb=9.94 m for the case 

Sw=0.6 m, Sh=0.03 m, which is not the other cases, for the 

case Sw=1.2 m, Sh=0.06 m Figure 8(b3) the breaking point is 

before the wave gauge WG10 Xb=9.3 m for the case where the 

wave breaks and losses height, and for the case Sw=1.8 m, 

Sh=0.09 m Figure 8(c3) the breaking point location is Xb=8.8 

m the wave breaks further forward and losses more height. 

 

  
 

Figure 8. Free-surface profiles at wave gauges of solitary 

wave on stepped structures slope 1:20 and seawall (h0=0.2 m, 

H0=0.07 m) (a) Sw=0.6 m, Sh=0.03 m (b) Sw=1.2 m, Sh=0.06 

m (c) Sw=1.8 m, Sh=0.09 m 

 

For the rest of the wave gauges, a reduction in wave height 

can be seen for all cases, the solitary surge rises along the 

crown of seawall and loses a considerable wave energy. Then 

the location of the breaking point Xb decreases and the 

breaking phenomenon is further forward when the step height 

Sh increases, causing a decrease of the wave height [39, 40]. 

 

 
(a) Sw=0.6 m, Sh=0.03 m 

 

 
(b) Sw=1.2 m, Sh=0.06 m 

 

 
Sw=1.8 m, Sh=0.09 m 

 

Figure 9. Free surface elevation when solitary wave 

propagates on stepped structures slope 1:20 and seawall 

(h0=0.2 m, H0=0.07 m) 

 

To illustrate the process of solitary wave propagation and 

overtopping on a stepped slope and the effect of step height 

the Figure 9 shows the surface elevation when solitary wave 

propagates on stepped structures slope 1:20 and seawall 

(h0=0.2 m, H0=0.07 m) for all case studies. 

By comparing the images presented with a picture of the 

propagation of a solitary wave on a plane slope without a 

stepped structure (Figure 5(a)), the breaking process starts at 

the position (location breaking point) x=9.9 m which isn't for 

the other cases, we can clearly see how the wave breaks for the 

same position (x=9.9 m) for the case (a) Sw=0.6 m, Sh=0.03 m 

(Figure 9(a)), for the case (b) Sw=1.2 m, Sh=0.06 m the wave 

breaking is continuing (Figure 9(b)), and for the case (c) 

Sw=1.8 m, Sh=0.09 m the breaking wave process is finished 

(Figure 9(c)). 
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For the wave overtopping on the seawall, we note that the 

wave overtopping passed the seawall and continues forward 

(Figure 5(e), t=3.35 s) for the plane slope (without stepped 

structure). For the same time t=3.35 s, the wave overtopping 

arrives downstream of the seawall (Figure 5(a)), the wave 

overtopping is in the middle of the seawall (Figure 5(b)), and 

for the third case, the wave overtopping is at the toe of the 

seawall. 

 

 
 

Figure 10. Overtopping water quantity volume over the 

seawall 

 

Figure 10 shows in detail the quantity of water overtopping 

the wave in volume, the quantity of overtopping without 

stepped structures is reduced from 1.47 to 0.8 (53%) for 

Sh=0.03 m, 0.6 (60%) for Sh=0.06 m and 0.5 (66%) for 

Sh=0.09 m. The presence of the stepped structure therefore 

considerably reduces the quantity of wave overtopping volume. 

 

4.3 Effects of stepped structure on pressure 

 

The turbulent jet that surges over the steps top becomes 

trapped with a significant amount of air, this interaction 

generates immense pressure (t=2.63 s (a)), we can clearly see 

how the step caused a reflected wave and a small transmitted 

wave that continues to break with low pressure (t=2.89 s (a)). 

As the wave breaks and propagates along the slope, the 

pressure distribution takes on an arc-shaped pattern, the 

downward sides of this distribution stretch downstream, 

following the progression of the overtopped wave. 

The progression of wave pressure during both the breaking 

and post-breaking phases is also illustrated in Figure 11, at the 

moment of wave impact and overtopping, a significant 

pressure concentration is observed at the toe of the seawall, 

specifically at x=10.6 m. additionally, a slightly lower 

pressure can be observed downstream of the seawall at 

x=11.04 m. Except that the distribution is different for the 

cases studied compared with the image of Figure 7 (smooth 

slope) the installation of the steps on the slope considerably 

reduced the pressure distribution on the slope and seawall. We 

can clearly see how the step caused a reflected wave and a 

small transmitted wave that continues to break with low 

pressure. 

To clearly demonstrate the difference in pressure 

distribution on the seawall, Figure 12 shows all four cases 

studied in this article for the plane and stepped slope of the 

pressure distribution on the seawall, the graphs confirm the 

huge impact pressure in the toe of the seawall x=10.6 m and it 

decreases as the wave progresses up the slope until it becomes 

practically zero at the top of the seawall, this is due to the slope 

ascending and slowing down the flow and overtopping, after 

that the flow down the slope of the seawall and the pressure 

increases again x=11.04 m, the pressure at the top of the 

seawall without stepped structures is reduced from 760Pa to 

710 Pa (7%) for Sh=0.03 m, 680 Pa (11%) for Sh=0.06 m and 

640 Pa (20%) for Sh=0.09 m. 

 

 
(a) Sw=0.6 m, Sh=0.03 m 

 
(b) Sw=1.2 m, Sh=0.06 m 

 

 
(c) Sw=1.8 m, Sh=0.09 m 

 

Figure 11. Free surface elevation when solitary wave 

propagates on stepped structures slope 1:20 and seawall 

(h0=0.2 m, H0=0.07 m) 

 

 
 

Figure 12. Pressure distribution over the seawall for all cases 
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5. CONCLUSION 

 

In this study, we investigate solitary wave propagation on a 

stepped slope using a two-dimensional numerical model based 

on ANSYS Fluent. VOF method was used to capture the free 

surface with the Navier-Stokes equations with k-ε turbulence 

closure solved. A series of numerical simulations were 

conducted to investigate various aspects, including water 

surface profile, shoaling and breaking of solitary waves, wave 

reflection, overtopping volume, and pressure distribution on 

seawall by varying the stepped structure height (Sh). The 

results obtained from the simulations using the Fluent solver 

with a multiphase and k-ε turbulence model are in 

corroboration with numerical results and experimental data. 

This agreement indicates that the numerical model can 

accurately represent the free surface elevation, the breaking 

processes, and the pressure distribution on the slope and 

seawall. 

This study showed how the pressure distribution is very 

concentrated at the toe of the seawall, which implies that the 

heavy pressure, requires a modification in future or adding 

other structures, as our results demonstrate. There are few 

research studies on the effect of step structure on wave 

breaking, especially the prediction of breaking point location 

Xb, in order how the location can be modified to accelerate the 

breaking process, our research offers an idea, how further 

research can group all physical parameters in function of 

breaking wave or breaking point location. 

Our study has clearly illustrated how the wave overtopping 

and the pressure distribution on the seawall have been reduced, 

while detailed analyses of these results has revealed how the 

installation of stepped structures on a slope; as follows: 

- Breaking wave process has been accelerated and dissipates 

energy in the form of turbulence near the free surface, and the 

step height cause reflected waves reducing the transmitted 

wave. 

- Breaking point location has been advanced (as close as 

possible to the toe of the slope) according to the step height 

variation. 

- Volume of overtopping and pressure distribution on the 

seawall were reduced up to 66% and 20% respectively. 

According to this analysis, the stepped structure proved 

very effective for reducing wave energy and acting as a 

retarder to reduce wave overtopping, other added benefits are 

that these structures can be aesthetic coastal solutions that 

offer safe access to the beach and promote tourism, moreover, 

cost less and maintenance is easier. 
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