
A Robust, Preference-Based Coordinator Election Algorithm for Distributed Systems

Shital Subhashchandra Supase1 , Jayshree Rahul Pansare1,2*

1 Department of Computer Engineering, SCTR’s Pune Institute of Computer Technology, S.P. Pune University, Pune 411043,

India
2 Department of Computer Engineering, M.E.S. College of Engineering, S.P. Pune University, Pune 411001, India

Corresponding Author Email: jayshree.pansare@mescoepune.org

https://doi.org/10.18280/isi.280405 ABSTRACT

Received: 17 May 2023

Revised: 6 August 2023

Accepted: 17 August 2023

Available online: 31 August 2023

In peer-to-peer distributed systems, the selection of a reliable coordinator is a pivotal

process, often vulnerable to node failure and communication link failure. Herein, we present

an innovative Fault-Tolerant Coordinator Election Algorithm (FTCEA) designed to address

these issues, specifically crafted to withstand node failures in peer-to-peer distributed

systems. Our algorithm distinguishes itself by capitalizing on a unique preference-based

method, which incorporates significant nodal attributes into the election process. This

integration of nodal attributes contributes to the election of a durable and reliable

coordinator, significantly enhancing the robustness of the system. A comprehensive

analysis was conducted to measure FTCEA's communication complexity, execution time,

and space complexity using a peer-to-peer distributed application. The results demonstrated

that FTCEA successfully identifies a coordinator node with a communication cost of O(n)

messages and a space complexity linear to the number of attributes, represented as O(n.m).

Remarkably, FTCEA demonstrated an approximately 50.10% improvement in

communication cost compared to the enhanced Bully algorithm, a widely utilized method

in this domain. Moreover, FTCEA can maintain a linear storage cost of O(n), thereby

significantly improving the computation cost. In summary, FTCEA offers a scalable and

efficient solution for coordinator election in distributed systems, showing promising

potential for practical applications in the field. The algorithm's unique design, robustness,

and efficiency make it a valuable contribution to the advancement of peer-to-peer

distributed systems.

Keywords:

distributed system, peer-to-peer system,

Fault-Tolerant Coordinator Election

Algorithm (FTCEA), preference-based

voting algorithm

1. INTRODUCTION

In the contemporary digital landscape, a growing number of

applications are developed with a distributed design, primarily

driven by the necessity to mitigate losses associated with the

failure of a single, central entity inherent in centralized

systems [1, 2]. Communication between entities, or nodes, in

such distributed systems is facilitated through the application

of message-passing techniques. At the heart of these systems

lies a coordinator entity, a node elected via an election

algorithm, which assumes a pivotal role in tasks such as

process synchronization, group key distribution, and load

balancing [3, 4]. Consequently, the election of a reliable

coordinator emerges as a significant challenge within the

distributed systems paradigm [5].

Coordinator election methodologies can be broadly

classified into extrema-finding and preference-based methods.

The former approach elects an entity possessing an extreme

value of identity, while the latter considers the performance

attributes of a node, electing it based on these attributes [2].

However, the reliability of communication channels used in

message passing, a key feature of distributed systems, often

stands compromised, making them susceptible to faults and

failures [6, 7]. Communication channels employed in message

passing, a characteristic feature of distributed systems, have

been observed to lack reliability, thus raising their

susceptibility to various faults and failures [8, 9]. Similarly,

nodes within these systems are vulnerable to security attacks

and failures [10, 11].

Despite the known vulnerabilities, prevailing coordinator

election algorithms largely presuppose the reliability of

entities, which leads to notable challenges [12, 13]. Faults and

failures within the election algorithm can significantly impact

both communication and computation costs [14, 15]. Classical

election algorithms, typically utilizing the extrema-finding

method, do not consider any nodal attributes representing the

node's credibility [16, 17]. Yet, the consideration of such nodal

attributes, such as battery percentage in mobile ad hoc

networks, is critical, highlighting the necessity for their

integration into the election process [18, 19].

The efficacy of a coordinator election algorithm within a

distributed system depends heavily on the underlying network

topology, which can take various forms: ring, bus, tree, mesh,

torus, and complete network. This study focuses on a peer-to-

peer network, where the number of links in the complete

network is given by (n2-n)/2, with 'n' being the total number of

nodes in the system.

The following sections delve into the details of the study.

Section 2 provides an overview of existing fault-tolerant

coordinator election algorithms and a comparative analysis of

their strengths and vulnerabilities. Section 3 introduces the

novel Fault-Tolerant Coordinator Election Algorithm

(FTCEA). Performance analysis of FTCEA is detailed in

Section 4, while Section 5 concludes the study.

Ingénierie des Systèmes d’Information
Vol. 28, No. 4, August, 2023, pp. 843-851

Journal homepage: http://iieta.org/journals/isi

843

https://orcid.org/0000-0002-1957-1458
https://orcid.org/0000-0001-7628-0756
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280405&domain=pdf

2. RELATED WORK

Features of coordinator election algorithms have been

extensively surveyed, revealing a noticeable lack of focus on

security and fault tolerance among researchers. It is paramount

to facilitate secure coordinator election with inbuilt fault

tolerance due to the inherent vulnerabilities and threats present

in coordinator election algorithms [4, 20]. These algorithms

play a crucial role in decision-making, synchronization, and

task distribution within distributed systems. Existing

algorithms generally assume reliability of the nodes in the

system; however, in practical terms, these nodes are often

susceptible to faults and failures [21, 22].

The reliability, or lack thereof, of the communication

channels used for message passing in distributed systems can

lead to failures of the links that connect nodes. Consequently,

coordinator election algorithms remain vulnerable to faults,

failures, and potential non-termination of the algorithm,

compromising properties such as safety, liveness, and

availability [20].

Coordinator election algorithm vulnerabilities can be

classified into two categories: security vulnerabilities and

failure vulnerabilities [20]. Security vulnerabilities, which

may be accidentally triggered or intentionally exploited, can

be exacerbated by the use of weak or incorrect cryptographic

algorithms for system communication. This can give rise to

attacks and system failures. Impersonation and voting log

deletion attacks become feasible if standard cryptographic

algorithms are not employed [23].

Security vulnerabilities have been addressed in previous

work, where a Secure and Reliable Coordinator Election

Algorithm (SRCEA) was proposed for secure coordinator

node election [24]. SRCEA utilizes a preference-based

coordinator election method and standard cryptographic

algorithms with a stateful initialization vector for encryption

and decryption. SRCEA aims to prevent impersonation, deny

voting attacks, and ensure integrity via authenticated

encryption.

Failure vulnerabilities may lead to non-termination of the

election algorithm, necessitating the design of an election

algorithm capable of tolerating or masking system failures

during algorithm execution. The fault tolerance feature of the

election algorithm ensures the safety, liveness, and robustness

of the election algorithm.

Several researchers have proposed coordinator election

algorithms that address the aforementioned issues. Murshed

and Allen [2] proposed a coordinator election algorithm that

tolerates node failures. Their enhanced Bully algorithm

divides set nodes into two categories: candidate set and

ordinary set. In the event of failure of the majority of the nodes,

fault tolerance is ensured by adding election rounds.

Chang and Roberts [21] proposed a coordinator election

algorithm for asynchronous systems using the extrema-finding

method. A benchmark Bully election algorithm for

asynchronous systems was also proposed by Garcia-Molina

[1]. Neither of these algorithms tolerate faults that occur

during the election process nor offer security features.

Furthermore, they do not ensure the reliability of the elected

coordinator.

Gallager et al. [3] and Bodlaender [22] also proposed

coordinator election algorithms for asynchronous systems

using the extrema-finding method. Gallager et al. use a

spanning tree for coordinator node election, electing the root

node of the spanning tree storing the group view as a

coordinator when an existing coordinator fails. On the other

hand, Bodlaender proposed an algorithm to elect the highest

identity (ID) node as a coordinator. These algorithms also do

not guarantee security or fault tolerance.

Vasudevan et al. [23] proposed a Secure Extrema-Finding

Algorithm (SEFA) and a Secure Preference-Based Leader

Election Algorithm (SPLEA). These algorithms are designed

with encryption and hashing security mechanisms and

implement confidentiality and integrity using public key

infrastructure (PKI) and Message Digest 5 (MD5) algorithms,

respectively.

The existing body of literature on coordinator election

algorithms for distributed systems presents a spectrum of

strategies, each with distinct features and inherent limitations.

The core algorithmic complexity in these methods varies from

quadratic in the worst-case to linear in the best-case scenarios.

Notably, they provide some degree of protection against

impersonation and modification attacks.

For instance, Basu [25] introduced an algorithm utilizing

the extrema-finding method for asynchronous systems with

ring topology. Though armed with a linear communication

cost, it lacked any security features or fault tolerance measures.

In a deviation from this approach, Sandipan proposed an

innovative method where, in the best case, the election process

is bypassed altogether. Here, the node with the next highest ID

of the recently failed coordinator automatically assumes the

coordinator role. Nevertheless, in the worst-case scenario,

linear messages are required to complete the process. This

method, however, overlooks nodal attributes or preferences

during the election.

Jackson [26] proposed an election algorithm able to

withstand omission failures and impersonation attacks.

Despite these advantages, it still employs the extrema-finding

method. Similarly, the algorithm proposed by Stephen has a

linear communication cost with ensured safety properties.

Daymude et al. [27] proposed an election algorithm for

asynchronous networks with a linear communication cost, yet

it did not address fault tolerance and security issues.

Rafailescu [6] introduced an algorithm with fault tolerance

using a random roulette wheel selection method. This method

elects the node that generates a random number in the

minimum time as coordinator. Sidik et al. [28] proposed a

coordinator election algorithm for ad-hoc networks ensuring

termination, uniqueness, and agreement properties. However,

Byrenheid et al. [29] proposed a leader election algorithm

designed to resist attacks, specifically impersonation attacks.

Ritzkal et. al. [30] discussed the security vulnerability

analysis for cloud server. The vulnerability analysis using two

prominent security tools, Nmap and Nessus is executed and

presented by authors. Secure key management in cloud

environment using quantum cryptography is presented by

Kranthi and Sanyasi [31]. The proposed technique enhances

the execution of the encryption/decoding procedure, and

bolsters a more anchored information transmission process

utilizing less computational time.

In our prior work, an algorithm was proposed to elect a

reliable coordinator, considering nodal attributes in the

election voting process [24]. The Secure Reliable Coordinator

Election Algorithm (SRCEA) is designed with confidentiality

and integrity features and can tolerate node crash failures for

less than the majority of nodes.

Amit et al. proposed the Fault-Resistant Leader Election

(FRLLE) algorithm, which elects a reliable node that can

effectively manage leadership roles [17]. This algorithm

844

satisfies safety, liveness, and termination properties, while

also offering lower computation and communication costs.

To summarize, existing election algorithms aim to improve

communication and computation costs. However, they

typically assume the reliability of nodes and communication

channels, which is not always the case in practical scenarios.

Failures during the election process can drastically increase

communication costs. Therefore, a fault-tolerant coordinator

election algorithm is needed in distributed systems. This study

proposes a novel Fault-Tolerant Coordinator Election

Algorithm (FTCEA) that considers important nodal attributes

for the candidate selection process, leading to the election of a

reliable node as a coordinator (Table 1).

Table 1. Comparison of existing algorithms

Sr. No. Coordinator Election Algorithm Topology System Type Election Method Communication Cost

1. Change and Robert [21] Unidirectional ring Asynchronous Extrema finding O(n2)

2. Garcia-Molina [1] Ring Asynchronous Extrema finding O(n2)

3. Gallager et. al. [3] Spanning tree Asynchronous Extrema finding O(5Nlog2N+ 2E)

4. Bodlaender [22] Unidirectional ring Asynchronous Extrema finding O(N logN)

5. Vasudevan et al. [23] Wireless ad-hoc Partially synchronous Preference-based O(n)

6. Basu [25] Ring Asynchronous Extrema finding O(n)

7. Jackson [26] Star Asynchronous Extrema finding O(n)

8. Daymude et al. [27] Programmable matter Asynchronous Extrema finding O(n)

9. Rafailescu [6] Wireless ad-hoc Partially synchronous Extrema finding O(n)

10. Sidik et al. [28] Ad-hoc Asynchronous Extrema finding O(n)

11. Byrenheid et al. [29] Peer to peer Synchronous Extrema finding O(n)

12. Biswas et al. [17] Bidirectional ring Synchronous Extrema finding O(n2)

13. FTCEA (Proposed algorithm) Peer to peer Partially synchronous Preference-based O(n)

Sr.

No.

Coordinator Election

Algorithm
Fault Tolerated Coordinator Reliability Properties Satisfied

Fault Tolerance During

the Election Process

1.
Change and Robert

[21]
None None None None

2. Garcia-Molina [1] None None None None

3. Gallager et. al. [3] None None None None

4. Bodlaender [22] None None None None

5. Vasudevan et al. [23] None None
Uniqueness

Liveness
None

6. Basu [25] None None None None

7. Jackson [26] Omission failure None Safety None

8. Daymude et al. [27] None None Termination None

9. Rafailescu [6] Node crash None None None

10. Sidik et al. [28] None None
Termination Uniqueness

Agreement
None

11. Byrenheid et al. [29]
Failures due to an

impersonation attack
None None None

12. Biswas et al. [17] Node crash recovery
A leader is elected based on the

node’s performance coefficient

Safety Liveness

Termination
None

13.
FTCEA (Proposed

algorithm)

Node crash and omission

failure

The coordinator is chosen based

on nodal attributes

Safety Liveness

Termination

Yes

(Time redundancy)

3. METHODOLOGY

In peer-to-peer distributed systems, each node is given a

unique identifier (ID). Extrema-finding methods determine the

coordinator node based on the minimum or maximum ID value,

as explained in Section 2. On the other hand, preference-based

methods rely on nodal attributes to assign preferences to nodes.

However, algorithms do not consider nodal attributes in their

election process. In this work, three nodal attributes are used

for the election process. Practical implications of this work can

be in applications such as mobile ad-hoc networks and peer-

to-peer group communication applications. There is a need for

a reliable entity election process in group key agreement

protocols. FTCEA stores nodal attributes maintained by group

view Gv including {P1, P2, P3, …, Pn}.

3.1 Candidate selection

FTCEA utilizes nodal attributes maintained by group view

Gv including {P1, P2, P3, …, Pn} in the system to select

candidates, as demonstrated by Algorithm 1,

Candidate_Selection, presented below [32]. The selection

criteria for candidate nodes are to have the minimum values

for all these attributes. To meet this condition, min-heap trees

are used for nodal attribute storage.

Set Pjts, Pd, and Pfc store the nodal attributes are updated

when a node joins or leaves Gv. At any given time, the node

with the minimum attribute value can be accessed by

retrieving the root of the corresponding min-heap tree.

Algorithm 1. Candidate_Selection (Pd, Pjts, Pfc)

C=Null

Pidmin=root (Pd)

Pijtsmin=root (Pjts)

Pifcmin=root (Pfc)

C={Pidmin, Pijtsmin, Pifcmin}

End

Eq. (1) is employed to derive candidate set C

845

𝐶 = ∃ 𝑖, 𝑗, 𝑘 (𝑃𝑖, 𝑃𝑗, 𝑃𝑘)|(𝑃𝑖, 𝑃𝑗, 𝑃𝑘 ∈ 𝑃) & (𝑃𝑖 = 𝑃𝑑𝑚𝑖𝑛 & 𝑃𝑗
= 𝑃𝑗𝑡𝑠𝑚𝑖𝑛 & 𝑃𝑘 = 𝑃𝑓𝑐𝑚𝑖𝑛) (1)

When a single entity is eligible for elected as a coordinator

then the voting process is not carried out. The node in set C

declares itself a coordinator by sending a message IAC (I Am

Coordinator). On receiving the IAC message, all member

nodes verify the coordinator node and send Mv message.

3.2 Fault-tolerant coordinator election algorithm (FTCEA)

The coordinator election algorithm is executed using the

message-passing protocol in the distributed system. Message

passing protocol works with unreliable nodes communicating

using an unreliable communication channel. Hence the nodes

are vulnerable to failure. The hardware and software failures

are inevitable. Hence there is a need of tolerating the faults

during the election process. Some of the faults that occurred

during the election process are omission faults, node crashes,

or communication link failures. FTCEA is designed to tolerate

node failures. FTCEA selects eligible candidates before

starting the voting and election process. It uses the preference-

based method for the election process. Nodal attributes joining

timestamp, failure count, and distance are considered for the

candidate selection process. The preferences of the vote are

assigned to the candidate nodes. For example, the candidate

set derived is C={P2, P34, P15}. All nodes in the system send

preferenced votes to these nodes now. The preferenced vote

message sent by node P3 is Mvote =P3_timestamp_2_1_3. On

receiving the vote messages, all candidates calculate the

weighted votes. And the candidate receiving the maximum

votes declares itself as a coordinator by sending an I Am

Coordinator (IAC) message to all member nodes.

Algorithm 2. Vote (Candidate_Set C)

If (|C|=1) then

If (MyIDϵC) then

 Miac←Pc||IAC||timestamp

 i←1

 While (i≤n) Send Miac to Pi

 MyID.CoordinatorStatus ← true

Else

 Wait for δ time to receive a Miac message from Pc

 If (Miac is not received in δ) then

 C=Candidate_Selection (Pd, Pjts, Pfc)

 Vote (C)

 Else

 Pc.CoordinatorStatus ← true

 Endif

Endif

Else

Mvote ← Psid || Pi1 || Pi2 || [Pi3] || timestamp

i ← 1

While (i≤|C|) Send Mvote to Pi

 Coordinator (C)

Endif

End

Algorithm 2 Vote is executed if the |C|>1 that is the number

of candidates selected is two or three candidates. If there is a

single node in set C then the voting messages are not sent and

the candidate selected as a coordinator sends an IAC message

to the rest of the nodes in the system. The node creates a vote

message Mvote and sends to the candidate nodes. In case the

non-candidate node do not receive a Miac message within time

then it can be inferred that the candidate node is not available

or failed. In this case, the Vote algorithm is executed again

with a new set of candidate nodes derived using the

Candidate_Selection algorithm. Algorithm 3 is designed for

finalizing the coordinator node by counting votes received.

This algorithm is to be executed by the candidate nodes only.

In case the nodes failed during the election process is more

than the majority that is more than n/2 then the algorithm

round for candidate selection and voting process is to be

repeated. Hence, FTCEA tolerates the faults that occurred

during the election process by adding additional rounds.

Figure 1 shows case-I where the coordinator election process

is executed with no failures. All member nodes are

synchronized during the election process. The maximum

network propagation delay is used for completing the

individual step of the election process. During the very first

step, a set C is derived from existing member nodes. In the

second step, the member nodes send preference votes to

candidate nodes. The candidate node calculates the weighted

sum of votes in the third step. In the fourth step, a candidate

receiving maximum votes declares itself a coordinator by

sending an IAC message. Other candidate nodes verify the

coordinator node votes count and reply with the Mv messages

to the coordinator node indicating it is successfully elected as

a coordinator. The verification of the coordinator is the last

step in the election algorithm. On receiving the verified

message, the coordinator starts sending the IAA message

periodically. The communication cost for the election process

when there are no node failures during the election process is

given by Eq. (2).

Algorithm 3. Coordinator (C)

If (MyID ϵ C) then

 If (Votes received≥n/2) then

 While (i≤|C|)

Cwvci ←Σj=1to3j ∗ VCj

MaxVote ←Max (Cwvc1, Cwvc2, Cwvc3)

 Else

 Vote (C)

Coordinator (C)

 Endif

Else

 Wait to receive Miac

 If (Miac not received) then

 Candidate_Selection (Pd, Pjts, Pfc)

Vote (C)

Coordinator (C)

Endif

Endif

End

An important factor affecting the cost of the election process

is the number of nodal attributes considered. Eq. (2) depicts

the communication cost is linear in the nodal attributes

considered. The communication cost with only one nodal

attribute is shown in Eq. (3).

Communication cost (Case-I)=m.n+(n-1) (2)

Communication cost (Case-I)=n-1 where, m=1 (3)

Figure 2 shows case II where f` nodes may fail during the

election process when the failed nodes f` ≤ n/2 and none of the

candidate nodes failed. The election process is carried out and

846

completed in this case without any additional election cost.

The communication cost for case II is given by Eq. (4). The

received votes are accepted and the coordinator node is elected

based on majority votes.

Communication cost (Case II)=(n–f`).m+((n–f`)-1) (4)

Figure 1. Case I: The coordinator election process with no failures

Figure 2. Case II: The coordinator election with f`≤ n/2 and C is not included in f`

Figure 3. Case III: The coordinator election with failures less than the majority and candidates is included in f`

847

Figure 4. Case IV: The coordinator election with failures more than the majority

Figure 3 shows case III of the election process when less

than the majority of the nodes failed and candidate node(s)

failed. In case of candidate nodes failure, the election process

starting from candidate selection is to executed again. This

adds to the communication cost. The communication cost for

case III, when candidate nodes are not failed, is given by Eq.

(5) below. It shows that the communication cost is still linear

if the nodes failed including the candidate nodes. In case III

additional communication cost for updating the group, view is

involved.

Communication cost (Case III)=2.m.n+4.n–4(f`-1) (5)

Figure 4 shows the election process with more than the

majority of the nodes failed that is nodes failed f`>n/2. In this

case, the majority vote cannot be calculated. Hence there is a

need for a re-election process. The reelection is carried out by

updating the group view for identifying the live nodes in the

system and then conducting the voting process. As per the

updated group view, the majority votes are calculated and a

coordinator is elected in the system. The communication cost

for case IV is given in Eq. (6) below.

Communication cost (Case IV)=2.m(n–f`)+3n-3f-1 (6)

The communication for case IV which is O(n) is also given

by Eq. (6) as there is a need of updating the group view at first.

This process of updating the group view includes sending (n-

f`) messages and receiving the reply message from (n-f`) live

nodes.

4. RESULTS AND DISCUSSION

The performance measures FTCEA and enhanced Bully

algorithm [2] are analyzed. The crucial parameters analyzed

are message complexity, time complexity, and space

complexity. Communication cost in the election algorithm is

the messages exchanged to execute the algorithm to

completion. Communication cost has a significant impact on

the election algorithm time as there is a delay involved in

sending and receiving the messages. Similarly, the

computation cost is the time to terminate to completion. The

enhanced Bully algorithm is designed to tolerate the node's

failure under similar system configurations. The majority of

the research on fault-tolerant algorithms handles node failures

by re-executing the election algorithms. Whereas, FTCEA is

designed to perform the selected round for tolerating the faults.

Storage cost represents the memory space required for

executing the algorithm to completion. The storage space

required for FTCEA is directly proportional to the number of

attributes considered for selecting the eligible candidates.

4.1 Computation cost

As shown in Table 2, the computation cost of FTCEA is

significantly less than the enhanced Bully algorithm [2]. A

computation cost comparison for the best case and worst case

is given here. The computation cost is analyzed for the system

size of 20. That is the nodes in the system is 20. The

communication delay in the system is analyzed to be 200 μsec.

The best case of FTCEA includes the time to select a candidate

set. The candidate set is created by retrieving the root node of

min-heap storing the nodal attribute. In the best case, only one

nodal attribute is considered for selecting a candidate for the

election process. The worst-case scenario is where more than

the majority of nodes fail and election rounds need to be

repeated.

Table 2. Comparison of computation cost in the best case

and worst case for n=20

Algorithm Computation Cost

Enhanced Bully (Best case) 3800 μsec

Enhanced Bully (Worst case) 12204 μsec

FTCEA (Best case) 7 μsec

FTCEA (Worst case) 1728 μsec

4.2 Storage cost

The storage cost for FTCEA is compared with the Bully

algorithm and enhanced Bully algorithm [2]. Table 3 shows

that the storage cost is quadratic for the Bully algorithm and

for FTCEA it is linear. The storage cost of FTCEA is

proportional to the number of attributes. Three nodal attributes

are considered during candidate selection in FTCEA. The

848

storage space for FTCEA is 3n words. In case the nodal

attributes are more than n then the storage cost of FTCEA

becomes quadratic. As it is infeasible to consider more than 3

to 4 nodal attributes, the storage cost of FTCEA is linear.

Table 3. Comparison of storage cost

Algorithm Computation Cost

Enhanced Bully O(n)

FTCEA O(n)

4.3 Communication cost

As shown in Figure 5 (a) the optimum number of nodal

attributes found is two or three if the number of nodal

attributes increases linearly the communication cost for the

election process also increases. The communication cost is less

than 2n if the nodal attributes considered are less than or equal

to 3. Figure 5 (a) compares the number of messages for the

size of the system varying from n=50 to n=300 and a number

of nodal attributes ranging from two to 12. It is observed that

the computation cost is affected by the number of nodes and

the nodal attributes.

Figure 5 (b) shows the communication cost for the nodal

attributes and the nodes that failed during the execution of

FTCEA. The figure shows the messages exchanged for the

nodes failed in the system with n=100 and failed nodes does

not include the candidate nodes. The number of nodes

assumed to be failed is chosen randomly and ranges from 8 to

48 nodes. It is observed that with a smaller number of nodal

attributes and nodes failing, the communication cost is less. It

increases linearly with additional attributes.

(a) Case-I: Different numbers of nodal attributes

(b) Case-II: f`<n/2 and C ∉ f`and no failures

Figure 5. Comparison of election communication cost in

cases I and II

(a) Case III: f`<n/2 and C ϵ f`

(b) Case IV: f`>n/2

Figure 6. A comparison of communication costs in Case III

and Case IV

Figure 7. Comparison of FTCEA communication cost in the

best case with enhanced Bully algorithm [2]

Figures 6 (a) and (b) show cases III and IV respectively.

Case III shows the communication cost for different numbers

of nodal attributes, n=100 and failed nodes include the

candidate nodes. In this case, if candidate nodes are failed then

there is a need to select the candidate nodes again. The

Candidate_Selection algorithm is to be executed and then the

algorithm for Vote and Coordinator is to be executed. Thus,

the communication cost of case III increases linearly

concerning the number of nodes that failed. Case IV shows the

communication cost for the election algorithm when the nodes

failed is more than the majority of nodes. In this case, all of

the algorithms need to be executed in the second round as there

is a need to identify live nodes, derive a new candidate set, and

849

conduct an election also. Figure 7 shows the comparison of

communication cost for FTCEA and enhanced Bully

algorithm in the best case. The communication cost of the

enhanced Bully algorithm and FTCEA in the best case is O(n).

The communication cost expression is derived for both of

these algorithms and it is observed that the communication

cost of the enhanced Bully algorithm and FTCEA is 2n-1 and

n-1 respectively. Hence the communication cost for FTCEA is

improved by 50.10% on average.

5. CONCLUSION

A reliable election algorithm for a synchronous system is

designed. FTCEA is designed using a preference-based

election method. Crucial nodal attributes are used for the

election voting process. The communication cost

improvement of around 50.10% compared to the enhanced

Bully algorithm is observed in the proposed algorithm. There

is a significant improvement in the computation cost of

FTCEA compared to the enhanced Bully Algorithm. It is

ensuring the safety and liveness of properties. FTCEA is a

scalable and efficient solution for coordinator election in

distributed system applications like peer-to-peer group

agreements and mobile ad hoc networks. FTCEA finds the

most eligible entity with O(n) messages. The FTCEA is

designed for a synchronous system with a known

communication delay. In future work, it can be incorporated

for asynchronous systems with no bounds on communication

delay.

REFERENCES

[1] Garcia-Molina, H. (1982). Elections in a distributed

computing system. IEEE Transactions on Computers,

31(1): 48-59. https://doi.org/10.1109/TC.1982.1675885

[2] Murshed, M.G., Allen, A.R. (2012). Enhanced bully

algorithm for leader node election in synchronous

distributed systems. Computers, 1(1): 3-23.

https://doi.org/10.3390/computers1010003

[3] Gallager, R.G., Humblet, P.A., Spira, P.M. (1983). A

distributed algorithm for minimum-weight spanning

trees. ACM Transactions on Programming Languages

and Systems (TOPLAS), 5(1): 66-77.

https://doi.org/10.1145/357195.357200

[4] Chen, Z., Gul, O.M., Kantarci, B. (2023). Practical

byzantine fault tolerance-based robustness for mobile

crowdsensing. Distributed Ledger Technologies:

Research and Practice, 2(2): 1-24.

https://doi.org/10.1145/3580392

[5] Tel, G. (2000). Introduction to distributed algorithms.

Cambridge University Press, 227-421.

https://doi.org/10.1017/CBO9781139168724

[6] Rafailescu, M. (2017). Fault-tolerant leader election in

distributed systems. International Journal of Computer

Science and Information Technology, 9(1): 13-20.

https://doi.org/10.5121/ijcsit.2017.9102

[7] Byrenheid, M., Strufe, T, Roos, S. (2020). Attack-

resistant leader election in social overlay networks by

leveraging local voting. Proceedings of the International

Conference on Distributed Computing and Networking,

Kolkata India, pp. 1-10.

https://doi.org/10.1145/3369740.3369770

[8] Fernández-Campusano, C., Larrea, M., Cortiñas, R.,

Raynal, M. (2017). A distributed leader election

algorithm in crash-recovery and omissive systems.

Information Processing Letters, 118: 100-104.

https://doi.org/10.1016/j.ipl.2016.10.007

[9] Zhang, H., Hao, R.X., Qin, X.W., Lin, C.K., Hsieh, S.Y.

(2022). The high faulty tolerant capability of the

alternating group graphs. IEEE Transactions on Parallel

and Distributed Systems, 34(1): 225-233.

https://doi.org/10.1109/TPDS.2022.3217415

[10] Li, Y., Qiao, L., Lv, Z. (2021). An optimized byzantine

fault tolerance algorithm for consortium blockchain.

Peer-to-Peer Networking and Applications, 14: 2826-

2839. https://doi.org/10.1007/s12083-021-01103-8

[11] Jing, G., Zou, Y., Yu, D., Luo, C., Cheng, X. (2023).

Efficient fault-tolerant consensus for collaborative

services in edge computing. IEEE Transactions on

Computers, 72(8): 1-12.

https://doi.org/10.1109/TC.2023.3238138

[12] Freitas, L., Tonkikh, A., Bendoukha, A.A., Tucci-

Piergiovanni, S., Sirdey, R., Stan, O., Kuznetsov, P.

(2023). Homomorphic sortition–single secret leader

election for PoS blockchains. Cryptography and Security.

Cornell University, pp. 1-20.

https://doi.org/10.48550/arXiv.2206.11519

[13] Jannes, K., Beni, E.H., Lagaisse, B., Joosen, W. (2023).

BeauForT: Robust byzantine fault tolerance for client-

centric mobile web applications. IEEE Transactions on

Parallel and Distributed Systems, 34(4): 1241-1252.

https://doi.org/10.1109/TPDS.2023.3241963

[14] Kutten, S., Pandurangan, G., Peleg, D., Robinson, P.,

Trehan, A. (2015). On the complexity of universal leader

election. Journal of the ACM (JACM), 62(1): 1-27.

https://doi.org/10.1145/2699440

[15] Al-Allaf, A.F., Farej, Z.K. (2023). Simulation-based

fault-tolerant multiprocessors system. TELKOMNIKA

(Telecommunication Computing Electronics and

Control), 21(2): 354-363.

http://doi.org/10.12928/telkomnika.v21i2.24253

[16] Zou, Y., Xu, M., Yu, J., Zhao, F., Cheng, X. (2022).

Fault-tolerant consensus with NOMA in mobile

networks. IEEE Wireless Communications, 29(3): 80-86.

https://doi.org/10.1109/MWC.005.2100621

[17] Biswas, A., Tripathi, A.K., Aknine, S. (2021). Lea-TN:

leader election algorithm considering node and link

failures in a torus network. The Journal of

Supercomputing, 77: 13292-13329.

https://doi.org/10.1007/s11227-021-03803-7

[18] Mostéfaoui, A., Moumen, H., Raynal, M. (2018).

Randomized k-set agreement in crash-prone and

Byzantine asynchronous systems. Theoretical Computer

Science, 709: 80-97.

https://doi.org/10.1016/j.tcs.2017.03.018

[19] Mariani, L., Pezzè, M., Riganelli, O., Xin, R. (2020).

Predicting failures in multi-tier distributed systems.

Journal of Systems and Software, 161: 110464.

https://doi.org/10.1016/j.jss.2019.110464

[20] Supase, S.S., Ingle, R.B. (2020). Are coordinator election

algorithms in distributed systems vulnerable. In 2020

11th International Conference on Computing,

Communication and Networking Technologies

(ICCCNT), Kharagpur, India, pp. 1-5.

https://doi.org/10.1109/ICCCNT49239.2020.9225327

850

[21] Chang, E., Roberts, R. (1979). An improved algorithm

for decentralized extrema-finding in circular

configurations of processes. Communications of the

ACM, 22(5): 281-283.

https://doi.org/10.1145/359104.359108

[22] Bodlaender, H.L. (1991). Some lower bound results for

decentralized extrema-finding in rings of processors.

Journal of Computer and System Sciences, 42(1): 97-118.

https://doi.org/10.1016/0022-0000(91)90041-3

[23] Vasudevan, S., DeCleene, B., Kurose, J., Towsley, D.

(2001). Secure leader election in wireless ad hoc

networks. UMass Computer Science Technical Report,

Washington, DC, USA, pp. 1–50.

https://doi.org/10.1109/DISCEX.2003.1194890

[24] Supase, S.S., Ingle, R.B. (2021). A novel algorithm for

secure and reliable coordinator election in distributed

networks. International Journal of Advanced Technology

and Engineering Exploration, 8(85): 1682-1694.

https://doi.org/10.19101/IJATEE.2021.874588

[25] Basu, S. (2011). An efficient approach of election

algorithm in distributed systems. Indian Journal of

Computer Science and Engineering (IJCSE), 2(1): 16-21.

[26] Jackson, S.C. (2016). Models of leader elections and

their applications. Ph.D. thesis, MISSOURI University

of Science and Technology, Missouri.

[27] Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C.,

Strothmann, T. (2017). Improved leader election for self-

organizing programmable matter. In Algorithms for

Sensor Systems: 13th International Symposium on

Algorithms and Experiments for Wireless Sensor

Networks, Vienna, Austria, pp. 127-140.

https://doi.org/10.1007/978-3-319-72751-6_10

[28] Sidik, B., Puzis, R., Zilberman, P., Elovici, Y. (2018).

PALE: partially asynchronous agile leader election.

arXiv preprint arXiv:1801.03734.

https://doi.org/10.48550/arXiv.1801.03734

[29] Byrenheid, M., Strufe, T., Roos, S. (2020). Attack

resistant leader election in social overlay networks by

leveraging local voting. In Proceedings of the 21st

International Conference on Distributed Computing and

Networking, Kolkata India, pp. 1-10.

https://doi.org/10.1145/3369740.3369770

[30] Ritzkal, R., Kodarsyah, Amalia, P.P., Mahmud, W.,

Hendrawan, A.H., Prakoso, B.A., Riawan, I. (2023).

Security vulnerability analysis and recommendations for

Open Media Vault cloud server on Raspberry Pi.

Ingénierie des Systèmes d’Information, 28(3): 711-716.

https://doi.org/10.18280/isi.280321

[31] Singamaneni K.K., Naidu P.S. (2018). Secure key

management in cloud environment using quantum

cryptography. Ingénierie des Systèmes d’Information,

23(5): 213-222. https://doi.org/10.3166/ISI.23.5.213-

222

[32] Supase, S., Ingle, R. (2021). Method and system for

election of a coordinator node in a distributed network.

Indian Patent no. 360624.

https://iprsearch.ipindia.gov.in/PatentSearch/PatentSear

ch/ViewDocuments.

NOMENCLATURE

FTCEA Fault Tolerant Coordinator Election Algorithm

C Set of candidate nodes i.e., C={Pidmin, Pijtsmin,

Pifcmin}

Gv Current group view (set of member nodes)

IAA I Am Alive

IAC I Am a Coordinator

n Number of nodes

m Number of nodal attributes

f’ Number of failed nodes

P Set of member nodes {P1, P2, …, Pn}

Pd Set of distance attribute {P1d, P2d, P3d, …, Pnd}

for Gv

Pfc Set of failure count {P1fc, P2fc, P3fc, …, Pnfc} for

Gv

Pjts Set of joining time stamp attribute {P1jts, P2jts,

P3jts, …, Pnjts} for Gv

Pi ID of ith node

Pid Distance of node to the center of network

Pidmin ID of the node with minimum distance from the

center of network among Gv

Pifc Failure count of Pi

Pifcmin ID of the node with minimum number of failures

among Gv

Pijts Joining time stamp of Pi

Pijtsmin ID of the node joined the network at the earliest

among Gv

851

