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Generalized Linear Models (GLMs) are widely recognized for their efficacy in fitting 

count data, superior to the Ordinary Least Squares (OLS) approach. The incapability of 

OLS to suitably handle count data can be attributed to its tendency to overfit. This study 

proposes the utilization of regularized models, specifically Ridge Regression and the 

Least Absolute Shrinkage and Selection Operator (LASSO), for fitting count data. 

These models are compared to frequentist and Bayesian models commonly used for 

count data fitting, such as the Dirichlet prior mixture of generalized linear mixed models 

and the discrete Weibull. The findings reveal Ridge Regression's superiority over all 

other models based on the Akaike Information Criterion (AIC). However, its 

performance diminishes when evaluated using the Bayesian Information Criterion 

(BIC), even though it still outperforms LASSO. The study thereby suggests the use of 

regularized regression models for fitting zero-inflated count data, as demonstrated with 

simulated data. Further, the appropriateness of regularized zero for zero-truncated count 

is exemplified using life data. 
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1. INTRODUCTION

Count data estimates frequently exhibit heteroskedasticity, 

a problem that the Ordinary Least Square (OLS) method is ill-

equipped to handle, leading to overfitting [1]. Generalized 

Linear Models (GLMs) are often employed as a substitute for 

OLS under such circumstances. However, this study proposes 

that regularized models, with their distinct properties, should 

also be considered as viable alternatives. 

One such regularized model is ridge regression, which 

imposes constraints on the coefficients of the model, thereby 

shrinking them towards zero. This constraint functions as a 

penalty for insignificant independent variables within the large 

set typically handled by regularized regression, reducing their 

magnitude towards zero. It has been observed that the 

maximum likelihood estimator, when used for regression 

modeling, grapples with multicollinearity. Regularized 

regression methods, like the ridge estimator, have 

demonstrated effectiveness in mitigating the impacts of 

multicollinearity [2-4]. 

Regularized regression methods, including ridge regression, 

LASSO, Elastic net, Adaptive LASSO, and Fused LASSO, 

implement varying specifications of constraints on the 

regression coefficients. These methods aim at dimension 

reduction and, most notably, variable selection. This study 

focuses on comparing ridge regression and LASSO with 

robust methods for fitting count data, such as the Dirichlet 

prior mixture of generalized linear mixed models and the 

discrete Weibull. 

Ridge regression has a longer history of use than LASSO, 

which was proposed later [5, 6]. Results from past studies have 

indicated that ridge surpasses LASSO in terms of prediction 

error, owing to the assumption in LASSO that some 

coefficients are zero. Conversely, LASSO outperforms ridge 

in terms of bias, Mean Squared Error (MSE), and variance, 

implying a lack of dominance by either method [7]. LASSO 

appears to excel when only a few predictors influence the 

response variable, while ridge performs well when most 

predictors have an influence [7]. 

Several studies have focused on LASSO and ridge 

regression [8-15], including those based on categorical 

response variables [16-19]. Count data is a research area of 

interest across various disciplines, including medicine [20], 

insurance [21, 22], biological sciences [23], education [24], 

and others [25, 26]. However, there are limited studies on 

regularized models for count data [27-29]. 

Current methods for fitting count data models encompass 

Poisson modeling, Negative Binomial modeling, discrete 

Weibull, Dirichlet prior mixtures of generalized linear mixed 

models, and others [24, 30]. This paper proposes the modeling 

and fitting of count data with regularized models, and the 

comparison of these models to Bayesian and Frequentist 

models, like the Dirichlet prior mixture of generalized linear 

mixed models and the discrete Weibull. 
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2. MATERIALS AND METHODS 

 

This study adopts the use of Ridge regression and LASSO 

to fit count Health data with the aim of reducing the variance. 

 

2.1 The ridge regression 

 

The ridge regression is mathematically expressed as: 
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The first part of Eq. (1) is the regression sum of square 

(RSS), that, is 
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where, λ is the tuning parameter; yi is observation i on the 

dependent variable; xij is the observation i on the independent 

variable j; β0 is the intercept term and βj is the Regression 

coefficient for independent variable j. These definitions are the 

same for other equations in this paper, where λ≥0 in (1) is the 

tunning parameter. The ridge regression estimates are similar 

to that of least square estimates and the choice of λ is what 

determines that. If λ=0, the ridge regression gives the same 

estimates as least square would. As λ increases the coefficient 

shrinks towards zero, therefore, a large λ produces lower 

estimates than a lower λ if used to model the same data set. 

The term on the right in Eq. (1), 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  is the shrinkage 

penalty. So, if no penalty is introduced, the estimates become 

least square estimates. The shrinkage penalty applies only to 

other coefficients and not the intercept, β0 [7]. 

 

2.2 The LASSO regression 

 

The challenge with ridge regression such as driving the 

regression estimates to zero as λ→∞ is overcome with Least 

Absolute Shrinkage and Selection Operator (LASSO). The 

model for LASSO is formulated as follows: 
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Eqs. (1) and (2) are similar but the only difference is that 

penalty for ridge regression is 𝛽𝑗
2 while the penalty for LASSO 

is |βj|. The estimates obtained from LASSO are much easier to 

interpret since it removed unimportant independent variables 

from the model. In other words, the shrinkage penalty in 

LASSO shrinks the coefficients of the independent variables 

having no significant effect on the dependent variables to zero. 

In another manner, one can show that the LASSO and ridge 

regression coefficient estimates solve the problems, for 

LASSO we have: 
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(3) 

 

and for ridge, 
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(4) 

 

There is a corresponding value of 𝑠 for every value of 𝜆, 

such that the LASSO coefficient estimates for Eqs. (2) and (3) 

will be the same. The same can be said of Eqs. (1) and (4) that 

they will produce the same ridge regression coefficient 

estimates. Eq. (3) shows that LASSO coefficients have the 

smallest Residual sum of square in |𝛽1| + |𝛽2| < 𝑠, while Eq. 

(4) shows that ridge coefficients have the smallest Residual 

sum of square in 𝛽1
2 + 𝛽2

2 ≤ 𝑠. 
The ridge regression is likened to estimating β1, β2, …, βp 

such that: 
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is minimized, and for LASSO, we have: 
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is minimized. It shows that, the ridge regression estimates can 

be obtained from Eq. (7) as follows: 

 

( )ˆ / 1R

j jy = +  (7) 

 

and the LASSO estimates take the form: 
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(8) 

 

Software in the study [31] was used to analyze the data; the 

R package such as glmnet [32], dplyr [33], and tidyverse [34], 

Dwreg [35] were used for implementation. 
 

2.3 Simulation study 
 

The section contains the procedure for generated random 

variables that were used to fit the model. The response variable 

was simulated from discrete Weibull, and covariates from 

uniform distribution. To simulate zero inflated count data from 

discrete Weibull, the condition is that for over-dispersed, 

0≤β≤1, and β≥2 for underdsipersed, for any chosen value of q. 

One thousand random response numbers were generated and 

five covariates were generated uniformly. The simulated data 

was fitted to four frequentist models, three Bayesian models, 

and the two regularized models considered in this study (Ridge 

and LASSO). For the choice of prior for Bayesian DW, 

Laplace prior was adopted using Metropolis-Hastings 

algorithm with an independent Gaussian proposal to draw 

samples from the posterior. Thirty thousand (30,000) 

iterations were performed. Specification of values for the 

parameters for the simulation experiment is given as follows: 
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10-fold Cross-validation was used to select the best value for 

the tuning parameter, λ and the Mean square error (MSE). 

For overdispersed, we have: 
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For underdispersed, we have: 
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The equation of the relationship between the response and 

the covariates using log link is given in Eq. (9): 
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The intervals for the uniformly generated random variables 

x 1, x 2, x 3, x4, and x5 are (0, 1), (0, 2), (0, 1.5), (0, 3) and (0,1.8). 

The mean and variance of simulated over-dispersed data is 

73.311 and 20901.27 respectively. While the mean and 

variance of simulated under-dispersed data is 2.183 and 1.801. 

 

Table 1. Model selection criteria for frequentist, Bayesian 

and regularized models over-dispersed 

 
 Over-Dispersed   

Technique Model AIC BIC 

Frequentist 

Poisson 

Neg. Binomial 

Discrete Weibull 

Hurdle Negbin 

87084.70 

9597.30 

9590.52 

9512.26 

87114.10 

9631.60 

9615.06 

9575.96 

Bayesian 

DPMglmm 

MCMCglmm 

Bayesian Discrete 

Weibull 

5157.8* 

5780.47 

9548.12 

5182.33* 

5814.82 

9582.48 

Regularized 
Ridge 

LASSO 

9692.91 

16999.51 

16625.09 

17058.58 

 Under-dispersed   

 Model AIC BIC 

Frequentist 

Poisson 

Discrete Weibull 

Hurdle Negbin 

3112.5 

2919.5 

3037.08 

31242.00 

2944.03 

3100.88 

Bayesian 

DPMglmm 

MCMCglmm 

Bayesian Discrete 

Weibull 

2530.52 

3329.10 

2873.18 

2555.06* 

3363.46 

2907.53 

Regularized 
Ridge 

LASSO 

593.09* 

8799.07 

7524.82 

8858.15 

 

Table 1 is the results of model fit for simulated zero inflated 

count data show that DPMglmm outperformed other models 

based on minimum AIC and BIC values in the over-dispersed 

data. On the other hand, Ridge regression outperformed other 

models based on minimum AIC values, but not with BIC 

values in the under-dispersed data. For the under-dispersed 

simulated data, the cross-validation mean square error (MSE) 

for ridge regression is 1.828, while the cross-validation MSE 

for LASSO regression is 1.829. For the over-dispersed 

simulated data, the cross-validation MSE for ridge regression 

is 26797 while the MSE for LASSO regression is 26800. 

 

 

3. RESULT 

 

3.1 Data description 

 

The data used was obtained from National Health Insurance 

Scheme (NHIS), details can be found on 

http://dx.doi.org/10.17632/z7wznk53cf.8. Response variable 

is Number of Encounter (Nencounter), while predictors are 

Sex, Age of patients (Age), Number of diagnosis for the period 

of visits (Ndiagnosis), individual on follow-up (followup), 

Encounter class: -In-patient or out-patient (Eclass). The data is 

under-dispersed with dispersion parameter of 0.7806, that is, 

the dispersion parameter is less than 1. 

 

3.2 Model selection 

 

Table 2. Model selection criteria for frequentist, Bayesian 

and regularized models 

 
Technique Model AIC BIC 

Frequentist 

Poisson 

Neg. Binomial 

Zero Truncated Pois 

Discrete Weibull 

5710.49 

5645.42 

5333.10 

5082.00 

5742.94 

5683.26 

5356.54 

5093.01 

Bayesian 

DPMglmm 

MCMCglmm 

Bayesian Discrete 

Weibull 

4216.70 

4324.18 

5089.60 

4291.73* 

4362.18 

5127.45 

Regularized 
Ridge 

LASSO 

1525.52* 

16798.25 

13751.40 

16862.32 

 

Table 2 shows that ridge outperformed all the frequentist, 

Bayesian and LASSO regression models based on AIC value 

in the over-dispersed data. LASSO model performed worst 

based on AIC and BIC. The Diritchlet Prior mixture model 

performed best based on BIC. The best performed models are 

written in boldface and asterisked in Table 2. Table 3 shows 

the coefficient estimates for the frequentist models. 

 

Table 3. Regression coefficients of frequentist models with their significance 

 
Model Intercept Sex (x1) Age (x2) Ndiag (x3) Follow-up (x4) Eclass (x5) 

Poisson 0.2941*** 0.0112 0.0019* 0.2677*** -0.1534*** 0.1701 

Neg. Bin 0.2027 -0.0019 0.0012 0.2984*** -0.0710 0.1166 

DW 0.8318*** -0.0427 0.0014 0.9965*** -0.1760 2.7813 

Hurdle NB 0.1011 0.0162 0.0024** 0.2909*** -02225*** 0.2104 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Source: Author’s computation 
 

The results in Table 3 show that Number of diagnosis was 

significant for all the models. The Poisson and Negative 

Binomial were based on Generalized Linear mixed model 

template model Builder (glmmTMB) [36]. Table 3 can be 

written in equation form as follows: 

Poisson Model 
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Discrete Model 
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Hurdle Negbin Model 
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The equation for Bayesian Discrete Weibull is given as 

follows: 
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The Bayesian Discrete Weibull results shows that all 

covariates except the intercept and Number of diagnosis were 

not zero included, the table is provided in the appendix. Table 

4 shows the estimates of the ridge regression. The 10-fold 

Cross-validation (CV) was used to obtain the best tuning 

parameter, lambda with the value of 0.2999564 and used in 

fitting the ridge and LASSO regression. 

 

Table 4. Ridge regression estimates 

 

 Estimate StdErr(Sc) 
t-value 

(Sc) 
Pr(>|t|) 

Intercept -0.7035 1.1899 -4.5093 <2e-16 *** 

xEclass 0.4388 0.0392 1.2859 0.1987 

xfollowup 0.0425 0.0404 0.3939 0.6937 

xSex -0.0429 0.0392 -0.5458 0.5853 

xAge 0.0017 0.0404 0.7695 0.4417 

xNdiagnosis 1.5530 0.0392 76.8781 <2e-16 *** 

 

The ridge regression model gives R2=0.78320, this shows 

that the best model was able to explain 78.32% of the variation 

in the response values of the training data. While adjusted 

R2=0.78270, and Ridge minimum MSE=0.007866. Table 4 

shows that the ridge regression model found the number of 

diagnosis significant which agrees with the frequentist and 

Bayesian models. The Ridge does not select variable, but 

LASSO does, Table 5 shows the LASSO estimates. The linear 

equation from Table 4 is as follows: 

 

1 2

3 4 5

0.7035 0.4388 0.0425

0.0429           .      7   0 001 1.5530
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x x x
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Figure 1 shows the Mean-Square Error for ridge regression, 

the lambda value that minimizes the test MSE is 0.008 at best 

lambda K=0.2999565. 

 

 
 

Figure 1. Mean-Square Error for ridge regression 

 

 
 

Figure 2. VIF trace for ridge regression 

 

The VIF trace vertical line in Figure 2 shows minimum 

generalised cross validation (GCV) value at value of biasing 

parameter K=0.30. The GCV is the tuned CV. 

 

 
 

Figure 3. Cross validation plots for ridge regression 

 

From Figure 3, the minimum Generalized Cross Validation 

(GCV) based on the lambda value of 0.2999564 is 0.002, while 

the minimum cross validation (CV) is 2.541. 

 

 
 

Figure 4. Coefficient plot of ridge regression 

 

Figure 4 shows the coefficient of ridge regression in line 

with Table 3. This plot shows that none of the coefficients has 

been shrunken to zero. 
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Table 5. LASSO regression estimates 

 
Intercept Eclass Followup Sex Age Ndiagnosis 

-0.65326 0.22997 - - 0.00063 1.54188 

 

Table 5 shows that follow up and sex have been shrunken 

to zero, and we have estimates for the intercept, Eclass, Age 

and Ndiagnosis respectively. R2=0.78311, which is the 

coefficient of multiple determination shows that there is a very 

strong relationship between the model and the dependent 

variable. The Mean square error is given as 2.8922. The 

equation based on Table 5 is given as: 

 

𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0.22997 − 0.04038𝑥1

+ 0.000634𝑥4 + 1.54188𝑥5 
(16) 

 

 
 

Figure 5. Mean-Square Error for LASSO regression 

 

 
 

Figure 6. Coefficient plot of LASSO regression 

 

Figure 5 is the mean square error of the estimates, since the 

Cross-validation 𝜆 = 0.2999, 𝑡ℎ𝑒 log 𝜆 = −0.523, which was 

depicted in Figure 5. Figure 6 shows the coefficient of LASSO 

regression in line with Table 4. Figure 4 shows that the 

coefficients of follow-up and sex have been shrunken to zero. 

 

 

4. CONCLUSION 

 

In this investigation, health count data was subjected to 

modeling by employing a variety of frequentist, Bayesian, and 

regularized regression models, specifically, ridge and LASSO. 

Prior to the modeling of the life data, a simulation study 

encompassing frequentist models such as Poisson, Negative 

Binomial, Discrete Weibull, and Hurdle Negative Binomial 

was conducted. Additionally, the simulated data were modeled 

utilizing Bayesian models including DPMglmm, 

MCMCglmm, and Bayesian Discrete Weibull. 

The findings from the simulation experiment revealed that, 

in the context of under-dispersed data, ridge regression 

surpassed LASSO and other frequentist and Bayesian models 

in terms of the Akaike Information Criterion (AIC). 

Conversely, based on the Bayesian Information Criterion 

(BIC), the Dirichlet Prior mixture model demonstrated 

superior performance. In terms of the Mean Squared Error 

(MSE), comparable performance between ridge and LASSO 

was observed, a pattern that manifested in the life data as well. 

In conclusion, the outcomes of this study suggest that the 

superiority of ridge or LASSO in fitting count data is not 

absolute; instead, it is contingent upon the specific objectives 

of the study. If model selection is the primary goal, the use of 

the AIC suggests a preference for ridge regression, although 

their performance in terms of efficiency, as measured by the 

mean square error, is largely indistinguishable. Nevertheless, 

LASSO presents the unique characteristic of shrinking 

irrelevant variables to zero, thereby emphasizing the 

significant ones. 
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APPENDIX 

 

A. Other plots for ridge regression 

 

 

 

 
 

B. Results of Bayesian discrete Weibull 

 

Posterior estimation for Bayesian discrete Weibull 
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