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The automated diagnosis of schizophrenia utilizing Magnetic Resonance Imaging (MRI) 

has been the subject of numerous investigations, the majority of which have primarily 

directed their focus towards disorder detection. This study, however, aims to transcend 

detection, endeavoring to estimate the severity of schizophrenia symptoms by leveraging 

structural MRI data. Such capabilities are anticipated to enhance the monitoring of 

treatment efficacy, guide clinical decision-making, and ultimately contribute to improved 

schizophrenia management. MRI datasets for schizophrenia patients (23) and control 

subjects (20) were sourced from the OpenNeuro database. Each structural MRI was 

processed to extract a grayscale image, which was then segmented into White Matter (WM), 

Gray Matter (GM), and Cerebrospinal Fluid (CSF). Statistical attributes-such as standard 

deviation, moment, and skewness-were derived from each segment to form feature 

representations of the grayscale images. An SVM with a linear kernel was trained, 

distinguishing schizophrenia subjects from healthy controls. Furthermore, for the 

schizophrenia subjects, the sums of their respective Scale for the Assessment of Positive 

Symptoms (SAPS) and Scale for the Assessment of Negative Symptoms (SANS) scores 

were computed. A twelve-layer artificial neural network (ANN) was then trained to estimate 

these symptom severity scores. The SVM model achieved optimal classification accuracy 

at 81.8%, while the ANN demonstrated a correlation coefficient of 0.811 and a mean 

absolute error of 1.44 on the validation dataset. This performance surpasses that of a 

comparable study estimating schizophrenia symptom severity from electroencephalogram 

(EEG) data, which yielded correlation coefficients ranging from -0.6 to -0.702. The paper 

concludes with a proposed software architecture for practical application of these findings. 
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1. INTRODUCTION

Schizophrenia, a mental disorder typified by hallucinations, 

delusions, and disordered thinking, typically manifests in 

adolescence [1-3]. As one of the most prevalent mental 

disorders, it imposes substantial social disabilities, instigating 

social, economic, and psychological challenges [1-3]. 

Astonishingly high mortality rates, including a suicide rate 

twelve times that of the general population, are associated with 

schizophrenia [4]. 

Currently, the diagnosis of schizophrenia relies 

predominantly on clinical observations and patient interviews, 

which serve to assess mental status [1, 4]. Guiding this process 

are two systems: the Diagnostic and Statistical Manual (DSM-

IV) and the International Classification of Diseases and 

Health-Related matters (ICD-10) [4]. However, such 

observational methods and symptom assessments are 

inherently subjective, heavily hinging on the clinician's 

expertise and familiarity with the disorder [2]. Particularly, 

early differentiation between schizophrenia and bipolar 

disorder poses a challenge due to shared psychotic symptoms 

[5]. This underscores the necessity for objective biomarkers 

that could render diagnoses more consistent, precise, and 

objective. 

Schizophrenia has been observed to correlate with 

aberrations in brain structure [1, 2]. Studies suggest that 

schizophrenia patients exhibit decreased grey matter volume 

in specific brain regions such as the temporal cortex, prefrontal 

cortex, anterior cingulate cortex, and thalamus [1]. In 

comparison to healthy individuals, reductions in the grey 

matter of the fronto-temporolimbic section have been reported 

in patients with schizophrenia [3]. Structural abnormalities in 

regions like the middle temporal gyrus and corpus callosum 

have also been identified [2]. An overall reduction in grey 

matter is associated with schizophrenia, and these structural 

changes appear to be linked to the positive symptoms [6]. 

Structural Magnetic Resonance Imaging (SMRI) can 

capture these structural changes, making extracted features 

from such imaging potentially valuable biomarkers for 

diagnosing schizophrenia [1]. Numerous studies have 

employed SMRI for differentiating between schizophrenia 

patients and healthy subjects, typically involving feature 

extraction from the MRI data and subsequent classification 

using machine learning algorithms [1, 7]. The highest recorded 

performance in this field achieved a classification accuracy of 

96.7%, utilizing multimodal MRI data and a Support Vector 

Machine (SVM) [8]. 

Discriminating between schizophrenia patients and healthy 

controls is crucial yet insufficient. Estimating the severity of 

the disorder's symptoms is equally valuable for monitoring 

treatment responses, particularly to antipsychotic drugs. With 

quantifiable treatment effectiveness and more precise 
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decision-making facilitated by this novel capability, clinicians' 

effectiveness in managing schizophrenia could be 

significantly enhanced. This study proposes the use of 

structural MRI for classifying schizophrenia and estimating 

symptom severity, denoting severity scores by summing the 

Scale for the Assessment of Positive Symptoms (SAPS) and 

the Scale for Assessment of Negative Symptoms (SANS) from 

a secondary dataset. The research aims to develop two models: 

(1) a classification model to distinguish between schizophrenia 

patients and healthy controls, and (2) a regression model for 

estimating symptom severity in schizophrenia patients using 

structural MRI data. 

 

 
2. REVIEW OF RELATED WORKS 

 

A plethora of studies have been conducted focusing on the 

deployment of magnetic resonance imaging (MRI) data as 

neuro-biomarkers to aid in the diagnosis of schizophrenia. 

Some have utilized multimodal MRI data in their diagnostic 

procedures. The detection of schizophrenia is typically treated 

as a classification problem, with the objective being to 

differentiate between subjects with schizophrenia and healthy 

controls or non-schizophrenic subjects. Conversely, the 

estimation of symptom severity is a regression problem. 

Despite this, a comprehensive review of the literature reveals 

that the vast majority of research on the use of MRI for 

schizophrenia diagnosis addresses only the classification 

problem. 

Following preprocessing of the MRI data, the brain is often 

segmented into Gray Matter (GM), White Matter (WM), and 

Cerebro-Spinal Fluid (CSF). Subsequently, features are 

extracted from these three segments, either automatically or 

manually. This review will delve into studies pertaining to 

both methods. 

Research that incorporates automated feature extraction 

from MRI data include studies [6, 9], while the majority of the 

reviewed work involves manual feature extraction from the 

WM, GM, and CSF segments, including but not limited to 

studies [1, 7, 8, 10, 11]. 

In the study conducted by Hu et al. [9], convolutional neural 

networks (CNNs) were utilized to automatically extract 

features from GM, WM, and CSF probability maps, 

subsequently performing classification. The achieved 

classification accuracy was 79.27%. It is noteworthy that this 

study also explored manual feature extraction. Alternatively, 

Oh et al. [6] applied 3D-CNN directly to the raw sMRI images 

of 443 schizophrenia patients and 423 healthy controls, 

achieving the highest correct classification rate of 97%. 

However, when a dataset from a different center was utilized, 

the performance declined to 71%. 

Manual extraction of handcrafted features from sMRI data 

was employed by the aforementioned study [9] to distinguish 

289 schizophrenia subjects from 210 healthy controls. After 

flattening the GM, WM, and CSF maps and conducting 

principal component analysis (PCA), support vector machine 

(SVM) was utilized for classification, resulting in a 

classification accuracy of 69.15%. 

The study conducted by Hu et al. [1] merged GM averages 

from disparate brain areas with polygenic risk scores obtained 

from blood samples as genetic characteristics. These features 

were then used to train an ensemble learning classifier (SVM 

and logistic regression), resulting in an accuracy of 71.8%. It 

is noteworthy that this study used a dataset of 508 

schizophrenia patients and 502 healthy controls. 

In study [7], the Total Intracranial Volume (TIV) was 

calculated from the MRI images by summing up GM, WM, 

and CSF segments. This TIV, along with age, sex, and a 

constant (scanner factor) were leveraged to construct a linear 

model whose accuracy ranged from 69% to 76%. The dataset 

encompassed 541 schizophrenia patients and 1252 healthy 

controls. 

Chatterjee et al. [10] utilized a multisite MRI dataset (28 

schizophrenia patients and 32 healthy controls) that was 

preprocessed to focus on grey matter (GM) reduction. Voxel-

based morphometry (VBM) analysis was performed on the 

GM segment for feature extraction. A non-dominated sorting 

genetic algorithm (NSGA-II) was then used to select fewer 

features that were combined with age and sex. These features 

were subsequently used in training an SVM for distinguishing 

schizophrenia subjects from healthy controls. This 

methodology achieved a 90% classification accuracy. 

In the work conducted by Liu et al. [11], a multitude of 

markers/features were extracted from MRI and DTI data 

collected from 62 schizophrenia patients and 33 healthy 

controls. A two-step feature selection mechanism was 

introduced to narrow down the most discriminative features, 

which were subsequently employed to train an SVM classifier. 

The classifier achieved 91.28% accuracy, 90.85% sensitivity, 

92.17% specificity, and an AUC of 0.9485. 

The seminal study by Nemoto et al. [7] employed multiple 

MRI images from 446 schizophrenia patients and 1577 healthy 

controls, segmented into grey matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF). The total intracranial volume 

(TIV) of the region of interest (ROI) was computed by 

aggregating these segments. The residual value (e) for each 

participant was then established using a linear analysis with 

age, sex, TIV, and scanner factor as variables. This residual 

value was utilized as a distinguishing feature between 

schizophrenia patients and healthy individuals, achieving an 

accuracy between 69% and 76%. 

In contrast, Yang et al. [8] employed a multimodal MRI 

dataset, incorporating resting-state functional MRI and 

structural MRI, derived from 44 schizophrenia patients and 56 

healthy controls. An automated anatomical labelling atlas 

facilitated the extraction of representative features such as 

grey matter volume (GMV), regional homogeneity (ReHo), 

the amplitude of low-frequency fluctuation (ALFF), and 

degree of centrality (DC). The combination of recursive 

feature elimination and a support vector machine (SVM) 

facilitated the identification of schizophrenia patients, with the 

highest accuracy of 96.7% achieved when employing ReHo 

and ALFF as input features. 

Notwithstanding the above, no study to date has ventured to 

estimate the severity of schizophrenia using MRI data. The 

current study is poised to address this gap and to develop a 

comprehensive tool for the detection and monitoring of 

schizophrenia, thereby providing valuable feedback on patient 

responsiveness during treatment. 

Several established psychiatric rating systems exist for 

determining the severity of psychiatric syndromes, including 

the Positive and Negative Symptom Scale (PANSS), the Scale 

for the Assessment of Positive Symptoms (SAPS), and the 

Scale for Assessment of Negative Symptoms (SANS) [12, 13]. 

The PANSS system, for instance, encompasses three major 

components: positive, negative, and cognitive or general 

psychopathology scales, each with specific items [13, 14]. The 

SANS measures negative symptoms across five domains, 
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while the SAPS assesses positive symptoms. 

The only attempt to estimate symptom severity using 

neuroimaging data was made by study [15], utilizing 

electroencephalography (EEG) data. The developed 

regression models displayed correlation coefficients ranging 

from -0.6 to -0.702 and mean square errors of 3.34 ± 2.40 and 

3.9 ± 3.01 for positive and negative symptom severity 

respectively. The current research is positioned to extend such 

efforts to MRI data, driving advancements in schizophrenia 

severity estimation. 

 

 

3. METHODS 

 

Several studies have been carried out that focus on using 

magnetic resonance imaging data as neuro-biomarkers for the 

diagnosis of schizophrenia. There are cases that multimodal 

MRI was used in the diagnosis. 

The methodology is a muti-stage process pipeline with six 

major stages which are data acquisition, structural MRI 

preprocessing, extraction of statistical features as the dataset, 

splitting the dataset into training and test sets, training of the 

models (classification and regression) and evaluation of the 

performance of the models. The aforementioned methodology 

is represented in Figure 1. 

 

3.1 Data acquisition 
 

The neuro-image dataset of schizophrenic and healthy 

individuals was acquired from Openneuro [16] which was 

arranged in the Brain Imaging Data Structure (BIDS) standard. 

It contains structural and functional MRI data of 102 subjects. 

Importantly, the dataset is de-identified (anonymized) to 

protect the privacy of the subjects, and this makes it suitable 

for this research in adhering to ethical research practice.  

• The subjects are categorized into four groups: 

• Schizophrenia patients (SCZ), twenty-three (23) in total 

• Healthy controls (CON), twenty (20) in total 

• Schizophrenia patients’ siblings (SCZ-SIB), thirty-five 

(35) in total 

• Healthy controls’ siblings (CON-SIB), twenty-one (21) 

in total 

This research will primarily focus on the structural MRI 

(T1w.nii.gz) of the twenty-three (23) Schizophrenia patients 

(SCZ) and twenty Healthy controls (CON). The pulse 

sequence of structural MRI (SMRI) is T1-weighted with short 

repetitive time (TR) and short echo time (TE). The pulse 

sequence provides contrast between the White Matter (light 

grey) and the Grey Matter (dark grey) with the Cerebrospinal 

fluid being dark. 

Additional information about the subjects was also provided 

and this includes gender, age, SAPS and SANS schizophrenia 

severity scores among several other information. Table 1 

shows the demographic distribution of the subjects by gender 

and age. 

 

Table 1. Statistics of the subjects' count and age 

distribution 

 
Group  Age 

Schizophrenia (23) 
Male (17) 23.81 ± 4.73 

Female (6) 25.53 ± 4.71 

Control (20) 
Male (12) 21.41 ± 4.71 

Female (8) 19.54 ± 4.59 
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Figure 1. Methods 

 

3.2 MRI image preprocessing 

 

The stage comprises four operations, extraction of greyscale 

(2D) image from structural magnetic resonance imaging, 

image denoising or smoothing and image rescaling or 

standardization. 

Extraction of greyscale image: Grey image is extracted 

from an SMRI file using nibble a python library for processing 

medical neuroimaging files. The T1-weighted data (T1_data) 

has 3-D spatial space with three independent axes x, y and z 

and has data shape of (l, m, n). A greyscale image Y is obtained 

by taking a slice of the image array of T1_data defined as: 
 

𝑌 = 𝑇1_𝑑𝑎𝑡𝑎[: , :,n//2] 

995



 

Image Intensity Standardization: Images from different 

scanners have different intensities and it is important to these 

images are standardized. The mathematical representation of 

this operation is presented in Eq. (1) and computed with 

NumPy (python numerical library). 

 

Standardization=
𝐼−𝑚𝑖𝑛(𝐼)

𝑚𝑎𝑥(𝐼)−𝑚𝑖𝑛(𝐼)
∗ 255 (1) 

 

The min(I) and max(I) stand for the minimum and 

maximum pixel values in the image. 

Skull stripping: This is an important part of the 

preprocessing pipeline as it focuses on the separation of the 

brain tissue (cerebellum and cortex) from the neighboring 

region. This process is characterized by a series of operations 

such as segmentation, binarization and iteration of erosion and 

dilation morphological process [17]. K-means segmentation 

algorithm partitions the image into foreground and 

background. For binarization, the background pixels are 

assigned a value of zero and the foreground one. The next key 

operations are dilation and erosion, represented by Eqs. (2)-(3), 

respectively, which were performed in an appropriate repeated 

order. The preliminary outcome is the brain tissue mask which 

is used to mask out the skull from the standardized image to 

obtain the region of interest. The morphological and 

segmentation operations are performed with OpenCV, a 

Python computer vision library. 

 

𝐴⨁𝐵 = {𝑧|𝐵𝑧 ∩ 𝐴 ⊆ 𝐴} (2) 

 

𝐴⊖𝐵 = {𝑧|𝐵𝑧 ⊆ 𝐴} (3) 

 

A is the image and B is the structuring element. 

Brain tissue segmentation: The brain tissue is segmented 

into four compartments with the Gaussian-mixture model 

(GMM) from Scikit-learn, a machine learning tool in Python. 

The compartments are the background, grey matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF). The 

background segment is eliminated from further processing as 

it does not convey any useful information. 

 
3.3 Feature extraction 

 

Statistical information is extracted from the three-

segmented pixel clusters (GM, WM, and CSF), which are the 

representations for each of the structural magnetic resonance 

images. The statistical features obtained are standard deviation, 

entropy, skewness, kurtosis, and moments which are 

computed using NumPy from the pixel values (vi) of each of 

the cluster as represented with Eqs. (4)-(8). 

Standard deviation (σ):  

 

𝜎2 = ((
1

𝑛
)∑ (𝑣𝑖 − 𝑢)2

𝑖
) (4) 

 

Skewness: 𝑠𝑘𝑤 = (
1

𝑛𝜎3
)∑ (𝑣𝑖 − 𝑢)3𝑖  (5) 

 

Entropy: 𝐸 = −𝑘∑ 𝑝𝑖 𝑙𝑜𝑔𝑒𝑝𝑖𝑖  (6) 

 

Kurtosis: 𝐾𝑢𝑟𝑡 = (
1

𝑛𝜎4
)∑ (𝑣𝑖 − 𝑢)4𝑖  (7) 

  

Moment: 𝑚𝑘 = (
1

𝑛
)∑ (𝑣𝑖 − 𝑢)k𝑖  (8) 

A couple of studies have used these statistical parameters 

extracted from an object's image as its features. The study of 

Kim et al. [18] shows that these parameters, considered 

conventional features extracted from EEG, can be used for the 

classification of schizophrenia, while the Alimi et al. [19] 

successfully uses the parameters extracted from red blood cells 

for distinguishing between infected cells and those not 

infected by malaria parasites. Some of the parameters are also 

used as acoustic features for discriminating schizophrenia 

subjects from healthy ones [20]. 
 

3.4 Training of classification and regression models 
 

The extracted statistical features are used to train the 

classifier and regression models. The classifier will learn to 

differentiate between healthy control subjects and 

schizophrenia subjects based on the input features extracted 

from the three segments of the brain (CSF, WM, and GM). An 

SVM was chosen as the classifier for this study. Recursive 

feature elimination (RFE) is used to select the seven most 

important features for segregation between schizophrenia and 

healthy control datasets before the classifier is trained. The 

sum of the SAPS and SANS total scores represents the severity 

of schizophrenia symptoms. An artificial neural network with 

twelve layers is proposed as the regression model. With 

regards to the classification problem, 43 data points are used, 

which are divided into two in the ratio of 75%:25% for training 

and test sets, respectively. Concerning the regression problem, 

only data points from the 23 schizophrenia subjects were used, 

which were divided into training and test sets in a ratio of 

75%:25% in favour of the training set. 
 

3.5 Model validation and performance evaluation 
 

After the training of the classifier and the linear regressor, 

the respective test datasets are used for validation. The 

performance of the SVM classifier is measured using four 

metrics, which are accuracy, precision, recall, and F1-score. 

For the 12-layer ANN regression model, the correlation 

coefficient and mean square error are considered for its 

performance evaluation. 
 

 

4. RESULTS 
 

The acquired data for the research comprises structural 

magnetic resonance imaging of forty-three (43) subjects 

(control and schizophrenia groups) and their corresponding 

age and gender information. The control group consists of 

twelve (12) males and eight females (8) subjects, while the 

schizophrenia class consists of seventeen (17) males and six 

(6) females. 

With the extraction of the grey scale image from the BIDS 

store for each of the subjects, the next operation performed on 

the image is the normalization to address variations in light 

intensities from different MRI scanners. Figure 2 shows the 

image before and after standardization. Also, a 5 by 5 Gaussian 

kernel was applied to the standardized image to remove noise 

(smoothing or denoising), and the resultant image is shown in 

Figure 3. 

Skull-stripping is performed with k-means segmentation, 

binarization, a series of iterative morphological operations, 

and masking. Figure 4 shows the smoothed image, the mask 

of the area of interest, and the stripped brain image. In addition, 

Figure 5 is a gallery of stripped brain images of some of the 

subjects. 
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Figure 2. Image before and after standardization 

 

 
 

Figure 3. Image before and after the smoothing operation 

using Gaussian kernel 

 

 
 

Figure 4. The normalized, smoothed images and the mask of 

the brain tissue 

 

 

 
 

Figure 5. Gallery of some skull-stripped MRI images 

 

 
 

Figure 6. Segmentation of the smoothed image into grey 

matter, white matter and cerebrospinal fluid 

 

The Gaussian-mixture model (GMM) was used to segment 

the stripped image into four clusters, the background, the Grey 

Matter, the White Matter and the Cerebrospinal Fluid, the 

background cluster is ignored from further processing. The 

outcome of the segmentation into GM, WM, and CSF is 

depicted in Figure 6.  

Figure 7 shows the histogram of the intensity of cerebral-

spinal fluid, grey matter, and white matter segments 

represented with red, green, and blue colors, respectively, 

indicating clear separation and effectiveness of the 

segmentation process. The histogram shows that the higher the 

intensity or pixel value, the higher the probability of being in 

the WM cluster, while those with lower values have a higher 

probability of being in the CSF cluster. 

Statistical information such as standard deviation, entropy, 

skewness, kurtosis, and momentum were obtained from CSF, 

GM, and WM to form extracted features from the brain tissue 

segments of each subject. The age and gender information are 

also included as part of the features representing the subjects. 

Table 2 shows the dataset with features, also included in the 

table are the class label and severity scores. The class label 0 

denotes the healthy control subject while 1 represents the 

schizophrenia subject. The schizophrenia symptoms severity 

scores which is the summation of the SANS total score and 

SAPS total score. 

Figure 8 shows the correlation coefficients of the seventeen 

extracted features, with the best positive correlation 

coefficients reported for GM entropy, CSF entropy, CSF 

standard deviation, and CSF moment with values of 

0.224,0.319,0.234 and 0.234 respectively. 

The twelve-layer neural network was trained with the 

training dataset, to predict schizophrenia symptom severity 

score from the extracted features of the three segments of the 

brain tissue (GM, WM, and CSF), Figure 9 represents the 

graph of loss vs iteration number during the training. Five 

features with the best positive correlation coefficients were 

selected to build the regression model. 

 

 
 

Figure 7. Histograms of brain intensity distribution by tissue 

class (CSF.GM and WM) 

 

 
 

Figure 8. Correlation coefficients of the features and 

schizophrenia severity score 
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Table 2. Features extracted from GM, WM and CSF segments and other important information 

 
Participant_ID Condit Gender Age GM_Entropy WM_Entropy CSF_Entropy GM_Skew 

sub-01 1 1 28.961 12.26378 12.72852 13.03354 2.691613 

sub-05 1 2 25.6454 11.76337 12.13751 12.37536 3.289669 

sub-07 1 2 29.9603 11.80682 12.47576 12.5361 3.3212 

sub-09 1 1 23.1157 12.02702 12.34806 12.52394 2.933773 

sub-11 0 1 27.5838 12.00111 12.35793 12.58978 2.955976 

sub-12 0 2 18.768 11.85462 12.33345 12.66736 3.175685 

sub-15 0 1 18.9706 12.17637 12.11962 12.44651 2.710635 

sub-17 1 2 25.3771 12.47371 12.49474 11.88929 2.358542 

sub-20 0 1 24.8323 11.96066 12.48804 12.4189 3.045928 

sub-27 1 1 22.2834 12.04604 12.6131 12.26011 2.914034 

sub-31 1 1 24.5749 12.42946 13.01694 12.86257 2.485679 

sub-35 0 1 12.6051 12.37117 12.30057 12.68474 2.473272 

sub-36 0 1 13.1307 12.57413 12.80382 12.72937 2.260366 

sub-37 0 1 14.6092 12.6049 12.34948 12.72825 2.233632 

sub-43 0 2 13.8344 12.39658 12.78699 13.16301 2.523116 

sub-44 1 1 19.9562 12.35579 12.47026 12.92791 2.522139 

sub-46 0 2 15.5099 11.96969 12.39618 12.53991 3.010734 

sub-49 0 2 17.2512 12.00598 12.82691 12.77376 3.022601 

sub-50 0 1 21.5168 12.30727 12.64311 13.01111 2.61066 

sub-54 0 2 20.4025 11.73907 12.05339 12.29319 3.340324 

sub-57 0 2 22.9541 12.14335 12.17836 12.32658 2.753877 

sub-60 1 1 24.9802 12.24745 13.12724 12.75381 2.682995 

sub-62 1 1 20.835 9.595401 13.08953 12.34063 7.533185 

sub-64 0 1 22.7105 12.20094 12.92608 13.08893 2.746763 

sub-70 1 1 19.6906 12.11621 12.58184 12.88524 2.878077 

sub-72 0 1 27.6468 12.35759 12.93961 12.45314 2.532012 

sub-74 1 1 19.4579 12.20314 12.72635 12.89215 2.757957 

sub-76 1 2 16.1725 12.12464 12.602 12.71963 2.835174 

sub-77 1 2 29.7221 12.03648 12.43141 12.48822 2.915327 

sub-79 1 1 29.2156 12.15814 12.74276 12.49014 2.806728 

sub-81 0 2 24.0329 11.57833 12.61144 12.21913 3.584144 

sub-82 1 1 20.7036 11.97128 12.6046 12.61114 3.07267 

sub-85 1 1 21.473 8.123896 12.65039 11.83086 12.80303 

sub-88 0 1 17.6865 7.565774 12.60962 12.63499 15.60003 

sub-91 1 1 23.0746 12.03369 12.96656 12.76931 3.013987 

sub-92 1 2 26.2861 5.551898 12.70285 12.43918 31.07688 

sub-94 1 1 26.4504 11.98281 12.4255 12.55032 2.992535 

sub-95 1 1 27.7728 6.691368 12.73918 12.62031 21.08423 

sub-96 1 1 26.0315 9.375612 12.85323 12.29352 8.17902 

sub-97 0 2 23.5893 11.82164 12.36482 12.35344 3.200212 

sub-99 1 1 26.2177 12.32393 12.88066 12.84452 2.622934 

sub-101 0 1 27.9069 11.74004 12.80538 12.54912 3.376228 

sub-102 0 1 27.6797 12.46726 12.89205 12.97723 2.409048 

Participant_ID Condit Gender WM_Skew CSF_Skew GM_Kurt WM_Kurt CSF_Kurt 

sub-01 1 1 1.985023 1.664887 5.625375 2.010741 0.874765 

sub-05 1 2 2.687912 2.404193 9.120774 5.281534 3.864119 

sub-07 1 2 2.284033 2.237405 9.536508 3.302552 3.146744 

sub-09 1 1 2.431038 2.231216 6.880804 3.98261 3.071991 

sub-11 0 1 2.410243 2.144477 6.994258 3.85864 2.66835 

sub-12 0 2 2.45376 2.065538 8.391828 4.106116 2.359412 

sub-15 0 1 2.710385 2.313825 5.549653 5.401905 3.426481 

sub-17 1 2 2.259034 3.060007 3.772621 3.180216 7.605851 

sub-20 0 1 2.2596 2.359489 7.619659 3.168865 3.669207 

sub-27 1 1 2.106314 2.557381 6.775699 2.482405 4.655326 

sub-31 1 1 1.666598 1.855158 4.54157 0.85202 1.551471 

sub-35 0 1 2.486544 2.037742 4.320545 4.247953 2.227597 

sub-36 0 1 1.904577 2.002929 3.352107 1.709058 2.123538 

sub-37 0 1 2.431768 2.003842 3.251137 3.990645 2.125017 

sub-43 0 2 1.93041 1.53436 4.727364 1.825502 0.474982 

sub-44 1 1 2.286157 1.773638 4.626502 3.302493 1.237416 

sub-46 0 2 2.36948 2.210769 7.357092 3.677938 2.976398 

sub-49 0 2 1.87586 1.95703 7.533216 1.592919 1.950048 

sub-50 0 1 2.089474 1.696708 5.132816 2.452331 0.999641 

sub-54 0 2 2.805965 2.515272 9.498311 5.956816 4.43835 

sub-57 0 2 2.636091 2.463638 5.792543 5.005786 4.154982 

sub-60 1 1 1.539838 1.973392 5.520499 0.429406 2.000313 

sub-62 1 1 1.588713 2.630482 55.30403 0.598988 5.374245 

sub-64 0 1 1.768428 1.602328 5.882329 1.208019 0.666821 
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sub-70 1 1 2.154943 1.827423 6.67573 2.718866 1.444613 

sub-72 0 1 1.758182 2.304305 4.69582 1.176168 3.381497 

sub-74 1 1 1.991945 1.822172 5.98601 2.049448 1.430453 

sub-76 1 2 2.133213 2.015109 6.357356 2.629564 2.174868 

sub-77 1 2 2.330811 2.266968 6.765263 3.516472 3.216474 

sub-79 1 1 1.968295 2.287928 6.23255 1.944068 3.368965 

sub-81 0 2 2.115741 2.607577 11.21939 2.540522 4.913155 

sub-82 1 1 2.123087 2.138037 7.869415 2.569882 2.681093 

sub-85 1 1 2.07612 3.28911 163.9253 2.387369 9.315454 

sub-88 0 1 2.114881 2.100576 244.444 2.529592 2.500617 

sub-91 1 1 1.722732 1.964015 7.555999 1.044702 1.979462 

sub-92 1 2 2.002396 2.328674 966.8913 2.053562 3.508466 

sub-94 1 1 2.328989 2.194856 7.241432 3.474183 2.896855 

sub-95 1 1 1.969884 2.130251 446.5164 1.944178 2.655247 

sub-96 1 1 1.847686 2.67935 65.62735 1.489496 5.618877 

sub-97 0 2 2.40312 2.428423 8.516998 3.827371 3.97517 

sub-99 1 1 1.815508 1.879332 5.279062 1.368644 1.651719 

sub-101 0 1 1.891488 2.203198 9.812996 1.633736 2.949685 

sub-102 0 1 1.797209 1.722933 4.107153 1.289614 1.066185 

Participant_ID Condit Gender WM_Std CSF_Std GM_Moment WM_Moment CSF_Moment 

sub-01 1 1 54.70283 42.45232 436.7411 436.7411 1802.199 

sub-05 1 2 45.34751 37.8722 466.2618 466.2618 1434.304 

sub-07 1 2 49.20678 35.30661 303.0794 303.0794 1246.557 

sub-09 1 1 56.46307 44.46524 689.9869 689.9869 1977.158 

sub-11 0 1 39.95149 33.55183 379.3476 379.3476 1125.726 

sub-12 0 2 56.01636 46.01071 603.2624 603.2624 2116.986 

sub-15 0 1 54.51003 46.4504 910.362 910.362 2157.639 

sub-17 1 2 35.95828 38.36526 592.6041 592.6041 1471.893 

sub-20 0 1 56.01038 41.31276 560.1405 560.1405 1706.744 

sub-27 1 1 47.91075 32.00488 406.4956 406.4956 1024.312 

sub-31 1 1 69.08244 47.27261 650.1026 650.1026 2234.7 

sub-35 0 1 42.94915 36.56025 532.312 532.312 1336.652 

sub-36 0 1 56.25591 39.26871 609.6807 609.6807 1542.031 

sub-37 0 1 59.33484 47.96401 888.9289 888.9289 2300.546 

sub-43 0 2 53.34031 40.47425 390.2519 390.2519 1638.165 

sub-44 1 1 65.39031 54.18927 897.8488 897.8488 2936.477 

sub-46 0 2 48.84003 38.4539 484.1048 484.1048 1478.703 

sub-49 0 2 65.52571 45.0955 518.1019 518.1019 2033.604 

sub-50 0 1 62.54297 47.47646 602.0927 602.0927 2254.014 

sub-54 0 2 45.56498 36.52336 430.4714 430.4714 1333.956 

sub-57 0 2 49.94759 40.20628 725.0311 725.0311 1616.545 

sub-60 1 1 75.32959 48.6925 726.2765 726.2765 2370.96 

sub-62 1 1 62.12871 19.82407 14.49107 14.49107 392.9938 

sub-64 0 1 52.06992 38.56744 364.6892 364.6892 1487.447 

sub-70 1 1 51.37856 40.37275 411.7972 411.7972 1629.959 

sub-72 0 1 38.63164 45.47531 440.6541 440.6541 2068.004 

sub-74 1 1 58.26906 43.80368 487.2381 487.2381 1918.763 

sub-76 1 2 58.9191 43.65753 576.6256 576.6256 1905.98 

sub-77 1 2 47.517 38.08298 517.321 517.321 1450.314 

sub-79 1 1 50.65068 33.36673 373.8015 373.8015 1113.338 

sub-81 0 2 57.08382 37.755 439.3729 439.3729 1425.44 

sub-82 1 1 54.35659 40.12008 428.9033 428.9033 1609.621 

sub-85 1 1 62.8046 21.84646 7.706772 7.706772 477.268 

sub-88 0 1 69.1323 52.65021 7.937528 7.937528 2772.045 

sub-91 1 1 74.36122 49.86387 593.3442 593.3442 2486.405 

sub-92 1 2 48.84925 34.84938 1.195492 1.195492 1214.479 

sub-94 1 1 57.74932 46.61135 714.2899 714.2899 2172.618 

sub-95 1 1 51.55567 36.01391 2.013435 2.013435 1297.002 

sub-96 1 1 64.26879 22.00471 15.18876 15.18876 484.2071 

sub-97 0 2 49.15964 38.40915 514.305 514.305 1475.263 

sub-99 1 1 60.21483 41.48608 465.2156 465.2156 1721.095 

sub-101 0 1 49.77279 34.72399 318.166 318.166 1205.756 

sub-102 0 1 61.45561 45.48675 622.6346 622.6346 2069.044 

 

The test dataset was used to validate the ANN regression 

model, the predicted severity scores and actual scores are 

presented in Figure 10. 

The correlation coefficient and mean absolute error (MAE) 

between the predicted scores and the actual scores are 0.811 

and 1.44. The correlation value shows that there is a strong 

relationship between the model output and the actual score, 

and this is corroborated in Figure 10 as the two regression lines 

follow the same trend. 

For the classification, which refers to being able to 

distinguish between schizophrenia subjects and healthy 

subjects, recursive feature elimination (RFE) was used to 
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select the seven most significant features of the seventeen 

features. The selected features are age, gender, GM entropy, 

WM kurtosis, CSF entropy, CSF kurtosis and CSF skewness 

forming a low-dimensional dataset. 

An SVM was trained, and the test dataset was used to 

validate the classification model. Figure 11 is the confusion 

matrix representation of the validation output. 

Classification accuracy, precision, recall and F1-score 

computed from the confusion matrix are 81.8%, 87.9%, 81.8% 

and 82.1% respectively as presented in Figure 12. 

It is important to note that the skull stripping operations do 

not always produce a perfect result, and this occasionally 

misrepresents the brain clusters (a cluster could be eroded or 

extended) and can lead to bias in the features extracted from 

the affected cluster. 

 

 
 

Figure 9. Plot of loss vs iteration number during the ANN 

regression model training 

 

 
 

Figure 10. Plot of the actual severity scores and ANN model 

predicted scores 

 

 
 

Figure 11. Confusion matrix of the SVM classifier on the 

test dataset 

 
 

Figure 12. The evaluation outcome of the SVM classifier 

 

 

5. DISCUSSION 

 

With the extracted statistical features from GM, MW, and 

CSF segments of the structural magnetic resonance image, the 

SVM classifier achieved an accuracy of 81.8%and precision 

of 87.9%. In terms of predicting the symptom severity scores 

using the summation of SANS and SAPS psychiatric 

measuring scales, the regression ANN model result was 

satisfactory with a correlation coefficient of 0.811 between the 

actual and predicted severity values. 

For the regression problem, it was observed that GM 

entropy, CSF entropy, CSF standard deviation, and CSF 

moment are the features that had the best positive correlation 

coefficients with schizophrenia symptom severity; this implies 

that they are the most significant features in the regression 

problem and suitable biomarkers for estimating the severity of 

schizophrenia. 

Also, effective biomarkers for the identification of 

schizophrenia are GM entropy, WM kurtosis, CSF entropy, 

CSF kurtosis, and CSF skewness based on the obtained results. 

Previous studies focused on classification problems, which 

involve differentiating schizophrenia patients from healthy 

subjects, while this current work focuses on both classification 

and regression problems, with more emphasis on the latter 

being the existing gap being addressed. The classification 

performance recorded in this research (81.8%) is within the 

range of what was reported in the previous studies (69.15% to 

96.7%). With our regression model, schizophrenia symptom 

severity can be estimated to a very high degree of accuracy 

with a 0.811 correlation coefficient to the actual symptom 

severity scores. 

A closely related work developed regression models for 

estimating schizophrenia symptom severity whose correlation 

coefficients ranged between -0.6 and -0.702 with EEG data 

[15]. Our regression model is better for two reasons: (1) It has 

a positive correlation, and (2) the absolute correlation 

coefficient is higher (0.811 > 0.702). 

Estimating symptom severity is a capability that will help in 

monitoring treatment effectiveness, assist the clinician in 

making the right decisions, and lead to an overall improvement 

in the treatment of schizophrenia. 

To make the outcome of this research practically useful, the 

two models will be integrated with the preprocessing modules 

as depicted in Figure 13. When the magnetic resonance 

imaging data is submitted, a greyscale image of the structural 

magnetic resonance imaging is extracted. It then undergoes an 

image preprocessing stage that includes standardization, 

denoising, skull stripping, and segmentation. Statistical 
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features extracted from the segments of the brain are passed as 

input to the SVM classifier that determines if the subject has 

schizophrenia or not. If the subject is not a schizophrenia 

patient, the flow ends. In a situation when the subject is 

classified to have schizophrenia, the features are then 

forwarded to the ANN regression model that estimates the 

symptom severity score. 

The proposed approach in this work produced an 

outstanding result, but it is important to note that the dataset 

size of 43 is small; it is therefore advised that the procedure be 

used on a large dataset for assurance. 

It is also recommended to use Deep Reinforcement 

Learning to drive the morphological operations (repeated 

series of dilation and erosion) to enhance the results of skull 

stripping and, inevitably, the quality of the features that are 

extracted from the three segments (WM, GM, and CSF). 

Exploring the combination of structural MRI with other 

neuroimaging techniques, such as functional MRI, for the 

possibility of improving the regression model's performance 

in terms of symptom severity estimation is also encouraged as 

further research. 

 

 
 

Figure 13. Integrations of the models and preprocessing program for practical use 

 

 

6. CONCLUSION 

 

The research objectives were achieved. All reviewed 

previous studies were only concerned with the detection of 

schizophrenia from MRI data, but with this current work, our 

state-of-the-art diagnostic models can (1) detect schizophrenia 

and (2) predict the symptom severity score from structural 

magnetic resonance imaging data to a very high degree of 

precision. 

We also proposed a software architecture of how the various 

components developed during this research can be integrated 

to function as an expert system supporting clinicians in this 

field. 

In conclusion, this regression model for estimating 

symptom severity will aid in evaluating the efficacy of 

treatment, guide the physician in making the best decisions 

which will lead to an overall improvement in the treatment of 

schizophrenia. The estimation of the severity of schizophrenia 

symptoms is an area that should be researched further. 

REFERENCES  

 

[1] Hu, K., Wang, M., Liu, Y., Yan, H., Song, M., Chen, J., 

Liu, B. (2021). Multisite schizophrenia classification by 

integrating structural magnetic resonance imaging data 

with polygenic risk score. NeuroImage: Clinical, 32: 

102860. https://doi.org/10.1016/j.nicl.2021.102860 

[2] Chen, Z., Yan, T., Wang, E., Jiang, H., Tang, Y., Yu, X., 

Liu, C. (2020). Detecting abnormal brain regions in 

schizophrenia using structural MRI via machine learning. 

Computational Intelligence and Neuroscience. 

https://doi.org/10.1155/2020/6405930 

[3] Takayanagi, Y., Takahashi, T., Orikabe, L., Mozue, Y., 

Kawasaki, Y., Nakamura, K., Suzuki, M. (2011). 

Classification of first-episode schizophrenia patients and 

healthy subjects by automated MRI measures of regional 

brain volume and cortical thickness. PloS One, 6(6): 

e21047. https://doi.org/10.1371/journal.pone.0021047 

1001



 

[4] Barbato, A. (1998). Schizophrenia and public health. 

World Health Organization Division of Mental Health 

and Substance Abuse, WHO Nations Mental Health 

Initiative, 1998.  

[5] Madeira, N., Duarte, J.V., Martins, R., Costa, G.N., 

Macedo, A., Castelo-Branco, M. (2020). Morphometry 

and gyrification in bipolar disorder and schizophrenia: A 

comparative MRI study. NeuroImage: Clinical, 26: 

102220. https://doi.org/10.1016/j.nicl.2020.102220 

[6] Oh, J., Oh, B.L., Lee, K.U., Chae, J.H., Yun, K. (2020). 

Identifying schizophrenia using structural MRI with a 

deep learning algorithm. Frontiers in Psychiatry, 11: 16. 

https://doi.org/10.3389/fpsyt.2020.00016  

[7] Nemoto, K., Shimokawa, T., Fukunaga, M., Yamashita, 

F., Tamura, M., Yamamori, H., Arai, T. (2020). 

Differentiation of schizophrenia using structural MRI 

with consideration of scanner differences: A real-world 

multisite study. Psychiatry and Clinical Neurosciences, 

74(1): 56-63. https://doi.org/10.1111/pcn.12934 

[8] Yang, Y., Zhang, Y., Wu, F., Lu, X., Ning, Y., Huang, 

B., Wu, K. (2017). Automatic classification of first-

episode, drug-naive schizophrenia with multi-modal 

magnetic resonance imaging. Sheng wu yi xue Gong 

Cheng xue za zhi=Journal of Biomedical 

Engineering=Shengwu Yixue Gongchengxue Zazhi, 

34(5): 674-680. https://doi.org/10.7507/1001-

5515.201607084 

[9] Hu, M., Sim, K., Zhou, J. H., Jiang, X., Guan, C. (2020). 

Brain MRI-based 3D convolutional neural networks for 

classification of schizophrenia and controls. In 2020 

42nd Annual International Conference of the IEEE 

Engineering in Medicine & Biology Society (EMBC), 

Montreal, QC, Canada, pp. 1742-1745. 

https://doi.org/10.1109/EMBC44109.2020.9176610  

[10] Chatterjee, I., Kumar, V., Rana, B., Agarwal, M., Kumar, 

N. (2020). Identification of changes in grey matter 

volume using an evolutionary approach: An MRI study 

of schizophrenia. Multimedia Systems, 26: 383-396. 

https://doi.org/10.1007/s00530-020-00649-6  

[11] Liu, J., Wang, X., Zhang, X., Pan, Y., Wang, X., Wang, 

J. (2018). MMM: Classification of schizophrenia using 

multi-modality multi-atlas feature representation and 

multi-kernel learning. Multimedia Tools and 

Applications, 77: 29651-29667. 

https://doi.org/10.1007/s11042-017-5470-7 

[12] Kumari, S., Malik, M., Florival, C., Manalai, P., Sonje, 

S. (2017). An assessment of five (PANSS, SAPS, SANS, 

NSA-16, CGI-SCH) commonly used symptoms rating 

scales in schizophrenia and comparison to newer scales 

(CAINS, BNSS). Journal of Addiction Research & 

Therapy, 8(3): 324. http://dx.doi.org/10.4172/2155-

6105.1000324 

[13] Kay, L., Fiszbein, S.R. (1987). Positive and negative 

syndrome scale (Panss) rating criteria. Schizophrenia 

Bulletin, 13(2): 261-276 Available: 

www.ncbi.nlm.nih.gov. 

[14] Leucht, S. (2014). Measurements of response, remission, 

and recovery in schizophrenia and examples for their 

clinical application. The Journal of Clinical Psychiatry, 

75(suppl1): 11378. 

https://doi.org/10.4088/JCP.13049su1c.02 

[15] Kim, D.W., Lee, S.H., Shim, M., Im, C.H. (2017). 

Estimation of symptom severity scores for patients with 

schizophrenia using ERP source activations during a 

facial affect discrimination task. Frontiers in 

Neuroscience, 11: 436. 

https://doi.org/10.3389/fnins.2017.00436 

[16] Barch, D.M., Repovš, G., Csernansky, J.G. (2014). 

Working memory in healthy and schizophrenic 

individuals|openfmri.org. 

https://openfmri.org/dataset/ds000115. 

[17] Swiebocka-Wiek, J. (2016). Skull stripping for MRI 

images using morphological operators. In Computer 

Information Systems and Industrial Management: 15th 

IFIP TC8 International Conference, CISIM 2016, Vilnius, 

Lithuania, September 14-16, 2016, Proceedings 15, 

Vilnius, Lithuania, pp. 172-182. 

http://dx.doi.org/10.1007/978-3-319-45378-1_16 

[18] Kim, K., Duc, N.T., Choi, M., Lee, B. (2021). EEG 

microstate features for schizophrenia classification. PloS 

One, 16(5): e0251842. 

http://dx.doi.org/10.1371/journal.pone.0251842 

[19] Alimi, S., Adenowo, A.A., Kuyoro, A.O., Oludele, A. 

(2022). Quantitative approach to automated diagnosis of 

Malaria from Giemsa-Thin blood stain using support 

vector machine. In 2022 5th Information Technology for 

Education and Development (ITED), Abuja, Nigeria, pp. 

1-8. 

http://dx.doi.org/10.1109/ITED56637.2022.10051472 

[20] Espinola, C.W., Gomes, J.C., Pereira, J.M.S., dos Santos, 

W.P. (2021). Vocal acoustic analysis and machine 

learning for the identification of schizophrenia. Research 

on Biomedical Engineering, 37: 33-46. 

http://dx.doi.org/10.1007/s42600-020-00097-1   

1002




