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Scoliosis prevalence is witnessing an upward trend, rendering image segmentation an 

invaluable tool in appraising the condition's severity. The segmentation of spinal images, 

however, poses notable challenges primarily due to the image quality and the complexity 

of discerning the Region of Interest (ROI) on X-ray imagery. This difficulty arises from the 

uniform texture and luminosity of the background, complicating the ROI detection process. 

Our study investigates the performance of U-Net in image segmentation using anterior-

posterior X-ray imagery of spines afflicted with scoliosis. A corpus of 609 high-resolution 

images was assembled for this purpose, partitioned into 481 training and 128 testing images. 

Prior to model implementation, a data augmentation process was carried out to bolster the 

training datasets, mitigating the risk of model overfitting. The augmentation involved 

mirroring and adding black and white intensity to each image, thereby generating thirteen 

new images from each original image. This process amplified the size of the training dataset 

from 481 to 6734 images. Our findings validate the efficacy of the U-Net model in 

accurately segmenting the spine in X-ray images, demonstrating an accuracy of 97% in 

training and 94% in validation, with a corresponding loss of 0.063 and validation loss of 

0.16. The resultant segmentation is poised to enhance the precision of scoliosis severity 

assessment. 
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1. INTRODUCTION

Scoliosis, a debilitating spinal disorder, afflicts 

approximately 2.5 percent of the global adolescent 

demographic, characterized by a pronounced spinal curvature, 

which, in its manifestation, bears resemblance to the letters "S" 

or "C" [1]. Scoliosis is clinically defined as a curvature 

exceeding 10°. The contrast between the spinal structure of a 

healthy individual and that of a scoliosis patient is illustrated 

in Figure 1. The etiology of adolescent scoliosis, which 

accounts for 70 to 80 percent of all cases, remains 

predominantly idiopathic or unknown. The rapid skeletal 

growth characteristic of adolescence may exacerbate scoliosis 

progression if not promptly identified and addressed. 

As the incidence of scoliosis escalates over time [2], image 

segmentation's role in assessing the severity of the condition 

gains increasing significance. Nonetheless, the segmentation 

of spinal images presents formidable challenges, largely 

contingent on the quality of the images. The Region of Interest 

(ROI) in X-ray images of the spine constitutes the principal 

obstacle to effective segmentation due to the uniform texture 

and brightness of the background, complicating the detection 

of the ROI [3]. The accuracy of scoliosis severity 

measurement is intrinsically linked to the quality of spinal 

segmentation, forming the basis for the subsequent therapeutic 

strategy delineation by the clinician. 

The pivotal role of medical image segmentation in 

identifying key elements in images such as X-rays for further 

processing is widely recognized. Significant research efforts 

have been channeled into segmentation in medical imaging, 

including cancer detection in the brain [4], lungs [5], and 

breasts [6]. A critical task in medical image analysis involves 

differentiating pixels pertaining to spinal imaging from the 

background in X-ray images for subsequent analysis. The 

curvature of the spine in scoliosis patients' X-ray images 

complicates the segmentation of the spine from the image. 

Image segmentation is a prerequisite for X-ray image-based 

scoliosis severity calculation, serving to mitigate image noise 

and focus on the image area. Despite its critical importance, 

image segmentation represents one of the most complex and 

time-consuming pre-processing steps [7]. Radiologists 

traditionally rely on subjective standards in image 

segmentation, although recent research encompasses edge 

detection, thresholding, region growth, and deformable 

models, in addition to more conventional image segmentation 

techniques [8]. Segmentation techniques primarily fall into 

one of four categories: thresholding-based, region-based, 

edge-based, and clustering-based [9]. 

Figure 1. The difference between a normal spine and a 

scoliosis spine [1] 
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The rest of the paper is organized as follows. Section 2 

reviews relevant literature on image segmentation. The 

methodology adopted in this study is elaborated in Section 3, 

followed by a detailed exposition of the implementation of the 

aforementioned approach in Section 4. Section 5 presents the 

results of spine segmentation using the U-Net model. 

 

 

2. RELATED WORKS 

 

Image segmentation, predicated on the analysis and 

processing of 2D or 3D images utilizing computer image 

processing technologies, facilitates segmentation, extraction, 

and three-dimensional reconstruction [10]. Segmentation, as it 

pertains to medical imaging, is typically categorized into 

semantic segmentation, instance segmentation, and panoramic 

segmentation, with semantic segmentation tasks 

predominantly associated with medical images [10]. 

Traditional methods such as threshold-based [11], region-

based [12], and edge detection-based segmentation [13] are 

increasingly being supplanted by segmentation methods 

grounded in deep learning due to their superior efficacy. 

Zhou et al. [14] conducted an extensive review of 

segmentation on medical images utilizing deep learning 

methodologies, with a particular focus on multi-modality 

fusion. This approach amalgamates multiple pieces of 

information to refine segmentation, and comprises four 

distinct stages: data pre-processing, network architecture, 

fusion method, and post-processing. During the data pre-

processing stage, the data dimension is selected, and pre-

processing is deployed to minimize the variability across 

images. Data augmentation may also be employed to expand 

the training data and circumvent overfitting. The network 

architecture and fusion strategy stages entail the training of the 

segmentation network using a fundamental network and 

comprehensive multi-modal image fusion techniques. The 

data post-processing stage incorporates techniques such as 

morphological methods and conditional random fields to 

enhance the final segmentation result. 

Hesamian et al. [15] highlighted several challenges 

associated with deep learning models, including overfitting, 

training time, gradient vanishing, and organ appearance. 

Overfitting occurs when a model's ability to accurately 

represent the patterns and regularities in the training set 

surpasses its capability to handle novel instances of the 

problem. Overfitting can be addressed through the application 

of "dropout" during the training phase, which entails the 

removal of the output of a random sample of neurons in each 

iteration from the fully connected layers [16]. The application 

of pooling layers to reduce the dimensionality of the 

parameters during training represents one of the earliest 

solutions to this problem [17]. Gradient vanishing, another 

major issue, is characterized by the signal (gradient) exploding 

or vanishing entirely in deeper networks [18]. The diverse 

appearance of the target organ represents a significant 

challenge in medical image segmentation. The target organ or 

lesion can vary greatly in terms of size, shape, and location 

across patients [19]. According to reports, deepening the 

network is an effective solution to this issue [20]. 

Imran et al. [1] proposed an end-to-end model using a neural 

network with the U-Net model, which can expedite the 

measurement time due to its automation. The measurement 

results differed from the results of measurements by doctors 

by a mere 2.41° [4]. Meanwhile, Zhang et al. detected and 

segmented the Vertebral Body (VB) based on spinal MR 

images using the Sequential Conditional Reinforcement 

Learning network (SCRL) approach, which had an accuracy 

of 92.3% IoU in the spine, 92.6% dice in spinal segmentation, 

and 96.4% of the spine classification using the Y-Net model 

[21]. Some researchers improved the previous best result in 

semantic segmentation by converting modern classification 

networks (AlexNet, the VGG net, and GoogLeNet) into fully 

convolutional networks and applying their learned 

representations to the segmentation problem. They 

successfully segmented PASCAL VOC (30% relative 

improvement to 67.2% mean IU on 2012), NYUDv2, SIFT 

Flow, and PASCAL-Context using their fully convolutional 

network [22]. 

A novel automated spinal ultrasound segmentation 

approach was proposed by Jiang et al. [23] integrated artificial 

intelligence methodologies to develop a new model called 

ultrasound global guidance block network (UGBNet). The 

UGBNet model offers a fully automated and reliable approach 

for segmenting the spine and visualizing scoliosis in 

ultrasound images. This network architecture includes a global 

guidance block module that effectively combines spatial and 

channel attention mechanisms, enabling the network to learn 

long-range feature dependencies and contextual scale 

information. The findings indicated that the implementation of 

UGBNet led to a notable enhancement in segmentation 

precision, achieving up to 74.2% on the Dice score evaluation 

metric. 

Sille et al. [24] proposed a systematic approach to 

overcoming obstacles in brain tumor segmentation techniques. 

The model consists of an 11-layered deep capsule network 

with transfer learning and two dropout layers at the input, as 

well as 5 layers of segmentation channel with dropout layers. 

This paper focuses on achieving a high dice score coefficient 

and accuracy in brain tumor segmentation from MRI images. 

The proposed work achieved comparatively better results in 

terms of dice score coefficients, such as (0.80, 0.76, 0.76) for 

whole tumor [WT], active tumor [AT], and core tumor [CT]. 

Brain tumor segmentation in MRI images using the optimal 

morphology thresholding methods proposed by Pongsatitpat et 

al. [25] The optimal morphology thresholding methods are 

novel methods for solving problems and diagnosing diseases. 

These are the RGB to Grayscale conversion, the image quality 

improvement, and the optimum thresholding processes. The 

proposed methods could automatically segment brain tumors 

in MRI images based on shapes found in public databases. The 

maximum absolute error was 3.96%, with an accuracy of 

98.00%. 

Based on a review of the literature on image segmentation 

methods, it is apparent that the U-Net architecture is well-

suited for X-ray image segmentation tasks, as it effectively 

addresses the various challenges encountered in deep learning 

models, including overfitting and training time. In this study, 

the U-Net model is employed to segment the spine in scoliosis 

patients. This model facilitates the distinction of the image 

from background noise by utilizing attributes such as intensity, 

color, and texture. 

 

 

3. METHOD DEVELOPMENT 

 

Based on previous research, the most recent research on 

deep learning for medical picture segmentation uses U-Net 

networks because U-Net solved several issues with deep 
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learning models, including overfitting and training time. 

Besides that, U-Net has the highest accuracy to do the 

segmentation based on previous research. Applying "dropout" 

during the training phase to eliminate the output of a random 

sample of neurons in each iteration from the fully connected 

layers is another method to handle overfitting. Applying 

pooling layers to minimize the dimensionality of the 

parameter’s during training is one of the earliest solutions to 

this problem. Therefore, we decided to use U-Net to segment 

the spine on X-ray images of patients with scoliosis in this 

study. 

Compared to UGBNet [23], which combines artificial 

intelligence methods to create a new spine ultrasound image 

segmentation model, U-Net is appropriate for X-ray image 

segmentation tasks that address several issues with deep 

learning models, such as overfitting and training time. In 

addition, UGBNet is limited by the fact that ultrasound images 

frequently contain acoustic artifacts, spots, and reticulated 

noise, which conceal bony features, such as spinous and 

transverse processes, and make manual recognition and 

segmentation increasingly difficult. 

A Fully Convolutional Network (FCN) is the foundation of 

the U-Net approach, which was intended to work with fewer 

training photos and provide more accurate biomedical image 

segmentation [26]. Adding numerous feature channels to the 

up sampling portion, which enables the network to disseminate 

information at a higher resolution layer, is a crucial innovation. 

It results in a U-shaped building by making the expanded path 

symmetrical with the contracting path. 

Two pathways, an encoder, and a decoder, make up the U-

Net network's design. While exact localization is 

accomplished in the decoder using transposed convolution, 

context capture is accomplished in the encoder route utilizing 

the input image. Figure 2 details the U-Net design. 

Contracting routes (left side) and expanding paths can be 

seen in the architecture in Figure 2 (right side). The contracting 

path uses a convolutional network architecture of repeated 

applications of two 3×3 convolutions (unpadded convolutions). 

Each convolution is followed by a rectified linear unit (ReLu), 

a 2×2 max pooling operation with stride 2 for down sampling. 

The number of feature channels doubles for every down 

sampling. Each step on the expansive path includes an up 

sampling of the feature map, followed by a 2×2 convolution 

that splits the number of feature channels, a sequence that cuts 

the feature map appropriately from the contracting path, and 

two 3x3 convolutions with ReLu following each convolution. 

Each of the 64 features in the final layer's convolution 1×1 is 

mapped to the required number of classes. There are 23 

convolutional layers in total in this network. The network 

design described in the original paper on U-Net [24] utilizes 

repeated applications of two 3×3 convolutions without 

padding, with each convolution being followed by a ReLu. As 

a result, U-Net uses a 3×3 kernel. 

Figure 3 shows that from X-ray image input, preprocessing 

is performed by resizing the image and augmenting data from 

the existing dataset. The original size of the image for the 

entire dataset is 755×2125×1 pixel, which will be resized to 

128×256×1 pixel. Image resizing is needed to adjust the image 

size to the U-Net model so that the feature extraction process 

can perform efficiently. After that, data augmentation will be 

performed, namely adding the number of existing datasets to 

avoid overfitting the model by mirroring, adding black 

intensity, and adding white intensity to each image. From 

Figure 3, on augmented image 1 is the rotation of 5-degree, 

augmented image 2 is mirror of augmented image 1, 

augmented image 3 is rotation of 10-degree, augmented image 

4 is mirror of augmented image 3. So that from each original 

image, three new images will be formed which are the result 

of data augmentation to increase the number of existing 

datasets and to avoid overfitting in the training process. After 

that, segmentation of the spinal image will be performed using 

U-Net to detect the part of the image which is part of the spine. 

 

 
 

Figure 2. U-Net architecture [23] 
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Figure 3. Overview spine segmentation 

 

As detailed in Algorithm 1, we used training data spine X-

ray images that have been done pre-processing stages and their 

reference segmentation mask from the labeled dataset as input 

to be processed with the U-Net model. To segment the spinal 

part of the X-ray image, we loop through each training data 

with batch size 64 and mini-batch 32 based on Figure 2, which 

used 64 features in the final layer's convolution 1×1. Then we 

compute the output of the segmentation model for each mini-

batch using U-Net model with learnable parameters to produce 

predicted segmentation spine mask from the image. 

 
Algorithm 1. Image segmentation algorithm 

input: training data spine X-ray images that has been done 

pre-processing stages and their reference segmentation mask 

from labeled dataset 

for each step over training data do: 

batch size=64 

mini batch=32 

compute model output for mini batch: 

U-Net model with learnable parameter to produce predicted 

segmentation mask 

calculate loss for the model predictions using binary cross 

entropy function 

end for 

 

To calculate the loss amount from the model of the entire N 

spinal X-ray image dataset between masks spinal 

segmentation y and prediction segmentation model �̂� , loss 

function with binary cross-entropy will be used as shown in 

Eq. (1). Besides that, we used accuracy to calculate the ratio 

between the number of correct predictions to the total number 

of predictions. Accuracy is a metric that generally describes 

how the model performs across all classes as described in Eq. 

(2) with TP as true positive and TN as true negative. TP is 

when the spine is correctly categorized as a spine and TN is 

when the background is categorized as not a spine. 

 

Loss=−
1

𝑁
∑ 𝑦𝑖 . 𝑙𝑜𝑔𝑦�̂� + (1 − 𝑦𝑖) . log(1 − �̂�𝑖

𝑁
𝑖=1 ) (1) 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝐴𝑙𝑙 𝐷𝑎𝑡𝑎
 (2) 

 

 

4. IMPLEMENTATION, RESULTS, AND ANALYSIS 

 

A total of 609 high-resolution anterior-posterior X-ray 

images from spineweb website 

(www.spineweb.digitalimaginggroup.ca) were utilized in our 

study. The images were split into 481 training and 128 testing 

and were manually annotated by spine experts. Before the 

images are implemented to the models, we perform data 

augmentation to increase the training datasets to avoid 

overfitting the model by mirroring, adding black intensity, and 

adding white intensity in each image. With the result that from 

each original image, thirteen new images will be formed, 

which are the results of data augmentation to increase the 

number of existing training datasets from 481 images to 6734 

images. All the images have been resized and normalized to 

128×256×1 to match the input of the U-Net model before 

feeding them to the network. The models were trained on the 

training set. Their performances were evaluated on the testing 

set. The validation set was used for hyper-parameter tuning 

and model selection. The Adam optimizer was used, along 

with a binary cross-entropy loss function [27]. The selection 

of binary cross-entropy as the loss function is motivated by the 

perception of X-ray segmentation as a binary classification 

problem. The binary cross-entropy loss function is more 
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appropriate for this problem than the mean squared error (MSE) 

loss function because there are two distinct classes in a binary 

classification problem, allowing for the prediction of the 

probability of an example belonging to the first class. The 

objective is to find a collection of model weights that 

minimizes the disparity between the predicted probability 

distribution of the model based on the dataset and the 

probability distribution observed in the training dataset. We 

implemented a 0.1 dropout rate because too high a dropout rate 

can slow the convergence rate of the model, and often hurt 

final performance. 

We applied image segmentation with the U-Net model to 

the spine X-ray dataset with 50 epochs, 64 batch sizes, and a 

binary cross entropy loss function. From Figure 4, 

segmentation training accuracy has the result of 97% with a 

loss of 6.3% and validation accuracy 94% with a loss of 16%. 

Figure 5 and Figure 6 show the loss in every epoch that is on 

training and validation, with 26% epoch loss on training and 

32% epoch loss on validation. Figure 7 visualize segmented 

vertebrae from spine X-ray dataset. 

From Figure 4, with the x-axis as the amount of epoch and 

the y-axis as the loss amount, on training we get the amount of 

loss which decreases as the epoch increases until it reaches 

epoch 50 because it uses the equation in Eq. (1) to calculate 

the loss amount. It shows that U-Net models can carry out the 

training process well because it gets the result of a loss of 6.3% 

on the training data. Meanwhile, we get more significant 

results than during the training process. The loss graph in the 

validation process has increased at epochs 40 to 50. It shows 

that the model does not perform the validation process as well 

as during training because we get a result of 26% during 

validation. 

Meanwhile, for accuracy using the equation in Eq. (2) when 

training, the model can produce accuracy which increases as 

more epochs are performed. It shows that the model can 

perform training well and get the result with an accuracy of 

97%. Meanwhile, the model validation process did not show a 

significant increase at 10-50 epochs, and the result was an 

accuracy of 94%. 

Based on Figure 5 in the training data, from epoch 1 to 50 it 

continues to show a decrease in the loss value in each epoch. 

It can happen because when running the training, an equation 

in Eq. (1) calculates the loss in each epoch using the binary 

cross entropy equation. Meanwhile, data validation shows a 

decrease in the loss at epochs 1 to 25. However, it does not 

experience a significant decrease in the loss until epoch 50 

because the model does not work well in predicting the 

validation dataset compared to the existing segmentation mask. 

With the result, epochs 26 to 50 did not experience a 

significant loss reduction. 

 

 
 

Figure 4. Accuracy and loss result in training (Blue) and validation (Orange) 

 

 
 

Figure 5. Epoch loss result in training (Blue) and Validation 

(Pink) 

 
 

Figure 6. Epoch accuracy in training (Blue) and validation 

(Pink) 
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Figure 7. Visualization of segmentation in spine X-ray 

images 

 

On the Figure 6 in segmenting using training data, in epochs 

1 to 5 the model experienced an increase in accuracy in 

predicting segmentation based on existing masks. Then at 

epochs 6 to 36 there was no increase or decrease in accuracy 

in training, but the model again experienced an increase in 

accuracy at epochs 37 to 50. This was because at each epoch 

accuracy was evaluated using Eq. (1) so that at epoch 50 the 

model has an accuracy of 90%. Meanwhile in the validation 

data, at epochs 1 to 42 the model can immediately predict 

segmentation with an accuracy of 87% for each epoch, but the 

model experiences a decrease in accuracy at epochs 43 to 50 

so that at epoch 50 the validation data has an epoch accuracy 

of 86%. 

Based on Figure 4, Figure 5, and Figure 6 we get the 

accuracy on validation image 94% it means the model can do 

the segmentation quite well with validation loss 16%. The gap 

between the training line and the validation line shows that the 

model is not overfitting in learning. For future work, data 

augmentation, dropout, or early stopping can be used to reduce 

overfitting. From that result, Figure 7. shows the visualization 

of segmented vertebrae from the spine X-ray dataset using the 

U-Net model. 

 

 

5. CONCLUSIONS 

 

The U-Net model can segment medical X-ray images with 

good results. So that it is possible to apply it to other medical 

images such as MRI, ultrasound, or CT scans, but considering 

the data preprocessing methods on MRI, ultrasound, and CT 

scan images may differ depending on the number of datasets 

and the sharpness of the images. The ability to perform image 

segmentation can improve the results of measuring the level of 

scoliosis so that the doctor can decide on the treatment for the 

patient’s scoliosis. 

In this paper, we have presented segmentation using U-Net 

in X-ray spine images. We trained the U-Net model for 

segmentation of X-ray spine images because the accurate 

segmentation and identification are critical to measuring 

scoliosis cobb angle. Our research demonstrates that the U-Net 

model is quite accurate at segmenting the spine on X-ray 

images, with accuracy values of 97% on training and 94% on 

validation. It means that the model can do spine segmentation 

quite well from the dataset. We are also aware of the 

limitations of this model, as well as the necessity to fine-tune 

its parameters so that it can distinguish between the spine and 

the white portion of the image at the bottom of the X-ray image. 

In further studies, we plan to improve the model's 

segmentation accuracy to achieve even better segmentation 

outcomes. 
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